Recent progress in flexible perovskite solar cells: Materials, mechanical tolerance and stability
Tài liệu tham khảo
Nematollahi, 2016, Energy demands and renewable energy resources in the Middle East, Renew Sustain Energy Rev, 54, 1172, 10.1016/j.rser.2015.10.058
Heo, 2013, Solar cells containing perovskite compound and, 7
Green, 2014, The emergence of perovskite solar cells, 8
Ball, 2013, Environmental Science, 1739
Grätzel, 2014, The light and shade of perovskite solar cells, Nat Publ Gr, 13, 838
Liu, 2013, solution processing techniques, Nat Photonics, 8, 133, 10.1038/nphoton.2013.342
Park, 2013, Organometal Perovskite Light Absorbers Toward a 20 % Efficiency Low-Cost Solid-State Mesoscopic Solar Cell, 2
Im, 2011, Nanoscale, 2, 4088, 10.1039/c1nr10867k
Zhou, 2014, No Title, 542
Albrecht, 2015, Monilithic perovskite/silicon-heterojunction tandem solar cells processed at low temperature, Energy Environ Sci, 9, 81, 10.1039/C5EE02965A
Werner, 2016, Efficient Monolithic Perovskite/Silicon Tandem Solar Cell with Cell Area >1 cm2, J Phys Chem Lett, 7, 161, 10.1021/acs.jpclett.5b02686
Sobuś, 2014, Optimization of absorption bands of dye-sensitized and perovskite tandem solar cells based on loss-in-potential values, Phys Chem Chem Phys, 16, 14116, 10.1039/C4CP01937G
Yang, 2015, Multilayer Transparent Top Electrode for Solution Processed Perovskite/Cu(In,Ga)(Se,S)2 Four Terminal Tandem Solar Cells, ACS Nano, 9, 7714, 10.1021/acsnano.5b03189
Zi, 2016, Perovskite/germanium tandem: a potential high efficiency thin film solar cell design, Opt Commun, 380, 1, 10.1016/j.optcom.2016.05.074
Anaya, 2016, Optical analysis of CH 3 NH 3 Sn x Pb 1−x I 3 absorbers: a roadmap for perovskite-on-perovskite tandem solar cells, J Mater Chem A, 10.1039/C6TA04840D
Heo, 2015, CH3NH3PbBr3-CH3NH3PbI3 Perovskite-Perovskite Tandem Solar Cells with Exceeding 2.2 V Open Circuit Voltage, Adv Mater, 5121
Ledinsky, 2015, Silicon Four-Terminal Tandem Solar Cells †, 1619
Jiang, 2016, Optical Analysis of Perovskite/Silicon Tandem Solar Cells, J Mater Chem C, 4, 5679, 10.1039/C6TC01276K
Loper, 2014, Organic{â}{/texteuro}{/textquotedblleft}Inorganic Halide Perovskites: Perspectives for Silicon-Based Tandem Solar Cells, Ieee J Photovoltaics, 4, 1545, 10.1109/JPHOTOV.2014.2355421
Chan L. Interface study of Spiro-OMeTAD on passivated P-, N-, And N -Si (111) for use in Tandem Perovskite / Silicon Solar cell devices. 2015.
