Recent progress in tumor pH targeting nanotechnology

Journal of Controlled Release - Tập 132 - Trang 164-170 - 2008
Eun Seong Lee1,2, Zhonggao Gao1, You Han Bae1
1Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, 421 Wakara Way, Suite 315, Utah 84108, USA
2Division of Biotechnology, The Catholic University of Korea, 43-1 Yeokgok 2-dong, Bucheon-si, 420-743, Republic of Korea

Tài liệu tham khảo

Matei, 2007, Novel agents in ovarian cancer, Expert Opin. Investig. Drugs, 16, 1227, 10.1517/13543784.16.8.1227 Gonzalez-Angulo, 2007, Overview of resistance to systemic therapy in patients with breast cancer, Adv. Exp. Med. Biol., 608, 1, 10.1007/978-0-387-74039-3_1 Cavaletti, 1995, Peripheral neurotoxicity of taxol in patients previously treated with cisplatin, Cancer, 75, 1141, 10.1002/1097-0142(19950301)75:5<1141::AID-CNCR2820750514>3.0.CO;2-U Carelle, 2002, Changing patient perceptions of the side effects of cancer chemotherapy, Cancer, 95, 155, 10.1002/cncr.10630 Fojo, 2007, The role of efflux pumps in drug-resistant metastatic breast cancer: new insights and treatment strategies, Clin. Breast Cancer, 7, 749, 10.3816/CBC.2007.n.035 O'Connor, 2007, The pharmacology of cancer resistance, Anticancer Res., 27, 1267 Higgins, 2007, Multiple molecular mechanisms for multidrug resistance transports, Nature, 446, 749, 10.1038/nature05630 Scholler, 1999, Soluble member(s) of the mesothelin/megakaryocyte potentiating factor family are detectable in sera from patients with ovarian carcinoma, Proc. Natl. Acad. Sci. U. S. A., 96, 11531, 10.1073/pnas.96.20.11531 Chaidarun, 1994, Expression of epidermal growth factor (EGF), its receptor, and related oncoprotein (erbB-2) in human pituitary tumors and response to EGF in vitro, Endocrinology, 135, 2012, 10.1210/en.135.5.2012 Parker, 2005, Folate receptor expression in carcinomas and normal tissues determined by a quantitative radioligand binding assay, Anal. Biochem., 338, 284, 10.1016/j.ab.2004.12.026 Muss, 1994, c-erbB-2 expression and response to adjuvant therapy in women with node-positive early breast cancer, N. Engl. J. Med., 330, 1260, 10.1056/NEJM199405053301802 Daniels, 2005, Expression of TRAIL and TRAIL receptors in normal and malignant tissues, Cell Res., 15, 430, 10.1038/sj.cr.7290311 Muller, 2006, In vitro and in vivo targeting of different folate receptor-positive cancer cell lines with a novel 99mTc-radiofolate tracer, Eur. J. Nucl. Med. Mol. Imaging, 33, 1162, 10.1007/s00259-006-0118-2 Cirstoiu-Hapca, 2007, Differential tumor cell targeting of anti-HER2 (Herceptin) and anti-CD20 (Mabthera) coupled nanoparticles, Int. J. Pharm., 331, 190, 10.1016/j.ijpharm.2006.12.002 Rapoport, 2007, Multifunctional nanoparticles for combining ultrasonic tumor imaging and targeted chemotherapy, J. Natl. Cancer Inst., 99, 1095, 10.1093/jnci/djm043 Ponce, 2006, Hyperthermia mediated liposomal drug delivery, Int. J. Hypertherm., 22, 205, 10.1080/02656730600582956 Ko, 2007, Tumoral acidic extracellular pH targeting of pH-responsive MPEG-poly(beta-amino ester) block copolymer micelles for cancer therapy, J. Control. Release, 123, 109, 10.1016/j.jconrel.2007.07.012 Bae, 2003, Design of environment-sensitive supramolecular assemblies for intracellular drug delivery: polymeric micelles that are responsive to intracellular pH change, Angew. Chem. Int. Ed. Engl., 42, 4640, 10.1002/anie.200250653 Chaudhry, 1999, Phase I and imaging trial of a monoclonal antibody directed against gastrin-releasing peptide in patients with