Recent progress in flexible perovskite solar cells: Materials, mechanical tolerance and stability

Renewable and Sustainable Energy Reviews - Tập 82 - Trang 3127-3151 - 2018
Idris K. Popoola1, Mohammed A. Gondal1, Talal F. Qahtan1
1Laser Research Group, Physics Department, King Fahd University of Petroleum and Minerals, P.O. Box 5047, Dhahran, 31261, Saudi Arabia

Tài liệu tham khảo

Nematollahi, 2016, Energy demands and renewable energy resources in the Middle East, Renew Sustain Energy Rev, 54, 1172, 10.1016/j.rser.2015.10.058 Heo, 2013, Solar cells containing perovskite compound and, 7 Green, 2014, The emergence of perovskite solar cells, 8 Ball, 2013, Environmental Science, 1739 Grätzel, 2014, The light and shade of perovskite solar cells, Nat Publ Gr, 13, 838 Liu, 2013, solution processing techniques, Nat Photonics, 8, 133, 10.1038/nphoton.2013.342 Park, 2013, Organometal Perovskite Light Absorbers Toward a 20 % Efficiency Low-Cost Solid-State Mesoscopic Solar Cell, 2 Im, 2011, Nanoscale, 2, 4088, 10.1039/c1nr10867k Zhou, 2014, No Title, 542 Albrecht, 2015, Monilithic perovskite/silicon-heterojunction tandem solar cells processed at low temperature, Energy Environ Sci, 9, 81, 10.1039/C5EE02965A Werner, 2016, Efficient Monolithic Perovskite/Silicon Tandem Solar Cell with Cell Area >1 cm2, J Phys Chem Lett, 7, 161, 10.1021/acs.jpclett.5b02686 Sobuś, 2014, Optimization of absorption bands of dye-sensitized and perovskite tandem solar cells based on loss-in-potential values, Phys Chem Chem Phys, 16, 14116, 10.1039/C4CP01937G Yang, 2015, Multilayer Transparent Top Electrode for Solution Processed Perovskite/Cu(In,Ga)(Se,S)2 Four Terminal Tandem Solar Cells, ACS Nano, 9, 7714, 10.1021/acsnano.5b03189 Zi, 2016, Perovskite/germanium tandem: a potential high efficiency thin film solar cell design, Opt Commun, 380, 1, 10.1016/j.optcom.2016.05.074 Anaya, 2016, Optical analysis of CH 3 NH 3 Sn x Pb 1−x I 3 absorbers: a roadmap for perovskite-on-perovskite tandem solar cells, J Mater Chem A, 10.1039/C6TA04840D Heo, 2015, CH3NH3PbBr3-CH3NH3PbI3 Perovskite-Perovskite Tandem Solar Cells with Exceeding 2.2 V Open Circuit Voltage, Adv Mater, 5121 Ledinsky, 2015, Silicon Four-Terminal Tandem Solar Cells †, 1619 Jiang, 2016, Optical Analysis of Perovskite/Silicon Tandem Solar Cells, J Mater Chem C, 4, 5679, 10.1039/C6TC01276K Loper, 2014, Organic{â}{/texteuro}{/textquotedblleft}Inorganic Halide Perovskites: Perspectives for Silicon-Based Tandem Solar Cells, Ieee J Photovoltaics, 4, 1545, 10.1109/JPHOTOV.2014.2355421 Chan L. Interface study of Spiro-OMeTAD on passivated P-, N-, And N -Si (111) for use in Tandem Perovskite / Silicon Solar cell devices. 2015. News, 2016, Perovskite-silicon tandem solar cells with the highest power conversion efficiency, ScienceDaily, 1 Liu, 2016, Perovskite-organic hybrid tandem solar cells using nanostructured perovskite layer as light window and PFN/doped-MoO3/MoO3 multi-layer interconnection layer, Nanoscale, 3638, 10.1039/C5NR07457F McMeekin, 2016, A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells, Science, 351, 151, 10.1126/science.aad5845 Jiang, 2015, Two-terminal