Tiến bộ gần đây trong lớp vận chuyển electron hai lớp cho các tế bào mặt trời perovskite hiệu quả và tiết kiệm chi phí: một tổng quan

Springer Science and Business Media LLC - Tập 26 - Trang 295-311 - 2021
Wegene Lema Lachore1, Dinsefa Mensur Andoshe2, Mulualem Abebe Mekonnen1, Fekadu Gashaw Hone3
1Faculty of Materials Science and Engineering, Jimma Institute of Technology, Jimma University, Jimma, Ethiopia
2Department of Materials Science and Engineering, Adama Science and Technology University, Adama, Ethiopia
3Department of Physics, Addis Ababa University, Addis Ababa, Ethiopia

Tóm tắt

Ngày nay, các tế bào mặt trời lai hữu cơ - vô cơ perovskite đặc biệt được ngành năng lượng quan tâm để thiết kế và phát triển các thiết bị quang điện thế hệ mới. Chúng là những vật liệu hứa hẹn nhất cho hiệu suất chuyển đổi công suất cao (PCE) và các tế bào mặt trời giá rẻ. Chúng cũng có thể giải quyết nhu cầu năng lượng hiện tại của xã hội và cuộc khủng hoảng toàn cầu. Trong vài năm qua, hiệu suất chuyển đổi năng lượng (PCE) của các tế bào mặt trời perovskite (PSC) đã tăng nhanh từ 3.8% lên 24.2%. Tuy nhiên, bài tổng quan này tập trung vào sự phát triển gần đây của lớp vận chuyển electron do đây là tham số quan trọng nhất của các tế bào mặt trời perovskite để nâng cao hiệu suất và độ ổn định của thiết bị. Các tóm tắt này thảo luận về kiến trúc thiết bị, lớp vận chuyển electron đơn và đôi, tối ưu hóa lớp vận chuyển electron (ETL), và giao diện lớp hoạt động perovskite cho các tế bào mặt trời perovskite hiệu quả. Hơn nữa, các hiệu ứng doping lên lớp vận chuyển điện tích/lớp cửa sổ của PSC cũng đã được xem xét. Ngoài ra, các vấn đề liên quan đến hiệu suất và độ ổn định của các tế bào mặt trời perovskite halide hữu cơ - vô cơ cũng được thảo luận ở đây. Cuối cùng, nghiên cứu trong tương lai về ETL hai lớp và giao diện lớp hoạt động perovskite cũng đã được đề xuất.

Từ khóa


Tài liệu tham khảo

Kojima A, Teshima K, Shirai Y, Miyasaka T (2009) Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc 131(17):6050–6051 Tang G, You P, Tai Q, Yang A, Cao J, Zheng F, Zhou Z, Zhao J, Chan P-K-L, Yan F (2019) Solution-phase epitaxial growth of perovskite films on 2D material flakes for high-performance solar cells. Adv Mater 31(24):1807689 Ahn N, Son D-Y, Jang I-H, Kang S-M, Choi M, Park N-G (2015) Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via Lewis base adduct of lead (II) iodide. J Am Chem Soc. 137(27):8696–8699. Chen W, Wu Y, Yue Y, Liu J, Zhang W, Yang X, Chen H, Bi E, Ashraful I, Grätzel M, Han L (2015) Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers. SCi 350(6263):944–948 Liu X, Zhao W, Cui H, Wang Y, Xu T, Huang F (2015) Correction: Organic–inorganic halide perovskite based solar cells–revolutionary progress in photovoltaics. Inorg Chem Front 2(6):584–584 Kojima A, Teshima K, Miyasaka T, Shirai Y (2006) Novel photoelectrochemical cell with mesoscopic electrodes sensitized by lead-halide compounds (2). ECS Meeting Abstract, Meet Abstr MA. 2006–02: 397 Im J-H, Lee C-R, Lee J-W, Park S-W, Park N-G ( 2011) 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale. 3(10):4088–4093. Kim H-S, Lee C-R, Im J-H, Lee K-B, Moehl T, Marchioro A, Moon