Recent progress in consolidated bioprocessing

Current Opinion in Biotechnology - Tập 23 Số 3 - Trang 396-405 - 2012
Daniel G. Olson1,2, John E. McBride3, Aubie Shaw3, Lee R. Lynd1,3,2
1BioEnergy Science Center, Oak Ridge, TN 37830, United States
2Thayer School of Engineering at Dartmouth College, Hanover, NH 03755, United States
3Mascoma Corporation, Lebanon, NH 03766, United States

Tóm tắt

Từ khóa


Tài liệu tham khảo

Lynd, 2002, Microbial cellulose utilization: fundamentals and biotechnology, Microbiol Mol Biol Rev, 66, 506, 10.1128/MMBR.66.3.506-577.2002

Demain, 2009, Biosolutions to the energy problem, J Ind Microbiol Biotechnol, 36, 319, 10.1007/s10295-008-0521-8

Lynd, 2005, Consolidated bioprocessing of cellulosic biomass: an update, Curr Opin Biotechnol, 16, 577, 10.1016/j.copbio.2005.08.009

Lu, 2006, Enzyme-microbe synergy during cellulose hydrolysis by Clostridium thermocellum, Proc Natl Acad Sci USA, 103, 19605, 10.1073/pnas.0605381103

Kuck, 2010, New tools for the genetic manipulation of filamentous fungi, Appl Microbiol Biotechnol, 86, 51, 10.1007/s00253-009-2416-7

Xiros, 2009, Enhanced ethanol production from brewer's spent grain by a Fusarium oxysporum consolidated system, Biotechnol Biofuels, 2, 4, 10.1186/1754-6834-2-4

Xu, 2009, Perspectives and new directions for the production of bioethanol using consolidated bioprocessing of lignocellulose, Curr Opin Biotechnol, 20, 364, 10.1016/j.copbio.2009.05.006

Tolonen, 2009, Targeted gene inactivation in Clostridium phytofermentans shows that cellulose degradation requires the family 9 hydrolase Cphy3367, Mol Microbiol, 74, 1300, 10.1111/j.1365-2958.2009.06890.x

Gardner, 2010, Requirement of the Type II secretion system for utilization of cellulosic substrates by Cellvibrio japonicus, Appl Environ Microbiol, 76, 5079, 10.1128/AEM.00454-10

Shaw, 2011, Marker removal system for Thermoanaerobacterium saccharolyticum and development of a markerless ethanologen, Appl Environ Microbiol, 77, 2534, 10.1128/AEM.01731-10

Shaw, 2010, Natural competence in Thermoanaerobacter and Thermoanaerobacterium species, Appl Environ Microbiol, 76, 4713, 10.1128/AEM.00402-10

Peng, 2006, Electrotransformation of Thermoanaerobacter ethanolicus JW200, Biotechnol Lett, 28, 1913, 10.1007/s10529-006-9184-6

Shaw, 2008, Metabolic engineering of a thermophilic bacterium to produce ethanol at high yield, Proc Natl Acad Sci, 105, 13769, 10.1073/pnas.0801266105

Cripps, 2009, Metabolic engineering of Geobacillus thermoglucosidasius for high yield ethanol production, Metabolic Eng, 11, 398, 10.1016/j.ymben.2009.08.005

Yang, 2009, Efficient degradation of lignocellulosic plant biomass, without pretreatment, by the thermophilic anaerobe Anaerocellum thermophilum DSM 6725, Appl Environ Microbiol, 75, 4762, 10.1128/AEM.00236-09

Kataeva, 2009, Genome sequence of the anaerobic, thermophilic, and cellulolytic bacterium Anaerocellum thermophilum DSM 6725, J Bacteriol, 191, 3760, 10.1128/JB.00256-09

Tripathi, 2010, Development of pyrF-based genetic system for targeted gene deletion in Clostridium thermocellum and creation of a pta mutant, Appl Environ Microbiol, 76, 6591, 10.1128/AEM.01484-10

Argyros DA, Tripathi SA, Barrett TF, Rogers SR, Feinberg LF, Olson DG, Foden JM, Miller BB, Lynd LR, Hogsett DA, et al.: High ethanol titers from cellulose using metabolically engineered thermophilic, anaerobic microbes. Appl Environ Microbiol 2011, http://aem.asm.org/content/early/2011/09/30/AEM.00646-11.short?rss=1, in press.