News, 2016, Perovskite-silicon tandem solar cells with the highest power conversion efficiency, ScienceDaily, 1
Liu, 2016, Perovskite-organic hybrid tandem solar cells using nanostructured perovskite layer as light window and PFN/doped-MoO3/MoO3 multi-layer interconnection layer, Nanoscale, 3638, 10.1039/C5NR07457F
McMeekin, 2016, A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells, Science, 351, 151, 10.1126/science.aad5845
Jiang, 2015, Two-terminal perovskite/perovskite tandem solar cell, J Mater Chem A, 0, 1
Jiang, 2011, Supporting Information, 1
Mei, 2014, No Title, 295
Snaith, 2014, Anomalous Hysteresis in Perovskite Solar Cells
Environ, 2014, Environmental Science, 994
You, 2014, Perovskite Solar Cells with High E ffi ciency and Flexibility
Shin, 2015, High-performance flexible perovskite solar cells exploiting Zn2SnO4 prepared in solution below 100°C, Nat Commun, 6, 1, 10.1038/ncomms8410
Ye, 2016, Recent Advancements in Perovskite Solar Cells: Flexibility, Stability and Large Scale, J Mater Chem A, 4, 6755, 10.1039/C5TA09661H
Saliba, 2016, Environmental, Energy Environ Sci, 9, 1989, 10.1039/C5EE03874J
Luo, 2015, Recent progress in organic – inorganic halide perovskite solar cells : mechanisms and material, J Mater Chem A Mater Energy Sustain, 3, 8992, 10.1039/C4TA04953E
Singh T, Kulkarni A, Ikegami M, Miyasaka T. Trilok Singh, Ashish Kulkarni, Masashi Ikegami, and Tsutomu Miyasaka * 2016:6–11. doi:10.1021/acsami.6b02843.
Yin, 2015, Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber Unusual defect physics in CH 3 NH 3 PbI 3 perovskite solar cell absorber, 63903, 2
Seo, 2016, Fabrication of E ffi cient Formamidinium Tin Iodide Perovskite Solar Cells through SnF 2 − Pyrazine Complex, 2
Hsiao, 2015, organo-metal halide perovskite solar cells, J Mater Chem A Mater Energy Sustain, 3, 15372, 10.1039/C5TA01376C
Niu, 2015, Review of recent progress in chemical stability of perovskite solar cells, J Mater Chem A Mater Energy Sustain, 3, 8970, 10.1039/C4TA04994B
Xiao, 2016, Thin-film semiconductor perspective of organometal trihalide perovskite materials for high-efficiency solar cells, Mater Sci Eng R, 101, 1, 10.1016/j.mser.2015.12.002
Wang, 2015, Lead Replacement in CH 3 NH 3 PbI 3 Perovskites, 1
Giorgi, 2015, ambipolar class of materials with enhanced photovoltaic performances, J Mater Chem A Mater Energy Sustain, 3, 8981, 10.1039/C4TA05046K
Online, 2013, J Mater Chem A, 5628
Hao, 2014, Lead-free solid-state organic-inorganic halide perovskite solar cells, Nat Photonics, 8, 489, 10.1038/nphoton.2014.82
Online, 2013, RSC Adv, 18762
Graetzel, 2014, Perovskite solar cells employing organic charge-transport layers, 8
Kim, 2012, All-Solid-State Submicron Thin Film, 1
Bi, 2016, Efficient luminescent solar cells based on tailored mixed-cation perovskites, 2, 1
Chen, 2013, Planar Heterojunction Perovskite Solar Cells via Vapor-Assisted Solution Process, 3
Das, 2015, High-Performance Flexible Perovskite Solar Cells by Using a Combination of Ultrasonic Spray-Coating and Low Thermal Budget Photonic Curing
Krebs, 2009, Solar Energy Materials & Solar Cells Fabrication and processing of polymer solar cells : A review of printing and coating techniques, 93, 394, 10.1016/j.solmat.2008.10.004
Luo, 2016, Fine control of perovskite-layered morphology and composition via sequential deposition crystallization process towards improved perovskite solar cells, J Power Sources, 311, 130, 10.1016/j.jpowsour.2016.01.102
Salim, 2015, and device architecture on device performance, J Mater Chem A Mater Energy Sustain, 3, 8943, 10.1039/C4TA05226A
Chem, 2015, Perovskite solar cells: film formation and properties, J Mater Chem A Mater Energy Sustain, 3, 9032, 10.1039/C4TA05246C
Habibi, 2016, Progress in emerging solution-processed thin fi lm solar cells – Part II : Perovskite solar cells, Renew Sustain Energy Rev, 62, 1012, 10.1016/j.rser.2016.05.042