S-J, Humphry-Baker R, Yum J-H, Moser J-E, Grätzel M (2012) Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci Rep 2(1):1–7 Liu M, Johnston M-B, Snaith H-J (2013) Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501(7467):395–398 Lee M-M, Teuscher J, MiyasakaT M-N, Snaith H-J (2012) Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. SCi 338(6107):643–647 Yang G, Tao H, Qin P, Ke W, Fang G (2016) Recent progress in electron transport layers for efficient perovskite solar cells. J Mater Chem A 4(11):3970–3990 Agha D-N- Q, Algwari Q- T (2021) The influence of the interface layer between the electron transport layer and absorber on the performance of perovskite solar cells. In IOP Conference Series: Mater Sci Eng. (Vol. 1152, No. 1, p. 012033). IOP Publishing Ke W, Fang G, Liu Q, Xiong L, Qin P, Tao H, Wang J, Lei H, Li B, Wan J, Yang G (2015) Low-temperature solution-processed tin oxide as an alternative electron transporting layer for efficient perovskite solar cells. J Am Chem Soc 137(21):6730–6733 Ahn N, Son D-Y, Jang I-H, Kang S-M, Choi M, Park N-G (2015) Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via Lewis base adduct of lead (II) iodide. J Am Chem Soc. 137(27):8696–8699 Pham H-D, Yang T-C-J, Jain S-M, Wilson G-J, Sonar P (2020) Development of dopant-free organic hole transporting materials for perovskite solar cells. Adv Energy Mater 10(13):1903326 Parida B, Singh A, Oh M, Jeon M, Kang J- W, Kim H, (2019) Effect of compact TiO2 layer on structural, optical, and performance characteristics of mesoporous perovskite solar cells. Mater Today Commun 18:176–183 Thambidurai M, Dewi H-A, Harikesh P-C, Foo S, Muhammed Salim, K-M, Mathews N, Dang C(2018). Highly efficient perovskite solar cells with Ba (OH)2 interface modification of mesoporous TiO2 electron transport layer. ACS Appl Energy Mater 1(11):5847–5852 Zhang B, Zhang B, Wang S, Yao S, Bala H, Sun G, Zhang Z(2020) Applying neoteric MgTiO3-coated TiO2nanoparticulate films as scaffold layers in perovskite solar cells based on carbon counter electrode for retarding charge recombination. Electrochim Acta. 338:135884 Xiong L, Qin M, Chen C, Wen J, Yang G, Guo Y, Ma J, Zhang Q, Qin P, Li S, Fang G (2018) Fully high-temperature processed SnO2 as blocking layer and scaffold for efficient, stable, and hysteresis free mesoporous perovskite solar cells. Adv Funct Mater 28(10):1706276 Sun H, Deng K, Zhu Y, Liao M, Xiong J, Li Y, Li L (2018) A novel conductive mesoporous layer with a dynamic two-step deposition strategy boosts efficiency of perovskite solar cells to 20%. Adv Mater 30(28):1801935 Guo Q, Wu J, Yang Y, Liu X, Sun W, Wei Y, Lan Z, Lin J, Huang M, Chen H, Huang Y (2020) Low-temperature processed rare-earth doped brookite TiO2 scaffold for UV stable, hysteresis-free and high-performance perovskite solar cells. Nano Energy. 77:105183 Şahin Ç, Diker H, Sygkridou D, Varlikli C, Stathatos E (2020) Enhancing the efficiency of mixed halide mesoporous perovskite solar cells by introducing amine modified graphene oxide buffer layer. Renew Energy 146:1659–1666 Dagar J, Castro-Hermosa S, Gasbarri M, Palma A-L, Cina L, Matteocci F, Calabrò E, Di Carlo A, Brown T-M (2018) Efficient fully laser-patterned flexible perovskite modules and solar cells based on low-temperature solution-processed SnO2/mesoporous-TiO2 electron transport layers. Nano Res 11(5):2669–2681 Ye W, Xiang J, Huang F, Zhong D (2018) Towards large-area perovskite solar cells: the influence of compact and mesoporous TiO2 electron transport layers. Mater Res Express. 