lung cancer, Clin. Cancer Res., 5, 3385 Engin, 1995, Extracellular pH distribution in human tumours, Int. J. Hypertherm., 11, 211, 10.3109/02656739509022457 Volk, 1993, pH in human tumour xenografts: effect of intravenous administration of glucose, Br. J. Cancer, 68, 492, 10.1038/bjc.1993.375 van Sluis, 1999, In vivo imaging of extracellular pH using 1H MRSI, Magn. Reson. Med., 41, 743, 10.1002/(SICI)1522-2594(199904)41:4<743::AID-MRM13>3.0.CO;2-Z Ojugo, 1999, Measurement of the extracellular pH of solid tumours in mice by magnetic resonance spectroscopy: a comparison of exogenous (19)F and (31)P probes, NMR Biomed., 12, 495, 10.1002/(SICI)1099-1492(199912)12:8<495::AID-NBM594>3.0.CO;2-K Leeper, 1994, Human tumor extracellular pH as a function of blood glucose concentration, Int. J. Radiat. Oncol. Biol. Phys., 28, 935, 10.1016/0360-3016(94)90114-7 Tannockand, 1989, Acid pH in tumors and its potential for therapeutic exploitation, Cancer Res., 49, 4373 Hobbs, 1998, Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment, Proc. Natl. Acad. Sci. U. S. A., 95, 4607, 10.1073/pnas.95.8.4607 Stubbs, 2000, Causes and consequences of tumour acidity and implications for treatment, Opinion, 6, 15 Yamagata, 1998, The contribution of lactic acid to acidification of tumours: studies of variant cells lacking lactate dehydrogenase, Br. J. Cancer, 77, 1726, 10.1038/bjc.1998.289 Borst, 2000, A family of drug transporters: the multidrug resistance-associated proteins, J. Natl. Cancer Inst., 92, 1295, 10.1093/jnci/92.16.1295 Doyle, 1998, A multidrug resistance transporter from human MCF-7 breast cancer cells, Proc. Natl. Acad. Sci. U. S. A., 95, 15665, 10.1073/pnas.95.26.15665 Naoraand, 2005, Ovarian cancer metastasis: intergrating insights from disparate model organisms, Nat. Rev. Cancer, 5, 355, 10.1038/nrc1611 Miyake, 1999, Molecular cloning of cDNAs which are highly overexpressed in mitoxantrone-resistant cells: demonstration of homology to ABC transport genes, Cancer Res., 59, 8 Scheffer, 1995, The drug resistance-related protein LRP is the human major vault protein, Nat. Med., 1, 578, 10.1038/nm0695-578 Izquierdo, 1996, Overlapping phenotypes of multidrug resistance among panels of human cancer-cell lines, Int. J. Cancer, 65, 230, 10.1002/(SICI)1097-0215(19960117)65:2<230::AID-IJC17>3.0.CO;2-H Izquierdo, 1996, Broad distribution of the multidrug resistance-related vault lung resistance protein in normal human tissues and tumors, Am. J. Pathol., 148, 877 Stavrovskaya, 2000, Cellular mechanisms of multidrug resistance of tumor cells, Biochemistry (Mosc), 65, 95 Hynes, 2005, Erbb receptors and cancer: the complexity of targeted inhibitors, Nat. Rev. Cancer, 5, 341, 10.1038/nrc1609 Henning, 2004, Relevance of tumor microenvironment for progression, therapy and drug development, Anticancer Drugs, 15, 7, 10.1097/00001813-200401000-00002 Pollak, 2004, Insulin-like growth factors and neoplasia, Nat. Rev. Cancer, 4, 505, 10.1038/nrc1387 Shain, 2001, Cell adhesion is a key determinant in de novo multidrug resistance (mdr): new targets for the prevention of acquired mdr, Mol. Cancer Ther., 1, 69 Kang, 2007, pH-tunable endosomolytic oligomers for enhanced nucleic acid delivery, Adv. Funct. Mater., 17, 1263, 10.1002/adfm.200601188 Kobayashi, 2007, Effect of transferrin receptor-targeted liposomal doxorubicin in P-glycoprotein-mediated drug resistant tumor cells, Int. J. Pharm., 329, 94, 10.1016/j.ijpharm.2006.08.039 Mohajer, 2007, Enhanced intercellular retention