Recent progress in ionic liquid-based electrolytes for nonaqueous and aqueous metal batteries

eScience - Trang 100173 - 2023
Xin Wu1,2, Yao Dai2, Nian Wu Li1,2, Xiao Chun Chen2, Le Yu1,2
1State Key Lab of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P.R. China
2College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R. China

Tài liệu tham khảo

Xing, 2022, Advances and strategies in electrolyte regulation for aqueous zinc-based batteries, Coord. Chem. Rev., 452, 10.1016/j.ccr.2021.214299 Horstmann, 2021, Strategies towards enabling lithium metal in batteries: interphases and electrodes, Energy Environ. Sci., 14, 5289, 10.1039/D1EE00767J Wang, 2020, Electrode material-ionic liquid coupling for electrochemical energy storage, Nat. Rev. Mater., 5, 787, 10.1038/s41578-020-0218-9 Huang, 2019, A self-healing integrated all-in-one zinc-ion battery, Angew. Chem., 131, 4357, 10.1002/ange.201814653 Xia, 2019, Practical challenges and future perspectives of all-solid-state lithium-metal batteries, Chem, 5, 753, 10.1016/j.chempr.2018.11.013 Li, 2020, Progress and perspective of ceramic/polymer composite solid electrolytes for lithium batteries, Adv. Sci., 7 Cai, 2023, Anode corrosion in aqueous Zn metal batteries, eScience, 3, 10.1016/j.esci.2023.100093 Yu, 2021, Recent development of lithium argyrodite solid-state electrolytes for solid-state batteries: synthesis, structure, stability and dynamics, Nano Energy, 83, 10.1016/j.nanoen.2021.105858 Xiang, 2020, Advanced characterization techniques for solid state lithium battery research, Mater. Today, 36, 139, 10.1016/j.mattod.2020.01.018 Fan, 2018, A dual-salt gel polymer electrolyte with 3D cross-linked polymer network for dendrite-free lithium metal batteries, Adv. Sci., 5, 10.1002/advs.201800559 Guo, 2018, An environmentally friendly and flexible aqueous zinc battery using an organic cathode, Angew. Chem., Int. Ed., 57, 11737, 10.1002/anie.201807121 Yu, 2022, Surface and interface engineering for electrochemical energy storage and conversion preface, Acta Phys.-Chim. Sin., 38 Guan, 2021, Artificial interphase layers for lithium metal anode, Acta Phys.-Chim. Sin., 37 Zhang, 2022, Biomimetic dendrite-free multivalent metal batteries, Adv. Mater., 34, 10.1002/adma.202206970 Huang, 2022, Research progress on key materials and technologies for secondary batteries, Acta Phys.-Chim. Sin., 38 Yu, 2022, Confining Sn nanoparticles in interconnected N-doped hollow carbon spheres as hierarchical zincophilic fibers for dendrite-free Zn metal anodes, Sci. Adv., 8, 10.1126/sciadv.abm5766 Song, 2022, Achieving both high reversible and stable Zn anode by a practical glucose electrolyte additive toward high-performance Zn-ion batteries, Rare Met, 41, 356, 10.1007/s12598-021-01858-2 Chen, 2022, Crystal structures, reaction mechanisms, and optimization strategies of MnO2 cathode for aqueous rechargeable zinc batteries, Acta Phys.