5(8):085506 Shen D, Zhang W, Xie F, Li Y, Abate A, Wei M (2018) Graphene quantum dots decorated TiO2 mesoporous film as an efficient electron transport layer for high-performance perovskite solar cells. J Power Sources 402:320–326 Yang M, Zhang Y, Du J, Yang L, Fan L, Sui Y, Wang F (2019) Engineering the mesoporous TiO2 layer by a facile method to improve the performance of perovskite solar cells. Electrochim Acta 318:83–90 Wang Z, Fang J, Mi Y, Zhu X, Ren H, Liu X, Yan Y (2018) Enhanced performance of perovskite solar cells by ultraviolet-ozone treatment of mesoporous TiO2. Appl Surf Sci 436:596–602 Wang D, Chen Q, Mo H, Jacobs J, Thomas A, Liu Z (2020) A bilayer TiO2/Al2O3 as the mesoporous scaffold for enhanced air stability of ambient-processed perovskite solar cells. Adv Mater 1(6):2057–2067 Tomulescu A-G, Stancu V, Beşleagă C, Enculescu M, Nemneş G-A, Florea M, Dumitru V, Pintilie L, Pintilie I, Leonat L (2020) Reticulated Mesoporous TiO2 Scaffold, Fabricated by Spray Coating, for Large-Area Perovskite Solar Cells. Energy Technol 8(1):1900922 Dong G, Xia D, Yang Y, Zhang W, Fan R, Sui L, Li Y (2020). In-situ passivation of TiO2 mesoporous scaffold with nano-sized heteropolyacid for boosting the efficiency of the perovskite solar cells. Electrochim Acta. 332:135427 Shen D, Zhang W, Li Y, Abate A, Wei M (2018) Facile deposition of Nb2O5 thin film as an electron-transporting layer for highly efficient perovskite solar cells. ACS Appl Nano Mater 1(8):4101–4109 Hwang S-H, Roh J, Lee J, Ryu J, Yun J, Jang J (2014) Size-controlled SiO2 nanoparticles as scaffold layers in thin-film perovskite solar cells. J Mater Chem A 2(39):16429–16433 Niu G, Li W, Meng F, Wang L, Dong H, Qiu Y (2014) Study on the stability of CH3NH3PbI3 films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells. J Mater Chem A 2(3):705–710 Dong X, Fang X, Lv M, Lin B, Zhang S, Ding J, Yuan N (2015) Improvement of the humidity stability of organic–inorganic perovskite solar cells using ultrathin Al2O3 layers prepared by atomic layer deposition. J Mater Chem A 3(10):5360–5367 Bi D, Moon S-J, Häggman L, Boschloo G, Yang L, Johansson E-M, Nazeeruddin M-K, Grätzel M, Hagfeldt A (2013) Using a two-step deposition technique to prepare perovskite (CH3NH3PbI3) for thin film solar cells based on ZrO2 and TiO2 mesostructures. RSC Adv 3(41):18762–18766 Qiang Y, Xie Y, Qi Y, Wei P, Shi H, Geng C, Liu H (2020) Enhanced performance of carbon-based perovskite solar cells with a Li+-doped SnO2 electron transport layer and Al2O3 scaffold layer. Sol Energy 201:523–529 Xiong Y, Zhu X, Mei A, Qin F, Liu S, Zhang S, Jiang Y, Zhou Y, Han H (2018) Bifunctional Al2O3 interlayer leads to enhanced open-circuit voltage for hole-conductor-free carbon-based perovskite solar cells. Sol RRL 2(5):1800002 Inami E, Ishigaki T, Ogata H (2019) Sol-gel processed niobium oxide thin-film for a scaffold layer in perovskite solar cells. Thin Solid Films 674:7–11 e Asl S-D Zarenezhad H, Askari M, Halali M, Sadrnezhaad S-K (2020) Efficient light harvesting in perovskite layer via three-dimensional TiO2 nanobranched nanorod scaffold. Nano Express. 