perovskite/perovskite tandem solar cell, J Mater Chem A, 0, 1 Jiang, 2011, Supporting Information, 1 Mei, 2014, No Title, 295 Snaith, 2014, Anomalous Hysteresis in Perovskite Solar Cells Environ, 2014, Environmental Science, 994 You, 2014, Perovskite Solar Cells with High E ffi ciency and Flexibility Shin, 2015, High-performance flexible perovskite solar cells exploiting Zn2SnO4 prepared in solution below 100°C, Nat Commun, 6, 1, 10.1038/ncomms8410 Ye, 2016, Recent Advancements in Perovskite Solar Cells: Flexibility, Stability and Large Scale, J Mater Chem A, 4, 6755, 10.1039/C5TA09661H Saliba, 2016, Environmental, Energy Environ Sci, 9, 1989, 10.1039/C5EE03874J Luo, 2015, Recent progress in organic – inorganic halide perovskite solar cells : mechanisms and material, J Mater Chem A Mater Energy Sustain, 3, 8992, 10.1039/C4TA04953E Singh T, Kulkarni A, Ikegami M, Miyasaka T. Trilok Singh, Ashish Kulkarni, Masashi Ikegami, and Tsutomu Miyasaka * 2016:6–11. doi:10.1021/acsami.6b02843. Yin, 2015, Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber Unusual defect physics in CH 3 NH 3 PbI 3 perovskite solar cell absorber, 63903, 2 Seo, 2016, Fabrication of E ffi cient Formamidinium Tin Iodide Perovskite Solar Cells through SnF 2 − Pyrazine Complex, 2 Hsiao, 2015, organo-metal halide perovskite solar cells, J Mater Chem A Mater Energy Sustain, 3, 15372, 10.1039/C5TA01376C Niu, 2015, Review of recent progress in chemical stability of perovskite solar cells, J Mater Chem A Mater Energy Sustain, 3, 8970, 10.1039/C4TA04994B Xiao, 2016, Thin-film semiconductor perspective of organometal trihalide perovskite materials for high-efficiency solar cells, Mater Sci Eng R, 101, 1, 10.1016/j.mser.2015.12.002 Wang, 2015, Lead Replacement in CH 3 NH 3 PbI 3 Perovskites, 1 Giorgi, 2015, ambipolar class of materials with enhanced photovoltaic performances, J Mater Chem A Mater Energy Sustain, 3, 8981, 10.1039/C4TA05046K Online, 2013, J Mater Chem A, 5628 Hao, 2014, Lead-free solid-state organic-inorganic halide perovskite solar cells, Nat Photonics, 8, 489, 10.1038/nphoton.2014.82 Online, 2013, RSC Adv, 18762 Graetzel, 2014, Perovskite solar cells employing organic charge-transport layers, 8 Kim, 2012, All-Solid-State Submicron Thin Film, 1 Bi, 2016, Efficient luminescent solar cells based on tailored mixed-cation perovskites, 2, 1 Chen, 2013, Planar Heterojunction Perovskite Solar Cells via Vapor-Assisted Solution Process, 3 Das, 2015, High-Performance Flexible Perovskite Solar Cells by Using a Combination of Ultrasonic Spray-Coating and Low Thermal Budget Photonic Curing Krebs, 2009, Solar Energy Materials & Solar Cells Fabrication and processing of polymer solar cells : A review of printing and coating techniques, 93, 394, 10.1016/j.solmat.2008.10.004 Luo, 2016, Fine control of perovskite-layered morphology and composition via sequential deposition crystallization process towards improved perovskite solar cells, J Power Sources, 311, 130, 10.1016/j.jpowsour.2016.01.102 Salim, 2015, and device architecture on device performance, J Mater Chem A Mater Energy Sustain, 3, 8943, 10.1039/C4TA05226A Chem, 2015, Perovskite solar cells: film