Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Tiến bộ gần đây trong ngành quang học y học
Tóm tắt
Lĩnh vực quang học y học đang phát triển nhanh chóng, và một loạt công nghệ và thiết bị quang học đã được phát triển gần đây cho các ứng dụng chẩn đoán, điều trị và nghiên cứu cơ bản trong y học. Bài tổng quan này trình bày những tiến bộ gần đây và ứng dụng của quang học y học, đồng thời làm nổi bật các kết quả đạt được từ phòng thí nghiệm của chúng tôi. Cuối cùng, những thách thức và triển vọng trong tương lai cho cuộc chuyển đổi từ khám phá công nghệ sang các nghiên cứu lâm sàng sẽ được thảo luận.
Từ khóa
#quang học y học #công nghệ quang học #chẩn đoán #điều trị #nghiên cứu lâm sàngTài liệu tham khảo
http://www.bme.ogi.edu/biomedicaloptics/, 2009-02-16
Welch A J, Van Gemert M J C. Optical-Thermal Response of Laser-Irradiated Tissue. New York: Kluwer Academic Publisher, 1995. 1–5
Xie S S, Li H, Zheng W. Principle and techniques for measuring optical parameters of bio-tissue. Proc SPIE, 1996, 2887: 92–102
Li H, Xie S S. Measurement method of the refractive index of biotissue by total internal reflection. Appl Opt, 1996, 35(10): 1793–1795
Xie S S, Li H, Li B H. Measurement of optical penetration depth and refractive index of human tissue. Chin Opt Lett, 2003, 1(1): 44–46
Li B H, Xie S S. Determination of optical properties of porcine muscle with different light propagation model (in Chinese). Chin J Biomed Eng, 2005, 24(1): 98–101
Li B H, Xie S S, Lu Z K. Determination of optical properties of porcine nasopharyngeal tissue in vitro with integrating sphere technique (in Chinese). Chin J Lasers, 2003, 30(4): 373–376
Yang H Q, Xie S S, Li H, et al. Determination of human skin optical properties in vivo from reflectance. Chin Opt Lett, 2007, 5(3): 181–183
Chen R, Xie S S, Chen Y J, et al. Optical parameters of Chinese blood (in Chinese). J Optoelectron Laser, 2002, 13(1): 92–93
Yang H Q, Xie S S, Liu S H, et al. Differences in optical transport properties between human meridian and non-meridian. Am J Chin Med, 2007, 35(5): 743–752
Xie S S, Yang H Q, Guo Z Y, et al. Optically noninvasive measurement of the light transport properties of human meridians. Chin Opt Lett, 2008, 6(12): 928–931
Xie S S, Li H, Li B H, et al. Optoelectronics in health care treatment and biology. Physics, 2005, 34(12): 927–933
Xie S S, Li H, Niu H B, et al. Development and prospects of biomedical photonics (in Chinese). Sci China Ser G-Phys Mech Astron, 2007, 37(Suppl): 1–10
Feng S Y, Chen R, Li Y Z, et al. Fourier transform infrared and near-infrared Raman spectra of human red blood cell. Spectrosc Spectr Anal, 2005, 25(5): 712–714
Li Y Z, Chen R, Zeng H S, et al. Raman spectroscopy of Chinese human skin in vivo. Chin Opt Lett, 2007, 5(2): 105–107
Ramanujam N. Fluorescence spectroscopy in vivo. In: Meyers R A, ed. Encyclopedia of Analytical Chemistry. Chichester: John Wiley Sons Ltd, 2000. 20–56
Li B H, Xie S S. Steady state and time-resolved autofluorescence studies of human colonic tissues. Chin Opt Lett, 2006, 4(6): 348–350
Majumder S K, Keller M D, Boulos F I, et al. Comparison of autofluorescence, diffuse reflectance, and Raman spectroscopy for breast tissue discrimination. J Biomed Opt, 2008, 13(5): 054009
Frangioni J V. New technologies for human cancer imaging. J Clin Oncol, 2008, 26(24): 4012–4021
Weissleder R, Ntziachristos V. Shedding light onto live molecular targets. Nat Med, 2003, 9(1): 123–138
Weissleder R, Pittet M J. Imaging in the era of molecular oncology. Nature, 2008, 452(7187): 580–589
Li Z F, Li H, He Y W, et al. A model of speckle contrast in optical coherence tomography for characterizing the scattering coefficient of homogenous tissues. Phys Med Bio, 2008, 53(20): 5859–5866
Luker G D, Luker K E. Optical imaging: Current applications and future directions. J Nucl Med, 2008, 49(1): 1–4
Johansson A, Kromer K, Sroka R, et al. Clinical optical diagnosticstatus and perspectives. Med Laser Appl, 2008, 23(4): 155–174