-Chim. Sin., 38 Aslam, 2021, How to avoid dendrite formation in metal batteries: innovative strategies for dendrite suppression, Nano Energy, 86, 10.1016/j.nanoen.2021.106142 Zhao, 2022, Fluorinated ether electrolyte with controlled solvation structure for high voltage lithium metal batteries, Nat. Commun., 13, 2575, 10.1038/s41467-022-29199-3 Geng, 2022, Electrolyte additive engineering for aqueous Zn ion batteries, Energy Storage Mater, 51, 733, 10.1016/j.ensm.2022.07.017 Lv, 2022, Engineering a self-adaptive electric double layer on both electrodes for high-performance zinc metal batteries, Energy Environ. Sci., 15, 4748, 10.1039/D2EE02687B Xu, 2021, Electrolytes speed up development of zinc batteries, Rare Met, 40, 749, 10.1007/s12598-020-01628-6 Liu, 2021, Ionic liquids for high performance lithium metal batteries, J. Energy Chem., 59, 320, 10.1016/j.jechem.2020.11.017 Francis, 2020, Lithium-ion battery separators for ionic-liquid electrolytes: A review, Adv. Mater., 32, 10.1002/adma.201904205 Zhou, 2021, Recent advance in ionic-liquid-based electrolytes for rechargeable metal-ion batteries, Adv. Sci., 8, 10.1002/advs.202004490 Wang, 2022, Electrolyte design for rechargeable anion shuttle batteries, eScience, 2, 573, 10.1016/j.esci.2022.10.003 Chen, 2022, Ionic liquid additive enabling anti-freezing aqueous electrolyte and dendrite-free Zn metal electrode with organic/inorganic hybrid solid electrolyte interphase layer, Energy Storage Mater, 53, 629, 10.1016/j.ensm.2022.10.004 Ye, 2023, Ultrastretchable ionogel with extreme environmental resilience through controlled hydration interactions, Adv. Funct. Mater., 33, 10.1002/adfm.202209787 Wang, 2022, Cations and anions regulation through hybrid ionic liquid electrolytes towards stable lithium metal anode, Chem. Eng. J., 439, 10.1016/j.cej.2022.135780 Tu, 2022, Tailoring electrolyte solvation for LiF-rich solid electrolyte interphase toward a stable Li anode, ACS Nano, 16, 16898, 10.1021/acsnano.2c06924 Kim, 2020, Amine-functionalized boron nitride nanosheets: a new functional additive for robust, flexible ion gel electrolyte with high lithium-ion transference number, Adv. Funct. Mater., 30 Chen, 2022, Ionic liquid additive enabling anti-freezing aqueous electrolyte and dendrite-free Zn metal electrode with organic/inorganic hybrid solid electrolyte interphase layer, Energy Storage Mater, 53, 629, 10.1016/j.ensm.2022.10.004 Zhao, 2022, A novel "water-in-ionic liquid" electrolyte for Zn metal batteries, ACS Energy Lett, 8, 608, 10.1021/acsenergylett.2c02520 Chen, 2019, Cross-linked polymeric ionic liquids ion gel electrolytes by in situ radical polymerization, Chem. Eng. J., 378, 10.1016/j.cej.2019.122245 Ma, 2019, Solid polymer electrolyte based on polymerized ionic liquid for high performance all-solid-state lithium-ion batteries, ACS Sustainable Chem. Eng., 7, 4675, 10.1021/acssuschemeng.8b04076 Zhang, 2021, Functional polymers in electrolyte optimization and interphase design for lithium metal anodes, J. Mater. Chem. A, 9, 13388, 10.1039/D1TA02297K Li, 2020, Dendrite-free, wide temperature range lithium metal batteries enabled by hybrid network ionic liquids, Energy Storage Mater, 29, 273, 10.1016/j.ensm.2020.04.037 Zhou, 2017, In situ synthesis of hierarchical poly(ionic liquid)-based solid electrolytes for high-safety lithium-ion and sodium-ion batteries, Nano Energy, 33, 45, 10.1016/j.nanoen.2017.01.027 D'Angelo, 2018, Decoupling the ionic conductivity and elastic modulus of gel electrolytes: fully zwitterionic copolymer scaffolds in lithium salt/ionic liquid solutions, Adv. Energy Mater., 8, 10.1002/aenm.201801646 Cao, 2022, Strategies of regulating Zn2+ solvation structures for dendrite-free and side reaction-suppressed zinc-ion batteries, Energy Environ. Sci., 15, 499, 10.1039/D1EE03377H Zheng, 2022, In situ polymerization of ionic liquid with tunable phase separation for highly