Recent progress in equal channel angular pressing of magnesium alloys starting from Segal’s idea to advancements till date – A review
Tài liệu tham khảo
Kulekci, 2008, Magnesium and its alloys applications in automotive industry, Int. J. Adv. Manuf. Technol., 39, 851, 10.1007/s00170-007-1279-2
Gao, 2021, Role of bimodal-grained structure with random texture on mechanical and corrosion properties of a Mg-Zn-Nd alloy, J. Magnes. Alloy, 2147
Rakshith, 2021, Review on the effect of different processing techniques on the microstructure and mechanical behaviour of AZ31 Magnesium alloy, J. Magnes. Alloy, 9, 1692, 10.1016/j.jma.2021.03.019
Song, 2003, Understanding magnesium corrosion—a framework for improved alloy performance, Adv. Eng. Mater., 5, 837, 10.1002/adem.200310405
Liu, 2008, The effect of crystallographic orientation on the active corrosion of pure magnesium, Scripta Mater., 58, 421, 10.1016/j.scriptamat.2007.10.027
McAdam, 2005, Evaluation of anodised coatings applied to magnesium alloy ZE41A-T5 for potential use in RAN Seahawk helicopters, Corros. Mater, 30, 12
Song, 2012, Effect of microstructure evolution on corrosion of different crystal surfaces of AZ31 Mg alloy in a chloride containing solution, Corrosion Sci., 63, 100, 10.1016/j.corsci.2012.05.019
Prithivirajan, 2021, Bio-corrosion impacts on mechanical integrity of ZM21 Mg for orthopaedic implant application processed by equal channel angular pressing, J. Mater. Sci. Mater. Med., 32, 1, 10.1007/s10856-021-06535-5
Sekar, 2020, Enhancement of resistance to galvanic corrosion of ZE41 Mg alloy by equal channel angular pressing, Mater. Corros., 71, 571, 10.1002/maco.201911337
Prithivirajan, 2020, Analysing the combined effect of crystallographic orientation and grain refinement on mechanical properties and corrosion behaviour of ECAPed ZE41 Mg alloy, J. Magnes. Alloy, 8, 1128, 10.1016/j.jma.2020.08.015
Sekar, 2021, Recent progress in in vivo studies and clinical applications of magnesium based biodegradable implants–a review, J. Magnes. Alloy, 9, 1147, 10.1016/j.jma.2020.11.001
Luo, 2002, Magnesium: current and potential automotive applications, J. Miner. Met. Mater. Soc., 54, 42, 10.1007/BF02701073
Luo, 2004, Recent magnesium alloy development for elevated temperature applications, Int. Mater. Rev., 49, 13, 10.1179/095066004225010497
Luo, 2013, Magnesium casting technology for structural applications, J. Magnes. Alloy, 1, 2, 10.1016/j.jma.2013.02.002
Taub, 2007, The evolution of technology for materials processing over the last 50 years: the automotive example, J. Miner. Met. Mater. Soc., 59, 48, 10.1007/s11837-007-0022-7
Yang, 2005, 488, 923
Dargusch, 2021, Microstructure modification and corrosion resistance enhancement of die-cast Mg-Al-Re alloy by Sr alloying, J. Magnes. Alloy, 9, 950, 10.1016/j.jma.2020.09.008
Pan, 2016, A review on casting magnesium alloys: modification of commercial alloys and development of new alloys, J. Mater. Sci. Technol., 32, 1211, 10.1016/j.jmst.2016.07.001
Zheng, 2014, Biodegradable metals, Mater. Sci. Eng. R Rep., 77, 1, 10.1016/j.mser.2014.01.001
Azushima, 2008, Severe plastic deformation (SPD) processes for metals, CIRP Ann. - Manuf. Technol., 57, 716, 10.1016/j.cirp.2008.09.005
Hou, 2019, In vitro evaluation of the ZX11 magnesium alloy as potential bone plate: degradability and mechanical integrity, Acta Biomater., 97, 608, 10.1016/j.actbio.2019.07.053
Mostaed, 2014, Microstructure, texture evolution, mechanical properties and corrosion behavior of ECAP processed ZK60 magnesium alloy for biodegradable applications, J. Mech. Behav. Biomed. Mater., 37, 307, 10.1016/j.jmbbm.2014.05.024