Jeon, 2014, Inorganic – organic hybrid perovskite solar cells, 13, 897
Wang, 2015, TiO 2 nanotube arrays based fl exible perovskite solar cells with transparent carbon nanotube electrode, Nano Energy, 11, 728, 10.1016/j.nanoen.2014.11.042
Eperon, 2014, Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells, Adv Funct Mater, 24, 151, 10.1002/adfm.201302090
Burschka, 2013, Sequential deposition as a route to high-performance perovskite-sensitized solar cells, Nature, 499, 316, 10.1038/nature12340
Dianetti, 2015, Solar Energy Materials & Solar Cells TCO-free fl exible organo metal trihalide perovskite planar-heterojunction solar cells, Sol Energy Mater Sol Cells, 140, 150, 10.1016/j.solmat.2015.03.016
Weerasinghe, 2015, Encapsulation for improving the lifetime of fl exible perovskite solar cells, Nano Energy, 18, 118, 10.1016/j.nanoen.2015.10.006
Yin, 2016, Highly E ffi cient Flexible Perovskite Solar Cells Using Solution-Derived NiO
Xiao M, Huang F, Huang W, Dkhissi Y, Zhu Y, Etheridge J, et al. Angewandte A Fast Deposition-Crystallization Procedure for Highly Efficient Lead Iodide Perovskite Thin-Film Solar Cells, 3168. 2014. p. 10056–61. 〈http://dx.doi.org/10.1002/ange.201405334〉.
Zhang, 2016, Flexible, hole transporting layer-free and stable CH 3 NH 3 PbI 3 / PC 61 BM planar heterojunction perovskite solar cells, Org Electron, 30, 281, 10.1016/j.orgel.2016.01.002
Li, 2016, ultrathin flexible substrates, Nat Commun, 1
Xu, 2015
Xi, 2016, Initiating crystal growth kinetics of α-HC(NH2)2PbI3 for flexible solar cells with long-term stability, Nano Energy, 26, 438, 10.1016/j.nanoen.2016.06.007
Nanostructures S. Highly efficient flexible perovskite solar cells with anti reflection and. 2015. p. 10287–95.
Huang, 2014, Gas-assisted preparation of lead iodide perovskite fi lms consisting of a monolayer of single crystalline grains for high ef fi ciency planar solar cells, Nano Energy, 10, 10, 10.1016/j.nanoen.2014.08.015
Dkhissi, 2015, Low temperature processing of fl exible planar perovskite solar cells with ef fi ciency over 10 %, J Power Sources, 278, 325, 10.1016/j.jpowsour.2014.12.104
Krebs, 2010, Product integration of compact roll-to-roll processed polymer solar cell modules: methods and manufacture using flexographic printing, slot-die coating and rotary screen printing, J Mater Chem, 20, 8994, 10.1039/c0jm01178a
Krebs, 2009, Polymer solar cell modules prepared using roll-to-roll methods: Knife-over-edge coating, slot-die coating and screen printing, Sol Energy Mater Sol Cells, 93, 465, 10.1016/j.solmat.2008.12.012
Schmidt, 2015, Upscaling of Perovskite Solar Cells: Fully Ambient Roll Processing of Flexible Perovskite Solar Cells with Printed Back Electrodes, Adv Energy Mater, 5, 1, 10.1002/aenm.201500569
Ponseca, 2014, Organometal Halide Perovskite Solar Cell Materials Rationalized: Ultrafast Charge Generation, High and Microsecond-Long Balanced Mobilities, and Slow Recombination
Lin, 2013, Development of inverted organic solar cells with TiO₂ interface layer by using low-temperature atomic layer deposition, ACS Appl Mater Inter, 5, 713, 10.1021/am302252p
Stefik, 2013, Improved nonaqueous synthesis of TiO2 for dye-sensitized solar cells, ACS Nano, 7, 8981, 10.1021/nn403500g
Fan, 2014, Dye-sensitized solar cells based on TiO 2 nanoparticles / nanobelts double-layered film with improved photovoltaic performance, Appl Surf Sci, 319, 75, 10.1016/j.apsusc.2014.07.054
Tricoli, 2012, Highly porous TiO2 films for dye sensitized solar cells, J Mater Chem, 22, 14254, 10.1039/c2jm15953h
Ranjitha, 2014, Superlattices and Microstructures Inverted organic solar cells based on Cd-doped TiO 2 as an electron extraction layer, Superlattices Microstruct, 74, 114, 10.1016/j.spmi.2014.05.040
Soares P, Mikowski A, Lepienski CM, Santos E, Soares A. Hardness and Elastic Modulus of TiO 2 Anodic Films Measured by Instrumented Indentation n.d.:7–10. 〈http://dx.doi.org/10.1002/jbmb〉.