Higashide, 2011, Metabolic engineering of Clostridium cellulolyticum for production of isobutanol from cellulose, Appl Environ Microbiol, 77, 2727, 10.1128/AEM.02454-10

Lynd, 1996, Likely features and costs of mature biomass ethanol technology, Appl Biochem Biotechnol, 57, 741, 10.1007/BF02941755

Brown, 2011, Mutant alcohol dehydrogenase leads to improved ethanol tolerance in Clostridium thermocellum, Proc Natl Acad Sci USA, 108, 13752, 10.1073/pnas.1102444108

Williams, 2007, Proteomic profile changes in membranes of ethanol-tolerant Clostridium thermocellum, Appl Microbiol Biotechnol, 74, 422, 10.1007/s00253-006-0689-7

Demain, 2005, Cellulase, clostridia, and ethanol, Microbiol Mol Biol Rev, 69, 124, 10.1128/MMBR.69.1.124-154.2005

Nakamura, 2003, Metabolic engineering for the microbial production of 1,3-propanediol, Curr Opin Biotechnol, 14, 454, 10.1016/j.copbio.2003.08.005

Herpoel-Gimbert, 2008, Comparative secretome analyses of two Trichoderma reesei RUT-C30 and CL847 hypersecretory strains, Biotechnol Biofuels, 1, 18, 10.1186/1754-6834-1-18

Nagendran, 2009, Reduced genomic potential for secreted plant cell-wall-degrading enzymes in the ectomycorrhizal fungus Amanita bisporigera, based on the secretome of Trichoderma reesei, Fungal Genet Biol, 46, 427, 10.1016/j.fgb.2009.02.001

Fierobe, 2005, Action of designer cellulosomes on homogeneous versus complex substrates—controlled incorporation of three distinct enzymes into a defined trifunctional scaffoldin, J Biol Chem, 280, 16325, 10.1074/jbc.M414449200

Hyeon, 2011, Production of minicellulosomes for the enhanced hydrolysis of cellulosic substrates by recombinant Corynebacterium glutamicum, Enzyme Microb Technol, 48, 371, 10.1016/j.enzmictec.2010.12.014

Lilly, 2009, Heterologous expression of a Clostridium minicellulosome in Saccharomyces cerevisiae, Fems Yeast Res, 9, 1236, 10.1111/j.1567-1364.2009.00564.x

Tsai, 2009, Functional assembly of minicellulosomes on the saccharomyces cerevisiae cell surface for cellulose hydrolysis and ethanol production, Appl Environ Microbiol, 75, 6087, 10.1128/AEM.01538-09

Wen, 2009, Yeast surface display of trifunctional minicellulosomes for simultaneous saccharification and fermentation of cellulose to ethanol, Appl Environ Microbiol, 76, 1251, 10.1128/AEM.01687-09

Tsai, 2010, Surface display of a functional minicellulosome by intracellular complementation using a synthetic yeast consortium and its application to cellulose hydrolysis and ethanol production, Appl Environ Microbiol, 76, 7514, 10.1128/AEM.01777-10

Den Haan, 2007, Hydrolysis and fermentation of amorphous cellulose by recombinant Saccharomyces cerevisiae, Metab Eng, 9, 87, 10.1016/j.ymben.2006.08.005

Yamada, 2011, Direct and efficient ethanol production from high-yielding rice using a Saccharomyces cerevisiae strain that express amylases, Enzyme Microb Technol, 48, 393, 10.1016/j.enzmictec.2011.01.002

Zhang, 2011, One-step production of lactate from cellulose as the sole carbon source without any other organic nutrient by recombinant cellulolytic Bacillus subtilis, Metab Eng, 13, 364, 10.1016/j.ymben.2011.04.003

McBride JE, Brevnova E, Ghandi C, Mellon M, Froehlich A, Deleault K, Rajgharia V, Flatt J, Van Zyl E, Den Haan R, et al.: Yeast expressing cellulases for simultaneous saccharification and fermentation using cellulose. US Patent 2010.