reversible and ultralong cycle life Zn-ion battery, Nano Lett, 22, 9062, 10.1021/acs.nanolett.2c03421 Lee, 2021, Water-repellent ionic liquid skinny gels customized for aqueous Zn-ion battery anodes, Adv. Funct. Mater., 31, 10.1002/adfm.202170269 Ma, 2020, Hydrogen-free and dendrite-free all-solid-state Zn-ion batteries, Adv. Mater., 32, 10.1002/adma.201908121 Ilyas, 2023, Intrinsically safe electrolyte boosting high reversibleZn anode for rechargeable batteries, Energy Storage Mater, 55, 566, 10.1016/j.ensm.2022.11.057 Cui, 2022, A high-voltage and stable zinc-air battery enabled by dual-hydrophobic-induced proton shuttle shielding, Joule, 6, 1617, 10.1016/j.joule.2022.05.019 Lee, 2020, Safe, stable cycling of lithium metal batteries with low-viscosity, fire-retardant locally concentrated ionic liquid electrolytes, Adv. Funct. Mater., 30, 10.1002/adfm.202070234 Zhang, 2021, Designing safer lithium-based batteries with nonflammable electrolytes: a review, eScience, 1, 163, 10.1016/j.esci.2021.12.003 Hubble, 2022, Liquid electrolyte development for low-temperature lithium-ion batteries, Energy Environ. Sci., 15, 550, 10.1039/D1EE01789F Zhao, 2022, Semi-immobilized ionic liquid regulator with fast kinetics toward highly stable zinc anode under -35 to 60 oC, Adv. Mater., 34, 10.1002/adma.202203153 Walden, 1914, Molecular weights and electrical conductivity of several fused salts, Bull. Acad. Imp. Sci. St.-Pétersbourg, 8, 405 Wilkes, 1992, Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids, J. Chem. Soc., Chem. Commun., 13, 965, 10.1039/c39920000965 Lodge, 2016, Mechanically tunable, readily processable ion gels by self-assembly of block copolymers in ionic liquids, Acc. Chem. Res., 49, 2107, 10.1021/acs.accounts.6b00308 Nordness, 2020, Ion dissociation in ionic liquids and ionic liquid solutions, Chem. Rev., 120, 12873, 10.1021/acs.chemrev.0c00373 Hulsbosch, 2016, Biobased ionic liquids: solvents for a green processing industry, ACS Sustainable Chem. Eng., 4, 2917, 10.1021/acssuschemeng.6b00553 Lian, 2019, Hunting ionic liquids with large electrochemical potential windows, AIChE J, 65, 804, 10.1002/aic.16467 Ma, 2010, Preparation of inorganic materials using ionic liquids, Adv. Mater., 22, 261, 10.1002/adma.200900603 Feng, 2021, Construction of supercapacitor-based ionic diodes with adjustable bias directions by using poly(ionic liquid) electrolytes, Adv. Mater., 33, 10.1002/adma.202100887 Chen, 2022, Zwitterionic bifunctional layer for reversible Zn anode, ACS Energy Lett, 7, 1719, 10.1021/acsenergylett.2c00124 Jin, 2021, Polymer zwitterion-based artificial interphase layers for stable lithium metal anodes, ACS Appl. Mater. Interfaces, 13, 57489, 10.1021/acsami.1c19479 Jurng, 2018, Effect of electrolyte on the nanostructure of the solid electrolyte interphase (SEI) and performance of lithium metal anodes, Energy Environ. Sci., 11, 2600, 10.1039/C8EE00364E Ko, 2019, Recent progress in LiF materials for safe lithium metal anode of rechargeable batteries: is LiF the key to commercializing Li metal batteries, Ceram. Int., 45, 30, 10.1016/j.ceramint.2018.09.287 Chen, 2021, Sustained release-driven formation of ultrastable SEI between Li6PS5Cl and lithium anode for sulfide-based solid-state batteries, Adv. Energy Mater., 11, 10.1002/aenm.202002545 Akhtar, 2021, A gelatin-based artificial SEI for lithium deposition regulation and polysulfide shuttle