Vahtrus, 2015, Materials Characterization Mechanical characterization of TiO 2 nano fi bers produced by different electrospinning techniques, 100, 98
Troughton, 2015, solar cells employing metallic substrates, J Mater Chem A Mater Energy Sustain, 3, 9141, 10.1039/C5TA01755F
Qiu, 2014, Integrating Perovskite Solar Cells into a Flexible Fiber, 10425
Yang, 2015, Environmental science, Energy Environ Sci, 8, 3208, 10.1039/C5EE02155C
Wang, 2008, Freestanding TiO/n 2 nanotube arrays with ultrahigh aspect ratio via electrochemical anodization, Chem Mater, 1257, 10.1021/cm7028917
Mac??k, 2005, High-aspect-ratio TiO2 nanotubes by anodization of titanium, Angew Chemie - Int Ed, 44, 2100, 10.1002/anie.200462459
Qiu, 2016, Fiber-Shaped Perovskite Solar Cells with High Power Conversion Efficiency, Small, 2419, 10.1002/smll.201600326
Giacomo F, 2015, Flexible Perovskite Photovoltaic Modules and Solar Cells Based on Atomic Layer Deposited Compact Layers and UV-Irradiated TiO 2 Scaffolds on Plastic Substrates, Adv Energy Mater, 1
Lee, 2015, Environmental, Energy Environ Sci, 8, 916
Park, 2013, Performance optimization of low-temperature-annealed solution-processable ZnO buffer layers for inverted polymer solar cells, J Mater Chem A, 1, 6327, 10.1039/c3ta10637c
Kim, 2014, Low-temperature-fabricated ZnO, AZO, and SnO2 nanoparticle-based dye-sensitized solar cells, J Korean Phys Soc, 65, 1315, 10.3938/jkps.65.1315
Xu, 2010, Mechanical Properties of ZnO Nanowires Under Different Loading Modes, 280, 271
Kumar, 2013, ChemComm ZnO-based perovskite solid state solar cells †, 2
Jung, 2016, Solution-processed fl exible planar perovskite solar cells : A strategy to enhance ef fi ciency by controlling the ZnO electron transfer layer, PbI 2 phase, and CH 3 NH 3 PbI 3 morphologies, 324, 142
Alpuche-aviles, 2009, Photoelectrochemical Study of the Band Structure of Zn 2 SnO 4 Prepared by the Hydrothermal Method, J Am Chem Soc, 3216, 10.1021/ja806719x
Nanoscale, 2012, Nanoscale, 557
Zhao, 2014, Band Gap Tunable Zn 2 SnO 4 Nanocubes, 1
Oh LS, Kim DH, Lee JA, Shin SS, Lee J, Park IJ, et al. Zn 2 SnO 4 ‑ Based Photoelectrodes for Organolead Halide Perovskite Solar Cells 2014. p. 8–11.