1(3) p.030017 Matsui T, Seo J-Y, Saliba M, Zakeeruddin S-M, Grätzel M (2017) Room-temperature formation of highly crystalline multication perovskites for efficient, low-cost solar cells. Adv Mater 29(15):1606258 Ball J-M, Lee M-M, Hey A, Snaith H-J (2013) Low-temperature processed meso-superstructured to thin-film perovskite solar cells. Energy Environ Sci 6(6):1739–1743 Heo J-H, Song D-H, Han H-J, Kim S-Y, Kim J-H, Kim, D, Shin H-W, Ahn T-K, Wolf C, Lee T-W, Im S-H (2015) Planar CH3NH3PbI3 perovskite solar cells with constant 17.2% average power conversion efficiency irrespective of the scan rate. Adv Mater. 27(22):3424–3430 Cai Y, Zhang Z, Zhou Y, Liu H, Qin Q, Lu X, Gao X, Shui L, Wu S, Liu J (2018) Enhancing the efficiency of low-temperature planar perovskite solar cells by modifying the interface between perovskite and hole transport layer with polymers. Electrochim Acta 261:445–453 Dong H, Wu Z, Xi J, Xu X, Zuo L, Lei T, Zhao X, Zhang L, Hou X, Jen A-K-Y (2018) Pseudohalide-induced recrystallization engineering for CH3NH3PbI3 film and its application in highly efficient inverted planar heterojunction perovskite solar cells. Adv Funct Mater 28(2):1704836 Xie F, Chen C-C, Wu Y, Li X, Cai M, Liu X, Yang X, Han L (2017) Vertical recrystallization for highly efficient and stable formamidinium-based inverted-structure perovskite solar cells. Energy Environ Sci 10(9):1942–1949 Zheng Y, Kong J, Huang D, Shi W, McMillon-Brown L, Katz H-E, Yu J, Taylor A-D (2018) Spray coating of the PCBM electron transport layer significantly improves the efficiency of pin planar perovskite solar cells. Nanoscale 10(24):11342–11348 Zheng Y, Shi W, Kong J, Huang D, Katz H-E, Yu J, Taylor A-D (2017) A Cytop insulating tunneling layer for efficient perovskite solar cells. Small Methods 1:1700244 Zhu P, Gu S, Luo X, Gao Y, Li S, Zhu J, Tan H (2020) Simultaneous Contact and Grain-Boundary Passivation in Planar Perovskite Solar Cells Using SnO2-KCl Composite Electron Transport Layer. Adv Energy Mater 10(3):1903083 LeeY LS, Seo G, Paek S, Cho K-T, Huckaba A-J, Calizzi M, Park C-W, J-S, Lee D, Lee H-J, (2018) Efficient planar perovskite solar cells using passivated tin oxide as an electron transport layer. Adv Sci 5(6):1800130 Subbiah A-S, Dhara A-K, Mahuli N, Banerjee S, Sarkar S-K (2020) Ultra-thin atomic layer deposited–Nb2O5 as electron transport layer for co-evaporated MAPbI3 planar perovskite solar cells. Energy Technol 8(4):1900878 Singh M, Ng A, Ren Z, Hu H, Lin H-C, Chu C-W, Li G (2019) Facile synthesis of composite tin oxide nanostructures for high-performance planar perovskite solar cells. Nano Energy 60:275–284 Tang H, Cao Q, He Z, Wang S, Han J, Li T, Gao B, Yang J, Deng D, Li X (2020) SnO2–Carbon Nanotubes Hybrid Electron Transport Layer for Efficient and Hysteresis-Free Planar Perovskite Solar Cells. Sol RRL 4(1):1900415 Anaraki E-H, Kermanpur A, Steier L, Domanski K, Matsui T, Tress