suppression in lithium-sulfur batteries, J. Energy Chem., 52, 310, 10.1016/j.jechem.2020.04.046 Cheng, 2017, Implantable solid electrolyte interphase in lithium-metal batteries, Chem, 2, 258, 10.1016/j.chempr.2017.01.003 Pang, 2017, An in vivo formed solid electrolyte surface layer enables stable plating of Li metal, Joule, 1, 871, 10.1016/j.joule.2017.11.009 Liu, 2016, Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode, Nat. Commun., 7 Wang, 2022, Natural protein as novel additive of a commercial electrolyte for long-cycling lithium metal batteries, Chem. Eng. J., 437 Xiao, 2020, Understanding and applying coulombic efficiency in lithium metal batteries, Nat. Energy, 5, 561, 10.1038/s41560-020-0648-z Yasin, 2020, Understanding and suppression strategies toward stable Li metal anode for safe lithium batteries, Energy Storage Mater, 25, 644, 10.1016/j.ensm.2019.09.020 Liu, 2022, Effect of organic cations in locally concentrated ionic liquid electrolytes on the electrochemical performance of lithium metal batteries, Energy Storage Mater, 44, 370, 10.1016/j.ensm.2021.10.034 Zhang, 2019, A versatile functionalized ionic liquid to boost the solution-mediated performances of lithium-oxygen batteries, Nat. Commun., 10, 602, 10.1038/s41467-019-08422-8 Li, 2017, Passivation of lithium metal anode via hybrid ionic liquid electrolyte toward stable Li plating/stripping, Adv. Sci., 4 Watanabe, 2017, Application of ionic liquids to energy storage and conversion materials and devices, Chem. Rev., 117, 7190, 10.1021/acs.chemrev.6b00504 She, 2017, Decorating graphene oxide with ionic liquid nanodroplets: an approach leading to energy-dense, high-voltage supercapacitors, ACS Nano, 11, 10077, 10.1021/acsnano.7b04467 Zhang, 2018, Ionic liquid electrolyte with highly concentrated LiTFSI for lithium metal batteries, Electrochim. Acta, 285, 78, 10.1016/j.electacta.2018.07.231 Kar, 2019, Novel and versatile room temperature ionic liquids for energy storage, Energy Environ. Sci., 12, 566, 10.1039/C8EE02437E Cheng, 2018, Ionic liquid functionalized electrospun gel polymer electrolyte for use in a high-performance lithium metal battery, J. Mater. Chem. A, 6, 18479, 10.1039/C8TA06338A Cheng, 2018, Gel polymer electrolytes for electrochemical energy storage, Adv. Energy Mater., 8, 10.1002/aenm.201702184 Ren, 2021, Advanced gel polymer electrolytes for safe and durable lithium metal batteries: challenges, strategies, and perspectives, Energy Storage Mater, 34, 515, 10.1016/j.ensm.2020.10.018 Wan, 2022, Self-healing and flexible ionic gel polymer electrolyte based on reversible bond for high-performance lithium metal batteries, Energy Technol, 10, 10.1002/ente.202100749 Castillo, 2021, Safe, flexible, and high-performing gel-polymer electrolyte for rechargeable lithium metal batteries, Chem. Mater., 33, 8812, 10.1021/acs.chemmater.1c02952 Ferrari, 2010, Lithium ion conducting PVdF-HFP composite gel electrolytes based on N-methoxyethyl-N-methylpyrrolidinium bis (trifluoromethanesulfonyl)-imide ionic liquid, J. Power Sources, 195, 559, 10.1016/j.jpowsour.2009.08.015 Isken, 2013, Methacrylate based gel polymer electrolyte for lithium-ion batteries, J. Power Sources, 225, 157, 10.1016/j.jpowsour.2012.09.098 Yin, 2015, Polymer electrolytes based on dicationic polymeric ionic liquids: application in lithium metal batteries, J. Mater. Chem. A, 3, 170, 10.1039/C4TA05106H Wang, 2019, Poly (ionic liquid) s-in-salt electrolytes with co-coordination-assisted lithium-ion transport for safe batteries, Joule, 3, 2687, 10.1016/j.joule.2019.07.008 Zhou, 2021, Ionic liquid functionalized gel polymer electrolytes for stable lithium metal batteries, Angew. Chem., Int. Ed., 60, 22791, 10.1002/anie.202106237 Mu, 2022, Phosphorus‐fixed stable interfacial nonflammable gel polymer electrolyte for safe flexible lithium-ion batteries, Adv. Funct. Mater., 32, 10.1002/adfm.202203006 Wilken, 2015, Ionic liquids in lithium battery electrolytes: composition versus safety and physical properties, J. Power Sources, 275, 935, 10.1016/j.jpowsour.2014.11.071 Sun, 2020, High-safety and high-energy-density lithium metal batteries in a novel ionic-liquid electrolyte, Adv. Mater., 32, 10.1002/adma.202001741 Sun, 2020, High-safety and high-energy-density lithium metal batteries in a novel ionic-liquid electrolyte, Adv. Mater., 32, 10.1002/adma.202001741 Wang, 2021, Intrinsically nonflammable ionic liquid‐based localized highly concentrated electrolytes enable high‐performance Li‐metal batteries, Adv. Energy Mater., 11 Fu, 2022, A polymerized-ionic-liquid-based polymer electrolyte with high oxidative stability for 4 and 5 V class solid-state lithium metal batteries, Adv. Energy Mater., 12 Zhang, 2021, Designing anion-type water-free Zn2+ solvation structure for robust Zn metal anode, Angew. Chem., Int. Ed., 60, 23357, 10.1002/anie.202109682 Fu, 2022, Enabling polymeric ionic liquid electrolytes with high ambient ionic conductivity by polymer chain regulation, Chem. Eng. J., 431, 10.1016/j.cej.2021.133278 Wang, 2022, Insight on organic molecules in aqueous Zn-ion batteries with an emphasis on the Zn anode regulation, Adv. Energy Mater., 12 Parker, 2017, Rechargeable nickel-3D zinc batteries: an energy-dense, safer alternative to lithium-ion, Science, 356, 414, 10.1126/science.aak9991 Liu, 2022, Regulating surface reaction kinetics through ligand field effects for fast and reversible aqueous zinc batteries, Angew. Chem., Int. Ed., 61 Nie, 2022, Cholinium cations enable highly compact and dendrite-free Zn metal anodes in aqueous electrolytes, Adv. Funct. Mater., 32, 10.1002/adfm.202203905 Yoo, 2018, The synergistic effect of cation and anion of an ionic liquid additive for lithium metal anodes, Adv. Energy Mater., 8, 10.1002/aenm.201702744 Jang, 2022, Self-assembled protective layer by symmetric ionic liquid for long-cycling lithium-metal batteries, Adv. Energy Mater., 12, 10.1002/aenm.202103955 Ma, 2022, Ammonium enables reversible aqueous Zn battery chemistries by tailoring the interphase, One Earth, 5, 413, 10.1016/j.oneear.2022.03.012 Ilyas, 2022, Empowering Zn electrode current capability along interfacial stability by optimizing intrinsic safe organic electrolytes, Angew. Chem., Int. Ed., 62 Fdz De Anastro, 2018, Poly(ionic liquid) iongels for all-solid rechargeable zinc/PEDOT batteries, Electrochim. Acta, 278, 271, 10.1016/j.electacta.2018.05.044 Xu, 2022, Hierarchically nanostructured solid-state electrolyte for flexible rechargeable zinc-air batteries, Angew. Chem., Int. Ed., 61 Su, 2022, Temperature-dependent nucleation and electrochemical performance of Zn metal anodes, Nano Lett, 22, 1549, 10.1021/acs.nanolett.1c04353 Feng, 2022, Challenges and advances in wide-temperature rechargeable lithium batteries, Energy Environ. Sci., 15, 1711, 10.1039/D1EE03292E