formation and properties, J Mater Chem A Mater Energy Sustain, 3, 9032, 10.1039/C4TA05246C Habibi, 2016, Progress in emerging solution-processed thin fi lm solar cells – Part II : Perovskite solar cells, Renew Sustain Energy Rev, 62, 1012, 10.1016/j.rser.2016.05.042 Jeon, 2014, Inorganic – organic hybrid perovskite solar cells, 13, 897 Wang, 2015, TiO 2 nanotube arrays based fl exible perovskite solar cells with transparent carbon nanotube electrode, Nano Energy, 11, 728, 10.1016/j.nanoen.2014.11.042 Eperon, 2014, Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells, Adv Funct Mater, 24, 151, 10.1002/adfm.201302090 Burschka, 2013, Sequential deposition as a route to high-performance perovskite-sensitized solar cells, Nature, 499, 316, 10.1038/nature12340 Dianetti, 2015, Solar Energy Materials & Solar Cells TCO-free fl exible organo metal trihalide perovskite planar-heterojunction solar cells, Sol Energy Mater Sol Cells, 140, 150, 10.1016/j.solmat.2015.03.016 Weerasinghe, 2015, Encapsulation for improving the lifetime of fl exible perovskite solar cells, Nano Energy, 18, 118, 10.1016/j.nanoen.2015.10.006 Yin, 2016, Highly E ffi cient Flexible Perovskite Solar Cells Using Solution-Derived NiO Xiao M, Huang F, Huang W, Dkhissi Y, Zhu Y, Etheridge J, et al. Angewandte A Fast Deposition-Crystallization Procedure for Highly Efficient Lead Iodide Perovskite Thin-Film Solar Cells, 3168. 2014. p. 10056–61. 〈http://dx.doi.org/10.1002/ange.201405334〉. Zhang, 2016, Flexible, hole transporting layer-free and stable CH 3 NH 3 PbI 3 / PC 61 BM planar heterojunction perovskite solar cells, Org Electron, 30, 281, 10.1016/j.orgel.2016.01.002 Li, 2016, ultrathin flexible substrates, Nat Commun, 1 Xu, 2015 Xi, 2016, Initiating crystal growth kinetics of α-HC(NH2)2PbI3 for flexible solar cells with long-term stability, Nano Energy, 26, 438, 10.1016/j.nanoen.2016.06.007 Nanostructures S. Highly efficient flexible perovskite solar cells with anti reflection and. 2015. p. 10287–95. Huang, 2014, Gas-assisted preparation of lead iodide perovskite fi lms consisting of a monolayer of single crystalline grains for high ef fi ciency planar solar cells, Nano Energy, 10, 10, 10.1016/j.nanoen.2014.08.015 Dkhissi, 2015, Low temperature processing of fl exible planar perovskite solar cells with ef fi ciency over 10 %, J Power Sources, 278, 325, 10.1016/j.jpowsour.2014.12.104 Krebs, 2010, Product integration of compact roll-to-roll processed polymer solar cell modules: methods and manufacture using flexographic printing, slot-die coating and rotary screen printing, J Mater Chem, 20, 8994, 10.1039/c0jm01178a Krebs, 2009, Polymer solar cell modules prepared using roll-to-roll methods: Knife-over-edge coating, slot-die coating and screen printing, Sol Energy Mater Sol Cells, 93, 465, 10.1016/j.solmat.2008.12.012 Schmidt, 2015, Upscaling of Perovskite Solar Cells: Fully Ambient Roll Processing of Flexible Perovskite Solar Cells with Printed Back Electrodes, Adv Energy Mater, 5, 1, 10.1002/aenm.201500569 Ponseca, 2014, Organometal Halide Perovskite Solar Cell Materials Rationalized: Ultrafast Charge Generation, High and Microsecond-Long