Matsushika, 2009, Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: current state and perspectives, Appl Microbiol Biotechnol, 84, 37, 10.1007/s00253-009-2101-x

Ha, 2011, Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentation, Proc Natl Acad Sci, 108, 504, 10.1073/pnas.1010456108

Sakamoto, 2012, Direct ethanol production from hemicellulosic materials of rice straw by use of an engineered yeast strain codisplaying three types of hemicellulolytic enzymes on the surface of xylose-utilizing Saccharomyces cerevisiae cells, J Biotechnol, 158, 203, 10.1016/j.jbiotec.2011.06.025

Shin, 2010, Escherichia coli binary culture engineered for direct fermentation of hemicellulose to a biofuel, Appl Environ Microbiol, 76, 8150, 10.1128/AEM.00908-10

Steen, 2010, Microbial production of fatty-acid-derived fuels and chemicals from plant biomass, Nature, 463, 10.1038/nature08721

Zhang, 2005, Cellulose utilization by Clostridium thermocellum: bioenergetics and hydrolysis product assimilation, Proc Natl Acad Sci USA, 102, 9430, 10.1073/pnas.0408734102

Fan, 2005, Theoretical analysis of selection-based strain improvement for microorganisms with growth dependent upon extracytoplasmic enzymes, Biotechnol Bioeng, 92, 35, 10.1002/bit.20576

Raman, 2011, Transcriptomic analysis of Clostridium thermocellum ATCC 27405 cellulose fermentation, BMC Microbiol, 11, 10.1186/1471-2180-11-134

Raman, 2009, Impact of pretreated switchgrass and biomass carbohydrates on Clostridium thermocellum ATCC 27405 cellulosome composition: a quantitative proteomic analysis, PLoS ONE, 4, e5271, 10.1371/journal.pone.0005271

Brown, 2007, Construction and evaluation of a Clostridium thermocellum ATCC 27405 whole-genome oligonucleotide microarray, Appl Biochem Biotechnol, 663

Nataf, 2010, Clostridium thermocellum cellulosomal genes are regulated by extracytoplasmic polysaccharides via alternative sigma factors, Proc Natl Acad Sci USA, 107, 18646, 10.1073/pnas.1012175107

Abdou, 2008, Transcriptional regulation of the Clostridium cellulolyticum cip-cel operon: a complex mechanism involving a catabolite-responsive element, J Bacteriol, 190, 1499, 10.1128/JB.01160-07

Gold, 2007, Global view of the Clostridium thermocellum cellulosome revealed by quantitative proteomic analysis, J Bacteriol, 189, 6787, 10.1128/JB.00882-07

Newcomb, 2007, Induction of the celC operon of Clostridium thermocellum by laminaribiose, Proc Natl Acad Sci USA, 104, 3747, 10.1073/pnas.0700087104

Olson, 2010, Deletion of the Cel48S cellulase from Clostridium thermocellum, Proc Natl Acad Sci, 107, 17727, 10.1073/pnas.1003584107

Hinman, 1992, Preliminary estimate of the cost of ethanol production for ssf technology, Appl Biochem Biotechnol, 34, 639, 10.1007/BF02920584

Hettenhaus, 1997

Wiselogel, 1998

Hettenhaus, 2000

Tetarenko, 2000

2004

Tuli, 2004

Petiot, 2008, On the road to cost-competitive cellulosic ethanol, Chimica Oggi-Chemistry Today, 26, 20

Sheridan, 2008, Europe lags, US leads 2nd-generation biofuels, Nat Biotechnol, 26, 1319, 10.1038/nbt1208-1319

McMillan, 2004

Bryant, 2011, Putting the pieces together, cellulosic commercialization

Penttila, 1988, Efficient secretion of 2 fungal cellobiohydrolases by Saccharomyces cerevisiae, Gene, 63, 103, 10.1016/0378-1119(88)90549-5