activity of novel pH-sensitive polymeric micelles in wild and multidrug resistant MCF-7 cells, Pharm. Res., 24, 1618, 10.1007/s11095-007-9277-5 Lee, 2005, Doxorubicin loaded pH-sensitive polymeric micelles for reversal of resistant MCF-7 tumor, J. Control. Release, 103, 405, 10.1016/j.jconrel.2004.12.018 E.S. Lee, Z. Gao, D. Kim, K. Park, I.C. Kwon, Y.H. Bae, Super pH-sensitive multifunctional polymeric micelle for tumor pHe specific TAT exposure and multidrug resistance: in vivo efficacy, J. Control. Release (in press) doi:10.1016/j.jconrel.2008.04.024. Lee, 2008, A novel virus-mimetic nanogel vehicle, Angew. Chem. Int. Ed., 47, 2418, 10.1002/anie.200704121 Schmaljohann, 2006, Thermo- and pH-responsive polymers in drug delivery, Adv. Drug Deliv. Rev., 58, 1655, 10.1016/j.addr.2006.09.020 Schwartz, 1989, The effect of cell spreading on cytoplasmic pH in normal and transformed fibroblasts, Proc. Natl. Acad. Sci. U. S. A., 86, 4525, 10.1073/pnas.86.12.4525 Busa, 1984, Metabolic regulation via intracellular pH, Am. J. Physiol., 246, R409 Simon, 1994, Intracellular pH and the control of multidrug resistance, Proc. Natl. Acad. Sci. U. S. A., 91, 1128, 10.1073/pnas.91.3.1128 Belhoussine, 1998, Confocal scanning microspectrofluorometry reveals specific anthracycline accumulation in cytoplasmic organelles of multidrug-resistant cancer cells, J. Histochem. Cytochem., 46, 1369, 10.1177/002215549804601205 Simon, 1999, Role of organelle pH in tumor cell biology and drug resistance, Drug Discov. Today, 4, 32, 10.1016/S1359-6446(98)01276-8 Oh, 2007, Polymeric nanovehicles for anticancer drugs with triggering release mechanisms, J. Mater. Chem., 17, 3987, 10.1039/b707142f Drummond, 2000, Current status of pH-sensitive liposomes in drug delivery, Prog. Lipid Res., 39, 409, 10.1016/S0163-7827(00)00011-4 Gerasimov, 1999, Cytosolic drug delivery using pH- and light-sensitive liposomes, Adv. Drug Deliv. Rev., 38, 317, 10.1016/S0169-409X(99)00035-6 Shi, 2002, Efficient intracellular drug and gene delivery using folate receptor-targeted pH-sensitive liposomes composed of cationic/ anionic lipid combinations, J. Control. Release, 80, 309, 10.1016/S0168-3659(02)00017-2 Simoes, 2001, On the mechanisms of internalization and intracellular delivery mediated by pH-sensitive liposomes, Biochim. Biophys. Acta, 1515, 23, 10.1016/S0005-2736(01)00389-3 Tachibana, 1998, Intracellular regulation of macromolecules using pH-sensitive liposomes and trafficking, Biochem. Biophys. Res. Commun., 251, 538, 10.1006/bbrc.1998.9460 Lee, 2003, Poly(l-histidine)-PEG block copolymer micelles and pH-induced destabilization, J. Control. Release, 90, 363, 10.1016/S0168-3659(03)00205-0 Lee, 2003, Polymeric micelle for tumor pH and folate-mediated targeting, J. Control. Release, 91, 103, 10.1016/S0168-3659(03)00239-6 Lee, 2005, Super pH-sensitive multifunctional polymeric micelle, Nano Lett., 5, 325, 10.1021/nl0479987 D. Kim, E.S. Lee, K.T. Oh, Z. Gao, Y.H. Bae, Doxorubicin-loaded polymeric micelle overcomes multidrug resistance of cancer by double-targeting folate receptor and early endosomal pH, Small (in press). Gao, 2005, Doxorubicin loaded pH-sensitive micelle targeting acidic extracellular pH of human ovarian A2780 tumor in mice, J. Drug Target., 13, 391, 10.1080/10611860500376741 Kim, 2005, pH-induced micelle formation of poly(histidine-cophenylalanine)-block-poly(ethylene glycol) in aqueous media, Macromol. Biosci., 5, 1118, 10.1002/mabi.200500121 Unpublished results from Bae Lab. Lyer, 