Balanced Mobilities, and Slow Recombination Lin, 2013, Development of inverted organic solar cells with TiO₂ interface layer by using low-temperature atomic layer deposition, ACS Appl Mater Inter, 5, 713, 10.1021/am302252p Stefik, 2013, Improved nonaqueous synthesis of TiO2 for dye-sensitized solar cells, ACS Nano, 7, 8981, 10.1021/nn403500g Fan, 2014, Dye-sensitized solar cells based on TiO 2 nanoparticles / nanobelts double-layered film with improved photovoltaic performance, Appl Surf Sci, 319, 75, 10.1016/j.apsusc.2014.07.054 Tricoli, 2012, Highly porous TiO2 films for dye sensitized solar cells, J Mater Chem, 22, 14254, 10.1039/c2jm15953h Ranjitha, 2014, Superlattices and Microstructures Inverted organic solar cells based on Cd-doped TiO 2 as an electron extraction layer, Superlattices Microstruct, 74, 114, 10.1016/j.spmi.2014.05.040 Soares P, Mikowski A, Lepienski CM, Santos E, Soares A. Hardness and Elastic Modulus of TiO 2 Anodic Films Measured by Instrumented Indentation n.d.:7–10. 〈http://dx.doi.org/10.1002/jbmb〉. Vahtrus, 2015, Materials Characterization Mechanical characterization of TiO 2 nano fi bers produced by different electrospinning techniques, 100, 98 Troughton, 2015, solar cells employing metallic substrates, J Mater Chem A Mater Energy Sustain, 3, 9141, 10.1039/C5TA01755F Qiu, 2014, Integrating Perovskite Solar Cells into a Flexible Fiber, 10425 Yang, 2015, Environmental science, Energy Environ Sci, 8, 3208, 10.1039/C5EE02155C Wang, 2008, Freestanding TiO/n 2 nanotube arrays with ultrahigh aspect ratio via electrochemical anodization, Chem Mater, 1257, 10.1021/cm7028917 Mac??k, 2005, High-aspect-ratio TiO2 nanotubes by anodization of titanium, Angew Chemie - Int Ed, 44, 2100, 10.1002/anie.200462459 Qiu, 2016, Fiber-Shaped Perovskite Solar Cells with High Power Conversion Efficiency, Small, 2419, 10.1002/smll.201600326 Giacomo F, 2015, Flexible Perovskite Photovoltaic Modules and Solar Cells Based on Atomic Layer Deposited Compact Layers and UV-Irradiated TiO 2 Scaffolds on Plastic Substrates, Adv Energy Mater, 1 Lee, 2015, Environmental, Energy Environ Sci, 8, 916 Park, 2013, Performance optimization of low-temperature-annealed solution-processable ZnO buffer layers for inverted polymer solar cells, J Mater Chem A, 1, 6327, 10.1039/c3ta10637c Kim, 2014, Low-temperature-fabricated ZnO, AZO, and SnO2 nanoparticle-based dye-sensitized solar cells, J Korean Phys Soc, 65, 1315, 10.3938/jkps.65.1315 Xu, 2010, Mechanical Properties of ZnO Nanowires Under Different Loading Modes, 280, 271 Kumar, 2013, ChemComm ZnO-based perovskite solid state solar cells †, 2 Jung, 2016, Solution-processed fl exible planar perovskite solar cells : A strategy to enhance ef fi ciency by controlling the ZnO electron transfer layer, PbI 2 phase, and CH 3 NH 3 PbI 3 morphologies, 324, 142 Alpuche-aviles, 2009, Photoelectrochemical Study of the Band Structure of Zn 2 SnO 4 Prepared by the Hydrothermal Method, J Am Chem Soc, 3216, 10.1021/ja806719x Nanoscale, 2012, Nanoscale, 557 Zhao, 2014, Band Gap Tunable Zn 2 SnO 4 Nanocubes, 1 Oh LS, Kim DH, Lee JA, Shin SS, Lee J, Park IJ, et al. Zn 2 SnO 4 ‑ Based Photoelectrodes