Krajňák, 2019, Influence of the initial state on the microstructure and mechanical properties of AX41 alloy processed by ECAP, J. Mater. Sci., 54, 3469, 10.1007/s10853-018-3033-6
Yuan, 2013, Achieving high strength and high ductility in friction stir-processed cast magnesium alloy, Metall. Mater. Trans. A A, 44, 3675, 10.1007/s11661-013-1744-5
Minárik, 2016, Microstructure characterization of LAE442 magnesium alloy processed by extrusion and ECAP, Mater. Char., 112, 1, 10.1016/j.matchar.2015.12.002
Minárik, 2013, Effect of ECAP processing on corrosion resistance of AE21 and AE42 magnesium alloys, Appl. Surf. Sci., 281, 44, 10.1016/j.apsusc.2012.12.096
Minárik, 2016, Effect of different c/a ratio on the microstructure and mechanical properties in magnesium alloys processed by ECAP, Acta Mater., 107, 83, 10.1016/j.actamat.2015.12.050
Zhou, 2020, Effect of Ca addition on the microstructure and the mechanical properties of asymmetric double-sided friction stir welded AZ61 magnesium alloy, J. Magnes. Alloy, 8, 91, 10.1016/j.jma.2020.02.001
Bazhenov, 2020, Comparison of castability, mechanical, and corrosion properties of Mg-Zn-Y-Zr alloys containing LPSO and W phases, J. Magnes. Alloy, 8, 184, 10.1016/j.jma.2019.11.008
Zhao, 2020, A novel biodegradable Mg-1Zn-0.5 Sn alloy: mechanical properties, corrosion behavior, biocompatibility, and antibacterial activity, J. Magnes. Alloy, 8, 374, 10.1016/j.jma.2020.02.008
Wang, 2020, Microstructure and mechanical properties of Mg-4Zn-xGd (x= 0, 0.5, 1, 2) alloys, J. Magnes. Alloy, 8, 441, 10.1016/j.jma.2019.06.005
Minárik, 2017, Exceptional mechanical properties of ultra-fine grain Mg-4Y-3RE alloy processed by ECAP, Mater. Sci. Eng., 708, 193, 10.1016/j.msea.2017.09.106
Yuan, 2016, Effect of heat treatment and deformation temperature on the mechanical properties of ECAP processed ZK60 magnesium alloy, Mater. Sci. Eng., 677, 125, 10.1016/j.msea.2016.09.037
Zhang, 2015, Microstructure evolution and mechanical properties of Mg–Gd–Nd–Zn–Zr alloy processed by equal channel angular pressing, Mater. Sci. Eng., 647, 184, 10.1016/j.msea.2015.09.005
Sahoo, 2022, Comparative study on high temperature deformation behavior and processing maps of Mg-4Zn-1RE-0.5 Zr alloy with and without in-situ sub-micron sized TiB2 reinforcement, J. Magnes. Alloy, 10.1016/j.jma.2021.12.009
Kim, 2002, Mechanical properties and microstructures of an AZ61 Mg alloy produced by equal channel angular pressing, Scripta Mater., 47, 39, 10.1016/S1359-6462(02)00094-5
Krajňák, 2017, Influence of equal channel angular pressing temperature on texture, microstructure and mechanical properties of extruded AX41 magnesium, J. Alloys Compd., 705, 273, 10.1016/j.jallcom.2017.02.061
Agnew, 2004, Texture evolution of five wrought magnesium alloys during route A equal channel angular extrusion: experiments and simulations, Scripta Mater., 50, 377, 10.1016/j.scriptamat.2003.10.006
Mukai, 2001, Ductility enhancement in AZ31 magnesium alloy by controlling its grain structure, Scripta Mater., 45, 89, 10.1016/S1359-6462(01)00996-4
Chen, 2008, Equal-channel angular pressing of magnesium alloy AZ91 and its effects on microstructure and mechanical properties, Mater. Sci. Eng., 483–484, 113, 10.1016/j.msea.2006.10.199
Jin, 2005, Mechanical properties and microstructure of AZ31 Mg alloy processed by two-step equal channel angular extrusion, Mater. Lett., 59, 2267, 10.1016/j.matlet.2004.09.061