2006, Exploiting the enhanced permeability and retention effect for tumor targeting, Drug Discov. Today, 11, 812, 10.1016/j.drudis.2006.07.005 Yin, 2008, Physicochemical characteristics of pH-sensitive poly(l-histidine)-b-poly(ethylene glycol)/poly(l-lactic acid)-b-poly(ethylene glycol) mixed micelles, J. Control. Release, 126, 130, 10.1016/j.jconrel.2007.11.014 Oh, 2008, l-Histidine based pH-sensitive anticancer drug carrier micelle: reconstitution and brief evaluation of its systemic toxicity, Int. J. Pharm, 358, 177, 10.1016/j.ijpharm.2008.03.003 Sethuraman, 2007, TAT peptide-based micelle system for potential active targeting of anti-cancer agents to acidic solid tumors, J. Control. Release, 118, 216, 10.1016/j.jconrel.2006.12.008 Duncan, 1999, Polymer conjugates for tumor targeting and intracytoplasmic delivery. The EPR effect as a common gateway, Pharm. Sci. Technol. Today, 2, 441, 10.1016/S1461-5347(99)00211-4 Wong, 2006, A mechanistic study of enhanced doxorubicin uptake and retention in multidrug resistant breast cancer cells using a polymer–lipid hybrid nanoparticle system, J. Pharmacol. Exp. Ther., 317, 1372, 10.1124/jpet.106.101154 Wang, 2000, Doxorubicin–gallium–transferrin conjugate overcomes multidrug resistance: evidence for drug accumulation in the nucleus of drug resistant MCF-7/ADR cells, Anticancer Res., 20, 799 Cheng, 2008, Biotinylated thermoresponsive micelle self-assembled from double-hydrophilic block copolymer for drug delivery and tumor target, Biomaterials, 29, 497, 10.1016/j.biomaterials.2007.10.004 Golstein, 1999, P-glycoprotein inhibition by glibenclamide and related compounds, Pflugers Arch., 437, 652, 10.1007/s004240050829 Wu, 2007, Evidence for dual mode of action of a thiosemicarbazone, NSC73306: a potent substrate of the multidrug resistance linked ABCG2 transporter, Mol. Cancer Ther., 6, 3287, 10.1158/1535-7163.MCT-07-2005 mei, 2004, Reversal of cancer multidrug resistance by green tea polyphenols, J. Pharm. Pharmacol., 56, 1307, 10.1211/0022357044364 Chen, 2004, Screening novel, potent multidrug-resistant modulators from imidazole derivatives, Oncol. Res., 14, 355, 10.3727/0965040041292378 Lee, 2003, Development of a syngeneic in vivo tumor model and its use in evaluating a novel P-glycoprotein modulator, PGP-4008, Oncol. Res., 14, 49, 10.3727/000000003108748603 Pierre, 1992, In vitro and in vivo circumvention of multidrug resistance by servier 9788, a novel triazinoaminopiperidine derivative, Invest. New Drugs, 10, 137, 10.1007/BF00877238 Soma, 2000, Reversion of multidrug resistance by co-encapsulation of doxorubicin and cyclosporin a in polyalkylcyanoacrylate nanoparticles, Biomaterials, 21, 1, 10.1016/S0142-9612(99)00125-8 van Vlerken, 2007, Modulation of intracellular ceramide using polymeric nanoparticles to overcome multidrug resistance in cancer, Cancer Res., 67, 4843, 10.1158/0008-5472.CAN-06-1648 Kabanov, 2002, Pluronic block copolymers in drug delivery: from micellar nanocontainers to biological response modifiers, Crit. Rev. Ther. Drug Carrier Syst., 19, 1, 10.1615/CritRevTherDrugCarrierSyst.v19.i1.10 Chavanpatil, 2006, Susceptibility of nanoparticle-encapsulated paclitaxel to p-glycoprotein-mediated drug efflux, Int. J. Pharm., 320, 150, 10.1016/j.ijpharm.2006.03.045 Deng, 2007, Fg020326-loaded nanoparticle with PEG and PDLLA improved pharmacodynamics of reversing multidrug resistance in vitro and in vivo, Acta Pharmacol. Sin., 28, 913, 10.1111/j.1745-7254.2007.00565.x Batrakova, 1999, Fundamental