for Organolead Halide Perovskite Solar Cells 2014. p. 8–11. Shin, 2016, Tailoring of Electron-Collecting Oxide Nanoparticulate Layer for Flexible Perovskite Solar Cells, J Phys Chem Lett, 10.1021/acs.jpclett.6b00295 Gondal, 2016, Pulsed laser ablation in liquid synthesis of ZnO/TiO2 nanocomposite catalyst with enhanced photovoltaic and photocatalytic performance, Ceram Int, 42, 13151, 10.1016/j.ceramint.2016.05.104 Gondal, 2016, Facile synthesis of silicon carbide-titanium dioxide semiconducting nanocomposite using pulsed laser ablation technique and its performance in photovoltaic dye sensitized solar cell and photocatalytic water purification, Appl Surf Sci, 378, 8, 10.1016/j.apsusc.2016.03.135 Ilyas, 2016, Photovoltaic performance and photocatalytic activity of facile synthesized graphene decorated TiO2 monohybrid using nanosecond pulsed ablation in liquid technique, Sol Energy, 137, 246, 10.1016/j.solener.2016.08.019 Yoon, 2016, Hysteresis-free low-temperature-processed planar perovskite solar cells with 19.1% efficiency, Energy Environ Sci, 10.1039/C6EE01037G Prakash, 2015, Recent advances in flexible perovskite solar cells, Chem Commun, 51, 14696, 10.1039/C5CC03666F Wei, 2016, Suppressed hysteresis and improved stability in perovskite solar cells with conductive organic network, Nano Energy, 26, 139, 10.1016/j.nanoen.2016.05.023 Iannaccone, 2015, Roll-to-roll compatible flexible polymer solar cells incorporating a water-based solution-processable silver back electrode with low annealing temperature, Sol Energy Mater Sol Cells, 143, 227, 10.1016/j.solmat.2015.06.053 Qiu, 2015, High efficiency perovskite solar cells using a PCBM / ZnO double electron transport layer and a short air-aging step, Org Electron, 26, 30, 10.1016/j.orgel.2015.06.046 Kim, 2015, Flexible, highly efficient all-polymer solar cells, Nat Commun, 6, 8547, 10.1038/ncomms9547 Sowjanya Pali, 2016, Inverted P3HT:PCBM organic solar cells on low carbon steel substrates, Sol Energy, 133, 339, 10.1016/j.solener.2016.03.061 Liu, 2016, Roll-coating fabrication of flexible organic solar cells: comparison of fullerene and fullerene-free systems, J Mater Chem A, 4, 1044, 10.1039/C5TA07357J Hauch, 2008, Flexible organic P3HT:PCBM bulk-heterojunction modules with more than 1 year outdoor lifetime, Sol Energy Mater Sol Cells, 92, 727, 10.1016/j.solmat.2008.01.004 Lungenschmied, 2007, Flexible, long-lived, large-area, organic solar cells, Sol Energy Mater Sol Cells, 91, 379, 10.1016/j.solmat.2006.10.013 Al-Ibrahim, 2005, Flexible large area polymer solar cells based on poly(3-hexylthiophene)/ fullerene, Sol Energy Mater Sol Cells, 85, 13 Kaltenbrunner M, Adam G, Głowacki ED, Drack M, Schwödiauer R, Leonat L, et al. improved stability in air. 2015.14. 