W, Saliba M, Abate A, Grätzel M, Hagfeldt A, Correa-Baena J-P (2016) Highly efficient and stable planar perovskite solar cells by solution-processed tin oxide. Energy Environ Sci 9(10):3128–3134 Luo D, Yang W, Wang Z, Sadhanala A, Hu Q, Su R, Shivanna R, Trindade G-F, Watts J-F, Xu Z, Liu T (2018) Enhanced photovoltage for inverted planar heterojunction perovskite solar cells. Sci 360(6396):1442–1446 Saliba M, Correa-Baena J-P, Wolff C-M, Stolterfoht M, Phung N, Albrecht S, Neher D, Abate A (2018) How to make over 20% efficient perovskite solar cells in regular (n–i–p) and inverted (p–i–n) architectures. Chem Mater 30(13):4193–4201 Wu Y, Yang X, Chen W, Yue Y, Cai M, Xie F, Bi E, Islam A, Han L (2016) Perovskite solar cells with 18.21% efficiency and area over 1 cm2 fabricated by heterojunction engineering. Nat Energy. 1(11):1–7 You J, Meng L, Song T-B, Guo T-F, Yang Y-M, Chang W-H, Hong Z, Chen H, Zhou H, Chen Q, Liu Y (2016) Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. Nat Nanotechnol 11(1):75–81 Park I-J, Kang G, Park M-A, Kim J-S, Seo S-W, Kim D-H, Zhu K, Park T, Kim J-Y (2017) Highly efficient and uniform 1cm2 perovskite solar cells with an electrochemically deposited NiOx hole-extraction layer. Chem Sus Chem 10(12):2660–2667 Kim T, Lim J, Song S (2020) Recent progress and challenges of electron transport layers in organic–inorganic perovskite solar cells. Energies 13(21):5572 Pan H, Zhao X, Gong X, Li H, Ladi N- H, Zhang X- L, Fu Y, (2020) Advances in design engineering and merits of electron transporting layers in perovskite solar cells. Mater Horiz 7(9):2276–2291 Yu M, Guo Y, Yuan S, Zhao J-S, Qin Y, Ai X-C (2020) The influence of the electron transport layer on charge dynamics and trap-state properties in planar perovskite solar cells. RSC Adv 10(21):12347–12353 Chen J, Park N-G (2020) Materials and methods for interface engineering toward stable and efficient perovskite solar cells. ACS Energy Lett 5(8):2742–2786 Zhou D, Zhou T, Tian Y, Zhu X, Tu, Y (2018) Perovskite-based solar cells: materials, methods, and future perspectives. Journal of Nanomaterials, 2018. Hu A, Levis S, Meehl G-A, Han W, Washington W-M, Oleson K-W, Van Ruijven B-J, He M, Strand W-G (2016) Impact of solar panels on global climate. Nat Clim Chang 6(3):290–294 Ke W, Fang G, Wan Tao J-H, Liu Q, Xiong L, Qin P, Wang J, Lei H, Yang G, Qin M, X. Zhao X, Yan Y, (2015) Efficient hole-blocking layer-free planar halide perovskite thin-film solar cells. Nat Commun 6:6700 Noh M-F-M, Teh C-H, Daik R, Lim E-L, Yap C- C, Ibrahim M- A Teridi, M-A- M (2018) The architecture of the electron transport layer for a perovskite solar cell. J Mater Chem C 6(4):682–712 Zhu L, Ye J, Zhang X, Zheng H, Liu G, Pan X, S. Dai S (2017) Performance enhancement of perovskite solar cells using a La-doped BaSnO3 electron transport layer. J Mater Chem A 5:3675 Wang K, Olthof S, Subhani W-S, Jiang X, Cao Y, Duan L, Liu S- F (2020) Novel inorganic electron transport layers for planar perovskite solar cells: Progress and prospective. Nano Energy. 