relationships between the composition of pluronic block copolymers and their hypersensitization effect in mdr cancer cells, Pharm. Res., 16, 1373, 10.1023/A:1018942823676 Advani, 2005, A phase I trial of liposomal doxorubicin, paclitaxel and valspodar (psc-833), an inhibitor of multidrug resistance, Ann. Oncol., 16, 1968, 10.1093/annonc/mdi396 Wang, 2007, Difunctional Pluronic copolymer micelles for paclitaxel delivery: synergistic effect of folate-mediated targeting and Pluronic-mediated overcoming multidrug resistance in tumor cell lines, Int. J. Pharm., 337, 63, 10.1016/j.ijpharm.2006.12.033 Wu, 2007, Reversal of multidrug resistance by transferrin-conjugated liposomes co-encapsulating doxorubicin and verapamil, J. Pharm. Pharm. Sci., 10, 350 Mayer, 2001, The role for liposomal drug delivery in molecular and pharmacological strategies to overcome multidrug resistance, Cancer Metastasis Rev., 20, 87, 10.1023/A:1013108524062 Kim, 2005, Folate receptor mediated intracellular protein delivery using PLL-PEG-FOL conjugate, J. Control. Release, 103, 625, 10.1016/j.jconrel.2005.01.006 Sailaja, 2007, Human immunodeficiency virus-like particles activate multiple types of immune cells, Virology, 362, 331, 10.1016/j.virol.2006.12.014 Young, 2006, Virus-like particles: designing an effective AIDS vaccine, Methods, 40, 98, 10.1016/j.ymeth.2006.05.024 Liu, 2007, In vivo fate of unimers and micelles of a poly(ethylene glycol)-block-poly(caprolactone) copolymer in mice following intravenous administration, Eur. J. Pharm. Biopharm., 65, 309, 10.1016/j.ejpb.2006.11.010 Kajiwara, 2007, Long-circulating liposome-encapsulated ganciclovir enhances the efficacy of HSV-TK suicide gene therapy, J. Control. Release, 120, 104, 10.1016/j.jconrel.2007.04.011 Kommareddy, 2007, Biodistribution and pharmacokinetic analysis of long-circulating thiolated gelatin nanoparticles following systemic administration in breast cancer-bearing mice, J. Pharm. Sci., 96, 397, 10.1002/jps.20813 Huang, 2005, Body distribution and in situ evading of phagocytic uptake by macrophages of long-circulating poly (ethylene glycol) cyanoacrylate-co-n-hexadecyl cyanoacrylate nanoparticles, Acta Pharmacol. Sin., 26, 1512, 10.1111/j.1745-7254.2005.00216.x Stolnik, 2001, The effect of surface coverage and conformation of poly(ethylene oxide) (PEO) chains of poloxamer 407 on the biological fate of model colloidal drug carriers, Biochim. Biophys. Acta, 1514, 261, 10.1016/S0005-2736(01)00376-5 Wong, 2007, Chemotherapy with anticancer drugs encapsulated in solid lipid nanoparticles, Adv. Drug Deliv. Rev., 59, 491, 10.1016/j.addr.2007.04.008 Kirpotin, 2006, Antibody targeting of long-circulating lipidic nanoparticles does not increase tumor localization but does increase internalization in animal models, Cancer Res., 66, 6732, 10.1158/0008-5472.CAN-05-4199 Kommareddy, 2005, Long-circulating polymeric nanovectors for tumor-selective gene delivery, Technol. Cancer Res. Treat., 4, 615, 10.1177/153303460500400605 Vinogradov, 2005, Polyplex nanogel formulations for drug delivery of cytotoxic nucleoside analogs, J. Control. Release, 107, 143, 10.1016/j.jconrel.2005.06.002 Vinogradov, 2002, Nanosized cationic hydrogels for drug delivery: preparation, properties and interactions with cells, Adv. Drug Deliv. Rev., 54, 135, 10.1016/S0169-409X(01)00245-9 Oishi, 2007, Endosomal release and intracellular delivery of anticancer drugs using pH-sensitive PEGylated nanogels, J. Mater. Chem., 17, 3720, 10.1039/b706973a