〈http://dx.doi.org/10.1038/NMAT4388〉. Dqj L, Xdq KD, Hh DXDQ, Xqj KHQDEF. + LJK YROWDJH DQG HIILFLHQW ELOD / HU KHWHURMXQFWLRQ VRODU FHOOV EDVHG RQ DQ RUJDQLF ± LQRUJDQLF K / EULG SHURYVNLWH DEVRUEHU ZLWK D ORZ FRVW IOH [ LEOH VXEVWUDWH ‚ n.d. Ryu, 2015, Fabrication of metal-oxide-free CH3NH3PbI3 perovskite solar cells processed at low temperature, J Mater Chem A Mater Energy Sustain, 3, 3271, 10.1039/C5TA00011D Docampo, 2013, polymer substrates, Nat Commun, 4, 1 Yang, 2012, Comparing spiro-OMeTAD and P3HT hole conductors in efficient solid state dye-sensitized solar cells, Phys Chem Chem Phys, 14, 779, 10.1039/C1CP23031J Nguyen, 2014, Enhancing the Hole-Conductivity of Spiro-OMeTAD without Oxygen or Lithium Salts by Using Spiro(TFSI) 2 in Perovskite and Dye- Sensitized Solar Cells, J Am Chem Soc, 10.1021/ja504539w Wang, 2015, Spectrum-Dependent Spiro-OMeTAD Oxidization Mechanism in Perovskite Solar Cells, ACS Appl Mater Interfaces, 7, 24791, 10.1021/acsami.5b07703 Shi, 2016, Spiro-OMeTAD single crystals: remarkably enhanced charge-carrier transport via mesoscale ordering, Sci Adv, 2, 10.1126/sciadv.1501491 Ma, 2015, Spiro-thiophene derivatives as hole-transport materials for perovskite solar cells, J Mater Chem A Mater Energy Sustain, 3, 12139, 10.1039/C5TA01155H Hu G, Guo W, Yu R, Yang X, Zhou R, Pan C, et al. Nano Energy Enhanced performances of fl exible ZnO / perovskite solar cells by piezo-phototronic effect. 23, 2016. p. 27–33. Zhou, 2014, The temperature-dependent microstructure of PEDOT/PSS films: insights from morphological, mechanical and electrical analyses, J Mater Chem C, 2, 9903, 10.1039/C4TC01593B Lang, 2009, Mechanical characterization of PEDOT:PSS thin films, Synth Met, 159, 473, 10.1016/j.synthmet.2008.11.005 St??cker, 2012, Why does the electrical conductivity in PEDOT:PSS decrease with PSS content? A study combining thermoelectric measurements with impedance spectroscopy, J Polym Sci Part B Polym Phys, 50, 976, 10.1002/polb.23089 Hsiung S, Lin K, Yuan K, Tsai C, Chen S, Wu C. ScienceDirect Improving the efficiency of CH 3 NH 3 PbI 3 based photovoltaics by tuning the work function of the PEDOT : PSS hole transport layer, 122. 2015. p. 892–9. Chang, 2015, Improving the efficiency of CH3NH3PbI3 based photovoltaics by tuning the work function of the PEDOT: PSS hole transport layer, Sol Energy, 122, 892, 10.1016/j.solener.2015.10.018 Jo, 2016, Improving Performance and Stability of Flexible Planar- Heterojunction Perovskite Solar Cells Using Polymeric Hole-Transport Material, Adv Funct Mater, 1 Li, 2015, based solar cells, J Mater Chem A Mater Energy Sustain, 3, 9011, 10.1039/C4TA06425A Nanhai, 2010, Efficient flexible organic solar cells with room temperature sputtered and highly conductive NiO as hole-transporting layer, J Phys D Appl Phys, 43, 445101, 10.1088/0022-3727/43/44/445101 Zhang, 2015, Pinhole-Free and Surface-Nanostructured NiOx Film by Room-Temperature Solution Process for High-Performance Flexible Perovskite Solar Cells with Good Stability and Reproducibility, ACS Nano Chappaz-Gillot, 2014, Polymer solar cells with electrodeposited CuSCN nanowires as new efficient hole transporting layer, Sol Energy Mater Sol Cells, 120, 163, 10.1016/j.solmat.2013.08.038 Qin, 2014, Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency, Nat Commun, 5, 1, 10.1038/ncomms4834 Ye, 2015, CuSCN-based inverted planar perovskite solar cell with an average PCE of 15.6%, Nano Lett, 10.1021/acs.nanolett.5b00116 Zhao, 2015, Solution-processed inorganic copper(I) thiocyanate (CuSCN) hole transporting layers for efficient p–i–n perovskite solar cells, J Mater Chem A, 3, 20554, 10.1039/C5TA04028K Christians JA, Fung RCM, Kamat P V, Dame N, Student C. Supporting Information An Inorganic Hole Conductor for Organo-Lead Halide Perovskite Solar Cells. Improved Hole Conductivity with Copper Iodide. 