Shin, 2016, Tailoring of Electron-Collecting Oxide Nanoparticulate Layer for Flexible Perovskite Solar Cells, J Phys Chem Lett, 10.1021/acs.jpclett.6b00295
Gondal, 2016, Pulsed laser ablation in liquid synthesis of ZnO/TiO2 nanocomposite catalyst with enhanced photovoltaic and photocatalytic performance, Ceram Int, 42, 13151, 10.1016/j.ceramint.2016.05.104
Gondal, 2016, Facile synthesis of silicon carbide-titanium dioxide semiconducting nanocomposite using pulsed laser ablation technique and its performance in photovoltaic dye sensitized solar cell and photocatalytic water purification, Appl Surf Sci, 378, 8, 10.1016/j.apsusc.2016.03.135
Ilyas, 2016, Photovoltaic performance and photocatalytic activity of facile synthesized graphene decorated TiO2 monohybrid using nanosecond pulsed ablation in liquid technique, Sol Energy, 137, 246, 10.1016/j.solener.2016.08.019
Yoon, 2016, Hysteresis-free low-temperature-processed planar perovskite solar cells with 19.1% efficiency, Energy Environ Sci, 10.1039/C6EE01037G
Prakash, 2015, Recent advances in flexible perovskite solar cells, Chem Commun, 51, 14696, 10.1039/C5CC03666F
Wei, 2016, Suppressed hysteresis and improved stability in perovskite solar cells with conductive organic network, Nano Energy, 26, 139, 10.1016/j.nanoen.2016.05.023
Iannaccone, 2015, Roll-to-roll compatible flexible polymer solar cells incorporating a water-based solution-processable silver back electrode with low annealing temperature, Sol Energy Mater Sol Cells, 143, 227, 10.1016/j.solmat.2015.06.053
Qiu, 2015, High efficiency perovskite solar cells using a PCBM / ZnO double electron transport layer and a short air-aging step, Org Electron, 26, 30, 10.1016/j.orgel.2015.06.046
Kim, 2015, Flexible, highly efficient all-polymer solar cells, Nat Commun, 6, 8547, 10.1038/ncomms9547
Sowjanya Pali, 2016, Inverted P3HT:PCBM organic solar cells on low carbon steel substrates, Sol Energy, 133, 339, 10.1016/j.solener.2016.03.061
Liu, 2016, Roll-coating fabrication of flexible organic solar cells: comparison of fullerene and fullerene-free systems, J Mater Chem A, 4, 1044, 10.1039/C5TA07357J
Hauch, 2008, Flexible organic P3HT:PCBM bulk-heterojunction modules with more than 1 year outdoor lifetime, Sol Energy Mater Sol Cells, 92, 727, 10.1016/j.solmat.2008.01.004
Lungenschmied, 2007, Flexible, long-lived, large-area, organic solar cells, Sol Energy Mater Sol Cells, 91, 379, 10.1016/j.solmat.2006.10.013
Al-Ibrahim, 2005, Flexible large area polymer solar cells based on poly(3-hexylthiophene)/ fullerene, Sol Energy Mater Sol Cells, 85, 13
Kaltenbrunner M, Adam G, Głowacki ED, Drack M, Schwödiauer R, Leonat L, et al. improved stability in air. 2015.14. 〈http://dx.doi.org/10.1038/NMAT4388〉.
Dqj L, Xdq KD, Hh DXDQ, Xqj KHQDEF. + LJK YROWDJH DQG HIILFLHQW ELOD / HU KHWHURMXQFWLRQ VRODU FHOOV EDVHG RQ DQ RUJDQLF ± LQRUJDQLF K / EULG SHURYVNLWH DEVRUEHU ZLWK D ORZ FRVW IOH [ LEOH VXEVWUDWH ‚ n.d.