Mostaed, 2015, Microstructure, mechanical behavior and low temperature superplasticity of ECAP processed ZM21 Mg alloy, J. Alloys Compd., 638, 267, 10.1016/j.jallcom.2015.03.029
Avvari, 2015, A review on wrought magnesium alloys processed by equal channel angular pressing, Int. J. Mater. Prod. Technol., 51, 139, 10.1504/IJMPT.2015.071775
Naik, 2019, Effect of ECAP die angles on microstructure mechanical properties and corrosion behavior of AZ80 Mg alloy, J. Mater. Eng. Perform., 28, 2610, 10.1007/s11665-019-04080-5
Figueiredo, 2010, Grain refinement and mechanical behavior of a magnesium alloy processed by ECAP, J. Mater. Sci., 45, 4827, 10.1007/s10853-010-4589-y
Gopi, 2016, Investigation of microstructure and mechanical properties of ECAP-processed AM series magnesium alloy, J. Mater. Eng. Perform., 25, 3737, 10.1007/s11665-016-2229-7
Lin, 2005, Relationship between texture and low temperature superplasticity in an extruded AZ31 Mg alloy processed by ECAP, Mater. Sci. Eng., 402, 250, 10.1016/j.msea.2005.04.018
Dumitru, 2014, ZK60 alloy processed by ECAP: microstructural, physical and mechanical characterization, Mater. Sci. Eng., 594, 32, 10.1016/j.msea.2013.11.050
Qiang, 2014, Ultra-fine grained degradable magnesium for biomedical applications, Rare Met. Mater. Eng., 43, 2561, 10.1016/S1875-5372(15)60001-7
He, 2010, Microstructure and mechanical properties of ZK60 alloy processed by two-step equal channel angular pressing, J. Alloys Compd., 492, 605, 10.1016/j.jallcom.2009.11.192
Victoria-Hernández, 2016, Strain-induced selective grain growth in AZ31 Mg alloy sheet deformed by equal channel angular pressing, Character, 113, 98, 10.1016/j.matchar.2016.01.002
Suh, 2015, Improvement in cold formability of AZ31 magnesium alloy sheets processed by equal channel angular pressing, J. Mater. Process. Technol., 217, 286, 10.1016/j.jmatprotec.2014.11.029
Suh, 2016, Enhanced mechanical behavior and reduced mechanical anisotropy of AZ31 Mg alloy sheet processed by ECAP, Mater. Sci. Eng., 650, 523, 10.1016/j.msea.2015.09.058
Biswas, 2010, Room-temperature equal channel angular extrusion of pure magnesium, Acta Mater., 58, 3247, 10.1016/j.actamat.2010.01.051
Kim, 2003, Texture development and its effect on mechanical properties of an AZ61 Mg alloy fabricated by equal channel angular pressing, Acta Mater., 51, 3293, 10.1016/S1359-6454(03)00161-7
Janeček, 2010, Texture and microstructure evolution in ultrafine-grained AZ31 processed by EX-ECAP, J. Mater. Sci., 45, 4665, 10.1007/s10853-010-4675-1
Deshpande, 2010, Experimental investigation of galvanic corrosion: comparison between SVET and immersion techniques, Corrosion Sci., 52, 2819, 10.1016/j.corsci.2010.04.023
Deshpande, 2010, Validated numerical modelling of galvanic corrosion for couples: magnesium alloy (AE44)–mild steel and AE44–aluminium alloy (AA6063) in brine solution, Corrosion Sci., 52, 3514, 10.1016/j.corsci.2010.06.031
Zong, 2012, Comparison of biodegradable behaviors of AZ31 and Mg–Nd–Zn–Zr alloys in Hank's physiological solution, Mater. Sci. Eng. B, 177, 395, 10.1016/j.mseb.2011.09.042
King, 2014, Electrochim. Accurate electrochemical measurement of magnesium corrosion rates; a combined impedance, mass-loss and hydrogen collection study, Acta, 121, 394
Zhao, 2008, Influence of pH and chloride ion concentration on the corrosion of Mg alloy ZE41, Corrosion Sci., 50, 3168, 10.1016/j.corsci.2008.08.023
Yamashita, 2001, Improving the mechanical properties of magnesium and a magnesium alloy through severe plastic deformation, Mater. Sci. Eng., 300, 142, 10.1016/S0921-5093(00)01660-9