2013. p. 3–6. 〈http://dx.doi.org/10.1021/ja411014k〉. Sepalage, 2015, Copper(I) Iodide as Hole-Conductor in Planar Perovskite Solar Cells: Probing the Origin of J-V Hysteresis, Adv Funct Mater, 10.1002/adfm.201502541 Chen, 2015, Low-cost solution-processed copper iodide as an alternative to PEDOT: PSS hole transport layer for efficient and stable inverted planar heterojunction perovskite solar cells, J Mater Chem A, 3, 19353, 10.1039/C5TA05286F Rao, 2016, A 19.0% efficiency achieved in CuOx-based inverted CH3NH3PbI3-xClx solar cells by an effective Cl doping method, Nano Energy, 0 Bouclé, 2016, The bene fi ts of graphene for hybrid perovskite solar cells, Synth Met, 10.1016/j.synthmet.2016.03.030 Chem, 2015, Nanocarbons for mesoscopic perovskite solar cells, J Mater Chem A Mater Energy Sustain, 3, 9020, 10.1039/C5TA00873E Liu, 2015, Fine-tuning Optical and Electronic Properties of Graphene Oxide for Highly Efficient Perovskite Solar Cells, Nanoscale, 7, 10708, 10.1039/C5NR01433F Lee, 2016, Neutral- and Multi-Colored Semitransparent Perovskite Solar Cells, Molecules, 21, 475, 10.3390/molecules21040475 Luo, 2015, AgAl alloy electrode for efficient perovskite solar cells, RSC Adv, 5, 56037, 10.1039/C5RA06133D Wang, 2015, High-Efficiency Flexible Solar Cells Based on Organometal Halide Perovskites, Adv Mater, 4532 Makha, 2016, A transparent, solvent-free laminated top electrode for perovskite solar cells, Sci Technol Adv Mater, 0, 1 Coleman, 2006, Small but strong : a review of the mechanical properties of carbon nanotube – polymer composites, Carbon, 44, 1624, 10.1016/j.carbon.2006.02.038 Cao C, Wu X, Xi X, Filleter T, Sun Y. Mechanical Characterization of Graphene 2014:121–35. 〈http://dx.doi.org/10.1007/978-3-642-31107-9〉. Solar, 2014, Laminated Carbon Nanotube Networks for Metal Electrode-Free, ACS Nano, 6797 Wei, 2015, Free-standing flexible carbon electrode for highly efficient hole-conductor-free perovskite solar cells, Carbon N Y, 93, 861, 10.1016/j.carbon.2015.05.042 Yan, 2015, High-performance graphene-based hole conductor-free perovskite solar cells: Schottky junction enhanced hole extraction and electron blocking, Small, 11, 2269, 10.1002/smll.201403348 Hashmi, 2011, Review of materials and manufacturing options for large area flexible dye solar cells, Renew Sustain Energy Rev, 15, 3717, 10.1016/j.rser.2011.06.004 Kim, 1999, Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices, J Appl Phys, 86, 6451, 10.1063/1.371708 Park, 1996, Work function of indium tin oxide transparent conductor measured by photoelectron spectroscopy, Appl Phys Lett, 68, 2699, 10.1063/1.116313 Xia, 2012, Significant different conductivities of the two grades of poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate), Clevios P and clevios PH1000, arising from different molecular weights, ACS Appl Mater Interfaces, 4, 4131, 