68:104289 Kim D-H, Han G-S, Seong W-M, Lee J-W, Kim B-J, Park N-G, Hong K-S, Lee S, Jung H-S (2015) Niobium doping effects on TiO2 mesoscopic electron transport layer based perovskite solar cells. Chemsuschem 8(14):2392–2398 Li N, Yan J, Ai Y, Jiang E, Lin L, Shou C, Ye J (2020) A low-temperature TiO2/SnO2 electron transport layer for high-performance planar perovskite solar cells. Sci China Mater 63(2):207–215 Zhou N, Cheng Q, Li L, Zhou H (2018) Doping effects in SnO2 transport material for high performance planar perovskite solar cells. J Phys D: Appl Phys. 51(39):394001 Chiang C-H, Kan C-W, Wu C- G, (2021) Synergistic engineering of conduction band, conductivity, and interface of bilayered electron transport layers with scalable TiO2 and SnO2 nanoparticles for high-efficiency stable perovskite solar cells. ACS Appl Mater Interfaces 13(20):23606–23615 Wang D, Chen S-C, Zheng Q (2019) Poly (vinyl-pyrrolidone)-doped SnO2 as an electron transport layer for perovskite solar cells with improved performance. J Mater Chem C 7(39):12204–12210 Chen H, Liu D, Wang Y, Wang C, Zhang T, Zhang P, Sarvari H, Chen Z, Li S (2017) Enhanced performance of planar perovskite solar cells using low-temperature solution-processed Al-doped SnO2 as electron transport layers. Nanoscale Res Lett 12(1):1–6 Liu Q, Zhang X, Li C, Lu H, Weng Z, Pan Y, Chen W, Hang X-C, Sun Z, Zhan Y (2019) Effect of tantalum doping on SnO2 electron transport layer via low temperature process for perovskite solar cells. Appl Phys Lett. 115(14):143903 Teimouri R, Heydari Z, Ghaziani M-P, Madani M, Abdy H, Kolahdouz M, Asl-Soleimani E (2020) Synthesizing Li doped TiO2 electron transport layers for highly efficient planar perovskite solar cell. Superlattices Microstruct. 145:106627 Yin G, Ma J, Jiang H, Li J, Yang D, Gao F, Zeng J, Liu Z, Liu S-F (2017) Enhancing efficiency and stability of perovskite solar cells through Nb-doping of TiO2 at low temperature. ACS Appl Mater Interfaces 9(12):10752–10758 Cai Q, Zhang Y, Liang C, Li P, Gu H, Liu X, Wang J, Shentu Z, Fan J, Shao G (2018) Enhancing efficiency of planar structure perovskite solar cells using Sn-doped TiO2 as electron transport layer at low temperature. Electrochim Acta 261:227–235 Mahmood K, Khalid A, Ahmad S-W, Mehran M-T (2018) Indium-doped ZnO mesoporous nanofibers as efficient electron transporting materials for perovskite solar cells. Surf Coat Technol 352:231–237 Jeong J, Kim H, Yoon Y-J, Walker B, Song S, Heo J, Park S-Y, Kim J-W, Kim G-H, Kim J-Y (2018) Formamidinium-based planar heterojunction perovskite solar cells with alkali carbonate-doped zinc oxide layer. RSC Adv 8(43):24110–24115 Avila J, Gil-Escrig L, Boix P-P, Sessolo M, Albrecht S, Bolink H-J (2018) Influence of doped charge transport layers on efficient perovskite solar cells. Sustain Energy Fuels 2(11):2429–2434 Yi H, Wang D, Mahmud M- A, Haque F, Upama M- B, Xu C, Uddin A, (2018) Bilayer SnO2 as electron transport layer for highly efficient perovskite solar cells. ACS Appl Energy Mater 1(11):6027–6039 Xu X, Zhang H, Shi J, Dong J, Luo Y, Li D, Meng Q (2015) Highly efficient planar perovskite solar cells with a TiO2/ZnO electron transport bilayer. J Mater Chem A 3(38):19288–19293 You Y, Tian W, Min L, Cao F, Deng K, Li L (2020) TiO2/WO3 bilayer as electron transport layer for efficient planar perovskite