Reinikainen, 1992, Investigation of the function of mutated cellulose-binding domains of Trichoderma reesei cellobiohydrolase I, Proteins Struct Funct Bioinform, 14, 475, 10.1002/prot.340140408

Den Haan, 2007, Functional expression of cellobiohydrolases in Saccharomyces cerevisiae towards one-step conversion of cellulose to ethanol, Enzyme Microb Technol, 40, 1291, 10.1016/j.enzmictec.2006.09.022

Hong, 2003, Cloning of a gene encoding a thermo-stable endo-beta-1,4-glucanase from Thermoascus aurantiacus and its expression in yeast, Biotechnol Lett, 25, 657, 10.1023/A:1023072311980

Takada, 1998, Expression of Aspergillus aculeatus no. F-50 cellobiohydrolase I (cbhI) and beta-glucosidase 1 (bgl1) genes by Saccharomyces cerevisiae, Biosci Biotechnol Biochem, 62, 1615, 10.1271/bbb.62.1615

Heinzelman, 2010, Efficient screening of fungal cellobiohydrolase class I enzymes for thermostabilizing sequence blocks by SCHEMA structure-guided recombination, Protein Eng Design Selection, 23, 871, 10.1093/protein/gzq063

Ilmen, 2011, High level secretion of cellobiohydrolases by Saccharomyces cerevisiae, Biotechnol Biofuels, 4, 30, 10.1186/1754-6834-4-30

Zurbriggen, 1990, Pilot scale production of a heterologous Trichoderma reesei cellulase by Saccharomyces cerevisiae, J Biotechnol, 13, 267, 10.1016/0168-1656(90)90075-M

Heinzelman, 2009, A family of thermostable fungal cellulases created by structure-guided recombination, Proc Natl Acad Sci USA, 106, 5610, 10.1073/pnas.0901417106

Verduyn, 1991, A theoretical evaluation of growth yields of yeasts, Antonie Van Leeuwenhoek Int J Gen Mol Microbiol, 59, 49, 10.1007/BF00582119

Guedon, 2002, Improvement of cellulolytic properties of Clostridium cellulolyticum by metabolic engineering, Appl Environ Microbiol, 68, 53, 10.1128/AEM.68.1.53-58.2002

Jin, 2011, Consolidated Bioprocessing (CBP) Performance of Clostridium phytofermentans on AFEX-Treated Corn Stover for Ethanol Production, Biotechnol Bioeng, 108, 1290, 10.1002/bit.23059

Zambare, 2011, Bioprocessing of agricultural residues to ethanol utilizing a cellulolytic extremophile, Extremophiles, 15, 611, 10.1007/s00792-011-0391-2

Okamoto, 2011, Direct ethanol production from starch, wheat bran and rice straw by the white rot fungus Trametes hirsuta, Enzyme Microb Technol, 48, 273, 10.1016/j.enzmictec.2010.12.001

Tolonen, 2011, Proteome-wide systems analysis of a cellulosic biofuel-producing microbe, Mol Sys Biol, 6

Cai, 2011, Disruption of lactate dehydrogenase through homologous recombination to improve bioethanol production in Thermoanaerobacterium aotearoense, Enzyme Microb Technol, 48, 155, 10.1016/j.enzmictec.2010.10.006

Yao, 2010, Metabolic engineering to improve ethanol production in Thermoanaerobacter mathranii, Appl Microbiol Biotechnol, 88, 199, 10.1007/s00253-010-2703-3

Lee, 2011, Detoxification of woody hydrolyzates with activated carbon for bioconversion to ethanol by the thermophilic anaerobic bacterium Thermoanaerobacterium saccharolyticum, Biomass Bioenergy, 35, 626, 10.1016/j.biombioe.2010.10.021

Berezina, 2008, Extracellular glycosyl hydrolase activity of the Clostridium strains producing acetone, butanol, and ethanol, Appl Biochem Microbiol, 44, 42, 10.1134/S0003683808010079