Ryu, 2015, Fabrication of metal-oxide-free CH3NH3PbI3 perovskite solar cells processed at low temperature, J Mater Chem A Mater Energy Sustain, 3, 3271, 10.1039/C5TA00011D
Docampo, 2013, polymer substrates, Nat Commun, 4, 1
Yang, 2012, Comparing spiro-OMeTAD and P3HT hole conductors in efficient solid state dye-sensitized solar cells, Phys Chem Chem Phys, 14, 779, 10.1039/C1CP23031J
Nguyen, 2014, Enhancing the Hole-Conductivity of Spiro-OMeTAD without Oxygen or Lithium Salts by Using Spiro(TFSI) 2 in Perovskite and Dye- Sensitized Solar Cells, J Am Chem Soc, 10.1021/ja504539w
Wang, 2015, Spectrum-Dependent Spiro-OMeTAD Oxidization Mechanism in Perovskite Solar Cells, ACS Appl Mater Interfaces, 7, 24791, 10.1021/acsami.5b07703
Shi, 2016, Spiro-OMeTAD single crystals: remarkably enhanced charge-carrier transport via mesoscale ordering, Sci Adv, 2, 10.1126/sciadv.1501491
Ma, 2015, Spiro-thiophene derivatives as hole-transport materials for perovskite solar cells, J Mater Chem A Mater Energy Sustain, 3, 12139, 10.1039/C5TA01155H
Hu G, Guo W, Yu R, Yang X, Zhou R, Pan C, et al. Nano Energy Enhanced performances of fl exible ZnO / perovskite solar cells by piezo-phototronic effect. 23, 2016. p. 27–33.
Zhou, 2014, The temperature-dependent microstructure of PEDOT/PSS films: insights from morphological, mechanical and electrical analyses, J Mater Chem C, 2, 9903, 10.1039/C4TC01593B
Lang, 2009, Mechanical characterization of PEDOT:PSS thin films, Synth Met, 159, 473, 10.1016/j.synthmet.2008.11.005
St??cker, 2012, Why does the electrical conductivity in PEDOT:PSS decrease with PSS content? A study combining thermoelectric measurements with impedance spectroscopy, J Polym Sci Part B Polym Phys, 50, 976, 10.1002/polb.23089
Hsiung S, Lin K, Yuan K, Tsai C, Chen S, Wu C. ScienceDirect Improving the efficiency of CH 3 NH 3 PbI 3 based photovoltaics by tuning the work function of the PEDOT : PSS hole transport layer, 122. 2015. p. 892–9.
Chang, 2015, Improving the efficiency of CH3NH3PbI3 based photovoltaics by tuning the work function of the PEDOT: PSS hole transport layer, Sol Energy, 122, 892, 10.1016/j.solener.2015.10.018
Jo, 2016, Improving Performance and Stability of Flexible Planar- Heterojunction Perovskite Solar Cells Using Polymeric Hole-Transport Material, Adv Funct Mater, 1
Li, 2015, based solar cells, J Mater Chem A Mater Energy Sustain, 3, 9011, 10.1039/C4TA06425A
Nanhai, 2010, Efficient flexible organic solar cells with room temperature sputtered and highly conductive NiO as hole-transporting layer, J Phys D Appl Phys, 43, 445101, 10.1088/0022-3727/43/44/445101
Zhang, 2015, Pinhole-Free and Surface-Nanostructured NiOx Film by Room-Temperature Solution Process for High-Performance Flexible Perovskite Solar Cells with Good Stability and Reproducibility, ACS Nano
Chappaz-Gillot, 2014, Polymer solar cells with electrodeposited CuSCN nanowires as new efficient hole transporting layer, Sol Energy Mater Sol Cells, 120, 163, 10.1016/j.solmat.2013.08.038
Qin, 2014, Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency, Nat Commun, 5, 1, 10.1038/ncomms4834
Ye, 2015, CuSCN-based inverted planar perovskite solar cell with an average PCE of 15.6%, Nano Lett, 10.1021/acs.nanolett.5b00116
Zhao, 2015, Solution-processed inorganic copper(I) thiocyanate (CuSCN) hole transporting layers for efficient p–i–n perovskite solar cells, J Mater Chem A, 3, 20554, 10.1039/C5TA04028K
Christians JA, Fung RCM, Kamat P V, Dame N, Student C. Supporting Information An Inorganic Hole Conductor for Organo-Lead Halide Perovskite Solar Cells. Improved Hole Conductivity with Copper Iodide. 2013. p. 3–6. 〈http://dx.doi.org/10.1021/ja411014k〉.