solar cell with efficiency exceeding 20%. Adv Mater Interfaces 7(1):1901406 Yi H, Wang D, Mahmud M-A, Haque F, Upama M-B, Xu C, Duan L, Uddin A (2018) Bilayer SnO2 as electron transport layer for highly efficient perovskite solar cells. ACS Appl Energy Mater 1(11):6027–6039 Martínez-Denegri G, Colodrero S, Kramarenko M, Martorell J (2018) All-nanoparticle SnO2/TiO2 electron-transporting layers processed at low temperature for efficient thin-film perovskite solar cells. ACS Appl Energy Mater 1(10):5548–5556 Lu H, Tian W, Gu B, Zhu Y, Li L (2017) TiO2 electron transport bilayer for highly efficient planar perovskite solar cell. Small 13(38):1701535 Gong X, Sun Q, Liu S, Liao P, Shen Y, Grätzel C, Zakeeruddin S-M, Grätzel M, Wang M (2018) Highly efficient perovskite solar cells with gradient bilayer electron transport materials. Nano Lett 18(6):3969–3977 Li N, Yan J, Ai Y, Jiang E, Lin L, Shou C, Yan B, Sheng J, Ye J (2020) A low-temperature TiO2/SnO2 electron transport layer for high-performance planar perovskite solar cells. Sci China Mater 63(2):207–215 Kumari N, Gohel J-V, Patel S-R (2018) Optimization of TiO2/ZnO bilayer electron transport layer to enhance efficiency of perovskite solar cell. Mater Sci Semicond Process 75:149–156 Wang D, Wu C, Luo W, Guo X, Qu B, Xiao L, Chen Z (2018) ZnO/SnO2 double electron transport layer guides improved open circuit voltage for highly efficient CH3NH3PbI3-based planar perovskite solar cells. ACS Appl Energy Mater 1(5):2215–2221 Chen Y, Xu C, Xiong J, Zhang Z, Zhang X, Yang J, Xue X, Yang D, Zhang J (2018) Benefits of fullerene/SnO2 bilayers as electron transport layer for efficient planar perovskite solar cells. Org Electron 58:294–300 Zhang J, Tan C-H, Du T, Morbidoni M, Lin C-T, Xu S, Durrant J-R, McLachlan M-A (2018) ZnO-PCBM bilayers as electron transport layers in low-temperature processed perovskite solar cells. Sci Bull 63(6):343–348 Noh Y-W, Jin I-S, Kim K-S, Park S-H, Jung J-W (2020) Reduced energy loss in SnO2/ZnO bilayer electron transport layer-based perovskite solar cells for achieving high efficiencies in outdoor/indoor environments. J Mater Chem A 8(33):17163–17173 Fang R, Wu S, Chen W, Liu Z, Zhang S, Chen R, Yue Y, Deng L, Cheng Y-B, Han L, Chen W (2018) [6, 6]-phenyl-C61-butyric acid methyl ester/cerium oxide bilayer structure as efficient and stable electron transport layer for inverted perovskite solar cells. ACS Nano 12(3):2403–2414 Wu S-H, Lin M-Y, Chang S-H, Tu W-C, Chu C-W, Chang Y-C (2018) A Design based on a charge-transfer bilayer as an electron transport layer for improving the performance and stability in planar perovskite solar cells. J Phys Chem C 122(1):236–244 Liu Z, Sun B, Liu X, Han J, Ye H, Tu Y, Chen C, Shi T, Tang Z, Liao G (2018) 15% efficient carbon based planar-heterojunction perovskite solar cells using a TiO2/SnO2 bilayer as the electron transport layer. J Mater Chem A 6(17):7409–7419 Ma H, Yip H-L, Huang F, Jen A-K-Y (2010) Interface engineering for organic electronics. Adv Funct Mater 20(9):1371–1388 Kim S-Y, Cho S-J, Byeon S-E, He X, Yoon H-J (2020) Self-assembled monolayers as interface engineering nanomaterials in perovskite solar cells. Adv Funct Mater 10(44):2002606 Wang S, Li H, Zhang B, Guo Z-A, Bala H, Yao S, Zhang J, Chen C, Fu W, Cao J, Sun G (2020) Perovskite solar cells based on the synergy between carbon electrodes and polyethylene glycol additive with excellent stability. Org Electron. 