Jiang, 2009, Improving corrosion resistance of RE-containing magnesium alloy ZE41A through ECAP, J. Rare Earths, 27, 848, 10.1016/S1002-0721(08)60348-8
Zhang, 2013, Enhanced biodegradation behavior of ultrafine-grained ZE41A magnesium alloy in Hank's solution, Prog. Nat. Sci. Mater. Int., 23, 420, 10.1016/j.pnsc.2013.06.003
Song, 2011, Corrosion behaviour of bulk ultra-fine grained AZ91D magnesium alloy fabricated by equal-channel angular pressing, Corrosion Sci., 53, 362, 10.1016/j.corsci.2010.09.044
Birbilis, 2010, Grain character influences on corrosion of ECAPed pure magnesium, Corrosion Eng. Sci. Technol., 45, 224, 10.1179/147842209X12559428167805
Coy, 2010, Susceptibility of rare-earth-magnesium alloys to micro-galvanic corrosion, Corrosion Sci., 52, 3896, 10.1016/j.corsci.2010.08.006
Neil, 2009, Corrosion of magnesium alloy ZE41–The role of microstructural features, Corrosion Sci., 51, 387, 10.1016/j.corsci.2008.11.005
Neil, 2011, Corrosion of heat treated magnesium alloy ZE41, Corrosion Sci., 53, 3299, 10.1016/j.corsci.2011.06.005
Walker, 2012, Magnesium alloys: predicting in vivo corrosion with in vitro immersion testing, J. Biomed. Mater. Res. Part B Appl. Biomater. J, 100, 1134, 10.1002/jbm.b.32680
Argade, 2012, Effects of grain size on the corrosion resistance of wrought magnesium alloys containing neodymium, Corrosion Sci., 58, 145, 10.1016/j.corsci.2012.01.021
Song, 2010, Corrosion behavior of equal-channel-angular-pressed pure magnesium in NaCl aqueous solution, Corrosion Sci., 52, 481, 10.1016/j.corsci.2009.10.004
Minárik, 2017, Effect of equal channel angular pressing on in vitro degradation of LAE442 magnesium alloy, Mater. Sci. Eng. C, 73, 736, 10.1016/j.msec.2016.12.120
Song, 2010, Crystallographic orientation and electrochemical activity of AZ31 Mg alloy, Electrochem. Commun., 12, 1009, 10.1016/j.elecom.2010.05.011
Xin, 2011, Influence of texture on corrosion rate of AZ31 Mg alloy in 3.5 wt.% NaCl, Mater. Des., 32, 4548, 10.1016/j.matdes.2011.04.031
Savguira, 2017, Effect of grain orientation on the corrosion resistance of FSSW joints made in AZ31B, Corrosion Eng. Sci. Technol., 52, 195, 10.1080/1478422X.2016.1245956
Wang, 2014, Effect of the crystallographic orientation and twinning on the corrosion resistance of an as-extruded Mg–3Al–1Zn (wt.%) bar, Scripta Mater., 88, 5, 10.1016/j.scriptamat.2014.06.015
Wang, 2016, Effect of texture on biodegradable behavior of an as-extruded Mg–3% Al–1% Zn alloy in phosphate buffer saline medium, J. Mater. Sci. Technol., 32, 646, 10.1016/j.jmst.2016.02.002
Song, 1999, Corrosion mechanisms of magnesium alloys, Adv. Eng. Mater., 1, 11, 10.1002/(SICI)1527-2648(199909)1:1<11::AID-ADEM11>3.0.CO;2-N
Pan, 2015, Galvanic corrosion behaviour of carbon fibre reinforced polymer/magnesium alloys coupling, Corrosion Sci., 98, 672, 10.1016/j.corsci.2015.06.024
Deshpande, 2012, Effect of aluminium spacer on galvanic corrosion between magnesium and mild steel using numerical model and SVET experiments, Corrosion Sci., 62, 184, 10.1016/j.corsci.2012.05.013
Sun, 2013, An arbitrary Lagrangian–Eulerian model for studying the influences of corrosion product deposition on bimetallic corrosion, J. Solid State Electrochem., 17, 829, 10.1007/s10008-012-1935-9
Song, 2004, Galvanic corrosion of magnesium alloy AZ91D in contact with an aluminium alloy, steel and zinc, Corrosion Sci., 46, 955, 10.1016/S0010-938X(03)00190-2