Sepalage, 2015, Copper(I) Iodide as Hole-Conductor in Planar Perovskite Solar Cells: Probing the Origin of J-V Hysteresis, Adv Funct Mater, 10.1002/adfm.201502541
Chen, 2015, Low-cost solution-processed copper iodide as an alternative to PEDOT: PSS hole transport layer for efficient and stable inverted planar heterojunction perovskite solar cells, J Mater Chem A, 3, 19353, 10.1039/C5TA05286F
Rao, 2016, A 19.0% efficiency achieved in CuOx-based inverted CH3NH3PbI3-xClx solar cells by an effective Cl doping method, Nano Energy, 0
Bouclé, 2016, The bene fi ts of graphene for hybrid perovskite solar cells, Synth Met, 10.1016/j.synthmet.2016.03.030
Chem, 2015, Nanocarbons for mesoscopic perovskite solar cells, J Mater Chem A Mater Energy Sustain, 3, 9020, 10.1039/C5TA00873E
Liu, 2015, Fine-tuning Optical and Electronic Properties of Graphene Oxide for Highly Efficient Perovskite Solar Cells, Nanoscale, 7, 10708, 10.1039/C5NR01433F
Lee, 2016, Neutral- and Multi-Colored Semitransparent Perovskite Solar Cells, Molecules, 21, 475, 10.3390/molecules21040475
Luo, 2015, AgAl alloy electrode for efficient perovskite solar cells, RSC Adv, 5, 56037, 10.1039/C5RA06133D
Wang, 2015, High-Efficiency Flexible Solar Cells Based on Organometal Halide Perovskites, Adv Mater, 4532
Makha, 2016, A transparent, solvent-free laminated top electrode for perovskite solar cells, Sci Technol Adv Mater, 0, 1
Coleman, 2006, Small but strong : a review of the mechanical properties of carbon nanotube – polymer composites, Carbon, 44, 1624, 10.1016/j.carbon.2006.02.038
Cao C, Wu X, Xi X, Filleter T, Sun Y. Mechanical Characterization of Graphene 2014:121–35. 〈http://dx.doi.org/10.1007/978-3-642-31107-9〉.