10.1021/am300881m Poorkazem, 2015, Fatigue resistance of a flexible, efficient, and metal oxide-free perovskite solar cell, J Mater Chem A, 3, 9241, 10.1039/C5TA00084J Han, 2015, Fully indium-free flexible Ag nanowires/ZnO:F composite transparent conductive electrodes with high haze, J Mater Chem A, 3, 5375, 10.1039/C4TA05728G Lu, 2016, Room-temperature solution-processed and metal oxide-free nano-composite for the flexible transparent bottom electrode of perovskite solar cells, Nanoscale, 5946, 10.1039/C6NR00011H Wang, 2014, Flexible, transparent, and conductive defrosting glass, Thin Solid Films, 556, 13, 10.1016/j.tsf.2013.12.060 Peng, 2014, Strained growth of aluminum-doped zinc oxide on flexible glass substrate and degradation studies under cyclic bending conditions, IEEE Trans Device Mater Reliab, 14, 121, 10.1109/TDMR.2013.2293878 Dkhissi, 2016, Stability Comparison of Perovskite Solar Cells Based on Zinc Oxide and Titania on Polymer Substrates, ChemSusChem, 1 Guo, 2016, Sulfamic-Acid Catalyzed Lead Perovskite Formation for Solar Cell Fabrication on Glass or Plastic Substrate, J Am Chem Soc, 10.1021/jacs.6b02130 Park, 2016, Low-Temperature Solution-Processed Li-Doped SnO2 as an Effective Electron Transporting Layer for High-Performance Flexible and Wearable Perovskite Solar Cells, Nano Energy, 26, 208, 10.1016/j.nanoen.2016.04.060 Qiu, 2016, An All-Solid-State Fiber-Type Solar Cell Achieving 9.49% Efficiency, J Mater Chem A, 10.1039/C6TA03263J Li, 2015, Wearable Double-Twisted Fibrous Perovskite Solar Cell, Adv Mater, 27, 3831, 10.1002/adma.201501333 Ameen, 2015, An insight into atmospheric plasma jet modified ZnO quantum dots thin film for flexible perovskite solar cell: Optoelectronic transient and charge trapping studies, J Phys Chem C, 119, 10379, 10.1021/acs.jpcc.5b00933 Tavakoli, 2016, Efficient, Flexible and Mechanically Robust Perovskite Solar Cells on Inverted Nanocone Plastic Substrates, Nanoscale, 4276, 10.1039/C5NR08836D Lee, 2015, Efficient, durable and flexible perovskite photovoltaic devices with Ag-embedded ITO as the top electrode on a metal substrate, J Mater Chem A, 3, 14592, 10.1039/C5TA03240G Park, 2015, Mechanically Recoverable and Highly Efficient Perovskite Solar Cells: Investigation of Intrinsic Flexibility of Organic-Inorganic Perovskite, Adv Energy Mater, 5, 1, 10.1002/aenm.201501406 Gao, 2016, Preparation of flexible perovskite solar cells with gas pump drying method on plastic substrate, J Mater Chem A, 4, 3704, 10.1039/C6TA00230G Xiao, 2015, Efficient titanium foil based perovskite solar cell: Using titanium dioxide nanowire arrays anode and transparent poly(3,4-ethylenedioxythiophene) electrode, RSC Adv Ahn, 2017, Environmental Science foldable power sources, Energy Environ Sci, 10, 337 Wang, 2016, Solar Energy Materials & Solar Cells Stability of perovskite solar cells, Sol Energy Mater Sol Cells, 147, 255, 10.1016/j.solmat.2015.12.025 Jang, 2016, Graphene-Based Flexible and Stretchable Electronics, Adv Mater, 4184, 10.1002/adma.201504245 Serrano-lujan, 2015, Tin- and lead-based perovskite solar cells under scrutiny : an environmental perspective, Adv Energy Mater, 1, 1