Ruanli, 2015, Effect of Silane on galvanic corrosion between EW75 magnesium alloy and TC4 alloy rare, Met. Mater. Eng, 44, 1838, 10.1016/S1875-5372(15)30110-7
Banjade, 2016, Hydrogen evolution during the corrosion of galvanically coupled magnesium, J. Electrochem. Soc., 163, C116, 10.1149/2.0711603jes
Pan, 2015, Galvanic corrosion behaviour of carbon fibre reinforced polymer/magnesium alloys coupling, Corrosion Sci., 98, 672, 10.1016/j.corsci.2015.06.024
Mei, 2020, Selecting medium for corrosion testing of bioabsorbable magnesium and other metals–a critical review, Corrosion Sci., 10.1016/j.corsci.2020.108722
Song, 1998, Corrosion behaviour of AZ21, AZ501 and AZ91 in sodium chloride, Corrosion Sci., 40, 1769, 10.1016/S0010-938X(98)00078-X
Muralidhar, 2013, Effect of equal channel angular pressing on AZ31 wrought magnesium alloys, J. Magnes. Alloy, 1, 336, 10.1016/j.jma.2013.11.007
Avvari, 2014, Influence of Route-R on wrought magnesium AZ61 alloy mechanical properties through equal channel angular pressing, J. Magnes. Alloy, 2, 159, 10.1016/j.jma.2014.04.002
Sun, 2018, High strength and ductility AZ91 magnesium alloy with multi-heterogenous microstructures prepared by high-temperature ECAP and short-time aging, Mater. Sci. Eng., 734, 485, 10.1016/j.msea.2018.07.075
Yang, 2018, Multimodal microstructure and mechanical properties of AZ91 Mg alloy prepared by equal channel angular pressing plus aging, Metals, 8, 763, 10.3390/met8100763
Liu, 2020, Improving toughness of a Mg2Ca-containing Mg-Al-Ca-Mn alloy via refinement and uniform dispersion of Mg2Ca particles, J. Mater. Sci. Technol., 59, 61, 10.1016/j.jmst.2020.02.092
Alateyah, 2022, Effect of ECAP die angle on the strain homogeneity, microstructural evolution, crystallographic texture and mechanical properties of pure magnesium: numerical simulation and experimental approach, J. Mater. Res. Technol., 17, 1491, 10.1016/j.jmrt.2022.01.088
Alateyah, 2022, The effect of ECAP processing conditions on microstructural evolution and mechanical properties of pure magnesium—experimental, mathematical empirical and response surface approach, Materials, 15, 5312, 10.3390/ma15155312
Sayari, 2022, Comparison of the effect of ECAP and SSE on microstructure, texture, and mechanical properties of magnesium, J. Alloys Compd., 908, 10.1016/j.jallcom.2022.164407
Heydarinia, 2022, Free volume formation and the high strength of pure Mg after room temperature core-sheath ECAP passes, J. Mater. Res. Technol., 18, 147, 10.1016/j.jmrt.2022.02.061
Sun, 2018, High strength and ductility AZ91 magnesium alloy with multi-heterogenous microstructures prepared by high-temperature ECAP and short-time aging, Mater. Sci. Eng., 734, 485, 10.1016/j.msea.2018.07.075
Wang, 2019, Effect of ECAP process on as-cast and as-homogenized Mg-Al-Ca-Mn alloys with different Mg2Ca morphologies, J. Alloys Compd., 793, 259, 10.1016/j.jallcom.2019.04.202
Liu, 2020, Improving toughness of a Mg2Ca-containing Mg-Al-Ca-Mn alloy via refinement and uniform dispersion of Mg2Ca particles, J. Mater. Res. Technol., 59, 61, 10.1016/j.jmst.2020.02.092
Ding, 2010, Effect of ECAP on microstructure and mechanical properties of ZE41 magnesium alloy, Mater. Sci. Eng., 527, 3777, 10.1016/j.msea.2010.02.030
Kondori, 2018, Void growth and coalescence in a magnesium alloy studied by synchrotron radiation laminography, Acta Mater., 155, 80, 10.1016/j.actamat.2018.05.026
Jin, 2022, Alloying design and microstructural control strategies towards developing Mg alloys with enhanced ductility, J. Magnes. Alloy, 1191, 10.1016/j.jma.2022.04.002