Solar, 2014, Laminated Carbon Nanotube Networks for Metal Electrode-Free, ACS Nano, 6797
Wei, 2015, Free-standing flexible carbon electrode for highly efficient hole-conductor-free perovskite solar cells, Carbon N Y, 93, 861, 10.1016/j.carbon.2015.05.042
Yan, 2015, High-performance graphene-based hole conductor-free perovskite solar cells: Schottky junction enhanced hole extraction and electron blocking, Small, 11, 2269, 10.1002/smll.201403348
Hashmi, 2011, Review of materials and manufacturing options for large area flexible dye solar cells, Renew Sustain Energy Rev, 15, 3717, 10.1016/j.rser.2011.06.004
Kim, 1999, Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices, J Appl Phys, 86, 6451, 10.1063/1.371708
Park, 1996, Work function of indium tin oxide transparent conductor measured by photoelectron spectroscopy, Appl Phys Lett, 68, 2699, 10.1063/1.116313
Xia, 2012, Significant different conductivities of the two grades of poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate), Clevios P and clevios PH1000, arising from different molecular weights, ACS Appl Mater Interfaces, 4, 4131, 10.1021/am300881m
Poorkazem, 2015, Fatigue resistance of a flexible, efficient, and metal oxide-free perovskite solar cell, J Mater Chem A, 3, 9241, 10.1039/C5TA00084J
Han, 2015, Fully indium-free flexible Ag nanowires/ZnO:F composite transparent conductive electrodes with high haze, J Mater Chem A, 3, 5375, 10.1039/C4TA05728G
Lu, 2016, Room-temperature solution-processed and metal oxide-free nano-composite for the flexible transparent bottom electrode of perovskite solar cells, Nanoscale, 5946, 10.1039/C6NR00011H
Wang, 2014, Flexible, transparent, and conductive defrosting glass, Thin Solid Films, 556, 13, 10.1016/j.tsf.2013.12.060
Peng, 2014, Strained growth of aluminum-doped zinc oxide on flexible glass substrate and degradation studies under cyclic bending conditions, IEEE Trans Device Mater Reliab, 14, 121, 10.1109/TDMR.2013.2293878
Dkhissi, 2016, Stability Comparison of Perovskite Solar Cells Based on Zinc Oxide and Titania on Polymer Substrates, ChemSusChem, 1
Guo, 2016, Sulfamic-Acid Catalyzed Lead Perovskite Formation for Solar Cell Fabrication on Glass or Plastic Substrate, J Am Chem Soc, 10.1021/jacs.6b02130
Park, 2016, Low-Temperature Solution-Processed Li-Doped SnO2 as an Effective Electron Transporting Layer for High-Performance Flexible and Wearable Perovskite Solar Cells, Nano Energy, 26, 208, 10.1016/j.nanoen.2016.04.060
Qiu, 2016, An All-Solid-State Fiber-Type Solar Cell Achieving 9.49% Efficiency, J Mater Chem A, 10.1039/C6TA03263J
Li, 2015, Wearable Double-Twisted Fibrous Perovskite Solar Cell, Adv Mater, 27, 3831, 10.1002/adma.201501333
Ameen, 2015, An insight into atmospheric plasma jet modified ZnO quantum dots thin film for flexible perovskite solar cell: Optoelectronic transient and charge trapping studies, J Phys Chem C, 119, 10379, 10.1021/acs.jpcc.5b00933
Tavakoli, 2016, Efficient, Flexible and Mechanically Robust Perovskite Solar Cells on Inverted Nanocone Plastic Substrates, Nanoscale, 4276, 10.1039/C5NR08836D
Lee, 2015, Efficient, durable and flexible perovskite photovoltaic devices with Ag-embedded ITO as the top electrode on a metal substrate, J Mater Chem A, 3, 14592, 10.1039/C5TA03240G
Park, 2015, Mechanically Recoverable and Highly Efficient Perovskite Solar Cells: Investigation of Intrinsic Flexibility of Organic-Inorganic Perovskite, Adv Energy Mater, 5, 1, 10.1002/aenm.201501406
Gao, 2016, Preparation of flexible perovskite solar cells with gas pump drying method on plastic substrate, J Mater Chem A, 4, 3704, 10.1039/C6TA00230G
Xiao, 2015, Efficient titanium foil based perovskite solar cell: Using titanium dioxide nanowire arrays anode and transparent poly(3,4-ethylenedioxythiophene) electrode, RSC Adv
Ahn, 2017, Environmental Science foldable power sources, Energy Environ Sci, 10, 337
Wang, 2016, Solar Energy Materials & Solar Cells Stability of perovskite solar cells, Sol Energy Mater Sol Cells, 147, 255, 10.1016/j.solmat.2015.12.025
Jang, 2016, Graphene-Based Flexible and Stretchable Electronics, Adv Mater, 4184, 10.1002/adma.201504245
Serrano-lujan, 2015, Tin- and lead-based perovskite solar cells under scrutiny : an environmental perspective, Adv Energy Mater, 1, 1