83:105734 Han F, Hao G, Wan Z, Luo J, Xia J, Jia C (2019) Bifunctional electron transporting layer/perovskite interface linker for highly efficient perovskite solar cells. Electrochim Acta 296:75–81 Zhao M, Wu W, Su B (2018) pH-controlled drug release by diffusion through silica nanochannel membranes. ACS Appl Mater Interfaces 10(40):33986–33992 Anizelli H, David T-W, Tyagi P, Laureto E, Kettle J (2020) Enhancing the stability of perovskite solar cells through functionalisation of metal oxide transport layers with self-assembled monolayers. Sol Energy 203:157–163 Cao T, Chen K, Chen Q, Zhou Y, Chen N, Li Y (2019) Fullerene derivative-modified SnO2 electron transport layer for highly efficient perovskite solar cells with efficiency over 21%. ACS Appl Mater Interfaces 11(37):33825–33834 Han J, Kwon H, Kim E, Kim D-W, Son H-J, Kim D-H (2020) Interfacial engineering of a ZnO electron transporting layer using self-assembled monolayers for high performance and stable perovskite solar cells. J Mater Chem A 8(4):2105–2113 Lu H, Zhuang J, Ma Z, Deng Y, Wang Q, Guo Z, Zhao S, Li H (2019) γ-MPTS-SAM modified meso-TiO2 surface to enhance performance in perovskite solar cell. Mater Sci Semicond Process 97:21–28 Hou Y, Quiroz C-O-R, Scheiner S, Chen W, Stubhan T, Hirsch A, Halik M, Brabec C-J (2015) Low temperature and hysteresis free electron transporting layers for efficient, regular, and planar structure perovskite solar cells. Adv Energy Mater 5(20):1501056 Han G-S, Chung H-S, Kim B-J, Kim D-H, Lee J-W, Swain B-S, Mahmood K, Yoo J-S, Park N-G, Lee J-H, Jung H-S (2015) Retarding charge recombination in perovskite solar cells using ultrathin MgO-coated TiO2 nanoparticulate films. J Mater Chem A 3(17):9160–9164 Tai M, Zhao X, Shen H, Guo Y, Zhang M, Zhou Y, Li X, Yao Z, Yin X, Han J, Lin H (2019) Ultrathin Zn2SnO4 (ZTO) passivated ZnO nanocone arrays for efficient and stable perovskite solar cells. Chem Eng J 361:60–66 Zhang P, Yang F, Kapil G, Shen Q, Toyoda T, Yoshino K, Minemoto T, Pandey S-S, Ma T, Hayase S (2018) Enhanced performance of ZnO based perovskite solar cells by Nb2O5 surface passivation. Org Electro 62:615–620 Wang R, Mujahid M, Duan Y, Wang Z- K, Xue J, Yang Y, (2019) A review of perovskites solar cell stability. Adv Funct Mater 29(47):1808843 Wang S, Liu H, Bala H, Zong B, Huang L, Guo Z-A, Fu W, Zhang B, Sun G, Cao J, Zhang Z (2020) A highly stable hole-conductor-free CsxMA1-xPbI3 perovskite solar cell based on carbon counter electrode. Electrochim Acta. 335:135686 Chen R, Cao J, Wu Y, Jing X, Wu B, Zheng N (2017) Improving efficiency and stability of perovskite solar cells by modifying mesoporous TiO2–perovskite interfaces with both aminocaproic and caproic acids. Adv Mater Interfaces 4(23):1700897 Meng L, Zhang F, Ma W, Zhao Y, Zhao P, Fu H, Guo X (2018) Improving photovoltaic stability and performance of perovskite solar cells by molecular interface engineering. J Phys Chem C 123(2):1219–1225