Moriyama E H, Zheng G, Wilson B C. Optical molecular imaging: From single cell to patient. Clin Pharmacol Ther, 2008, 84(2): 267–271
Li H, Wang L V. Autocorrelation of scattered laser light for ultrasound-modulated optical tomography in dense turbid media. Appl Opt, 2002, 41(22): 4739–4742
Weng C C. Method to improve the quality of acousto-optic imaging using an ultrashort and focused ultrasound pulse. Appl Phys Lett, 2007, 90(12): 121108
Huang Z W, Zheng W, Xie S S, et al. Laser-induced autofluorescence microscopy of normal and tumor human colonic tissue. Int J Oncol, 2004, 24(1): 59–63
Du W, Wang Y, Luo Q M, et al. Optical molecular imaging for systems biology: From molecule to organism. Anal Bioanal Chem, 2006, 386(3): 444–457
Chen J X, Zhuo S M, Chen R, et al. Depth-resolved spectral imaging of rabbit oesophageal tissue based on two-photon excited fluorescence and second-harmonic generation. New J Phy, 2007, 9(7): 212–220
Zhuo S M, Chen J X, Jiang X S, et al. The layered-resolved microstructure and spectroscopy of mouse oral mucosa using multiphoton microscopy. Phys Med Bio, 2007, 52(16): 4967–4980
Zhuo S M, Chen J X, Jiang X S, et al. Visualizing extracellular matrix and sensing fibroblasts metabolism in human dermis by nonlinear spectral imaging. Skin Res Technol, 2007, 13(4): 406–411
Zhu S M, Chen J X, Jiang X S, et al. Sequential multitrack nonlinear ex vivo imaging of esophageal stroma based on backscattered second-harmonic generation and two-photon autofluorescence. Scanning, 2007, 29(5): 219–224
Zhuo S M, Chen J X, Jiang X S, et al. Imaging rat esophagus using combination of reflectance confocal and multiphoton microscopy. Laser Phys Lett, 2008, 5(8): 614–618
Zhuo S M, Chen J X, Cao N, et al. Imaging collagen remodeling and sensing transplanted autologous fibroblast metabolism in mouse dermis using multimode nonlinear optical imaging. Phys Med Bio, 2008, 53(12): 3317–3325
Zhuo S M, Chen J X, Yu B Y, et al. Nonlinear optical microscopy of bronchus. J Biomed Opt, 2008, 13(5): 054024
Webb C E, Jones J D C. Handbook of Laser Technology and Application. Bristol and Philadelphia: Institute of Physics Publishing Ltd, 2004. 1951
Li B, Moriyama E H, Li F, et al. Diblock copolymer micelles deliver hydrophobic protoporphyrin IX for photodynamic therapy. Photochem Photobiol, 2007, 83(6): 1505–1512
Huang Z. An update on the regulatory status of PDT photosensitizers in China. Photodiag Photodna Ther, 2008, 5(4): 285–287
http://medicalphysicsweb.org/cws/article/opinion/27030, 2009-02-16
Li B H, Xie S S, Huang Z, et al. Advances in photodynamic therapy dosimetry (in Chinese). Prog Biochem Biophys, 2009, in press, doi: 10.3724/SP.J.1206.2008.00746
Li B H, Lin L S, Lin H Y, et al. Singlet oxygen quantum yields of porphyrin-based photosensitizers for photodynamic therapy. J Innov Opt Health Sci, 2008, 1(1): 141–149
Xie S S, Gong W, Li H. Photorejuvenation: Still not a fully established clinical tool for cosmetic treatment. Proc SPIE, 2006, 6026: 23–28
Gong W, Xie S S, Huang Y M. Evaluating thermal damage induced by pulsed light with multiphoton microscopy. Proc SPIE, 2009, 7161: 71610X-1-5
Gong W, Huang Y M, Xie S S. Quantitative measurement of skin tissue response during laser irradiation in photorejuvenation. Chin Opt Lett, 2009, in press, doi: 10.3788/COL20090707
Zhang X Z, Xie S S, Ye Q, et al. Wavelength dependence of soft tissue ablation by using pulsed lasers. Chin Opt Lett, 2007, 5(4): 235–237
Zhan Z L, Zhang X Z, Ye Q, et al. Measurement of crater geometries after laser ablation of bone tissue with optical coherence tomography. Chin Opt Lett, 2008, 6(12): 896–898
Zhang X Z, Xie S S, Ye Q, et al. Influence of scanning velocity on bovine shank bone ablation with pulsed CO2 Laser. Chin Opt Lett, 2009, 7(2): 138–141
Xing Y, Chaudry Q, Shen C, et al. Bioconjugated quantum dots for multiplexed and quantitative immunohistochemistry. Nat Protoc, 2007, 2(5): 1152–1165