Recent progress in consolidated bioprocessing
Tóm tắt
Từ khóa
Tài liệu tham khảo
Lynd, 2002, Microbial cellulose utilization: fundamentals and biotechnology, Microbiol Mol Biol Rev, 66, 506, 10.1128/MMBR.66.3.506-577.2002
Demain, 2009, Biosolutions to the energy problem, J Ind Microbiol Biotechnol, 36, 319, 10.1007/s10295-008-0521-8
Lynd, 2005, Consolidated bioprocessing of cellulosic biomass: an update, Curr Opin Biotechnol, 16, 577, 10.1016/j.copbio.2005.08.009
Lu, 2006, Enzyme-microbe synergy during cellulose hydrolysis by Clostridium thermocellum, Proc Natl Acad Sci USA, 103, 19605, 10.1073/pnas.0605381103
Kuck, 2010, New tools for the genetic manipulation of filamentous fungi, Appl Microbiol Biotechnol, 86, 51, 10.1007/s00253-009-2416-7
Xiros, 2009, Enhanced ethanol production from brewer's spent grain by a Fusarium oxysporum consolidated system, Biotechnol Biofuels, 2, 4, 10.1186/1754-6834-2-4
Xu, 2009, Perspectives and new directions for the production of bioethanol using consolidated bioprocessing of lignocellulose, Curr Opin Biotechnol, 20, 364, 10.1016/j.copbio.2009.05.006
Tolonen, 2009, Targeted gene inactivation in Clostridium phytofermentans shows that cellulose degradation requires the family 9 hydrolase Cphy3367, Mol Microbiol, 74, 1300, 10.1111/j.1365-2958.2009.06890.x
Gardner, 2010, Requirement of the Type II secretion system for utilization of cellulosic substrates by Cellvibrio japonicus, Appl Environ Microbiol, 76, 5079, 10.1128/AEM.00454-10
Shaw, 2011, Marker removal system for Thermoanaerobacterium saccharolyticum and development of a markerless ethanologen, Appl Environ Microbiol, 77, 2534, 10.1128/AEM.01731-10
Shaw, 2010, Natural competence in Thermoanaerobacter and Thermoanaerobacterium species, Appl Environ Microbiol, 76, 4713, 10.1128/AEM.00402-10
Peng, 2006, Electrotransformation of Thermoanaerobacter ethanolicus JW200, Biotechnol Lett, 28, 1913, 10.1007/s10529-006-9184-6
Shaw, 2008, Metabolic engineering of a thermophilic bacterium to produce ethanol at high yield, Proc Natl Acad Sci, 105, 13769, 10.1073/pnas.0801266105
Cripps, 2009, Metabolic engineering of Geobacillus thermoglucosidasius for high yield ethanol production, Metabolic Eng, 11, 398, 10.1016/j.ymben.2009.08.005
Yang, 2009, Efficient degradation of lignocellulosic plant biomass, without pretreatment, by the thermophilic anaerobe Anaerocellum thermophilum DSM 6725, Appl Environ Microbiol, 75, 4762, 10.1128/AEM.00236-09
Kataeva, 2009, Genome sequence of the anaerobic, thermophilic, and cellulolytic bacterium Anaerocellum thermophilum DSM 6725, J Bacteriol, 191, 3760, 10.1128/JB.00256-09
Tripathi, 2010, Development of pyrF-based genetic system for targeted gene deletion in Clostridium thermocellum and creation of a pta mutant, Appl Environ Microbiol, 76, 6591, 10.1128/AEM.01484-10
Argyros DA, Tripathi SA, Barrett TF, Rogers SR, Feinberg LF, Olson DG, Foden JM, Miller BB, Lynd LR, Hogsett DA, et al.: High ethanol titers from cellulose using metabolically engineered thermophilic, anaerobic microbes. Appl Environ Microbiol 2011, http://aem.asm.org/content/early/2011/09/30/AEM.00646-11.short?rss=1, in press.
Higashide, 2011, Metabolic engineering of Clostridium cellulolyticum for production of isobutanol from cellulose, Appl Environ Microbiol, 77, 2727, 10.1128/AEM.02454-10
Lynd, 1996, Likely features and costs of mature biomass ethanol technology, Appl Biochem Biotechnol, 57, 741, 10.1007/BF02941755
Brown, 2011, Mutant alcohol dehydrogenase leads to improved ethanol tolerance in Clostridium thermocellum, Proc Natl Acad Sci USA, 108, 13752, 10.1073/pnas.1102444108
Williams, 2007, Proteomic profile changes in membranes of ethanol-tolerant Clostridium thermocellum, Appl Microbiol Biotechnol, 74, 422, 10.1007/s00253-006-0689-7
Demain, 2005, Cellulase, clostridia, and ethanol, Microbiol Mol Biol Rev, 69, 124, 10.1128/MMBR.69.1.124-154.2005
Nakamura, 2003, Metabolic engineering for the microbial production of 1,3-propanediol, Curr Opin Biotechnol, 14, 454, 10.1016/j.copbio.2003.08.005
Herpoel-Gimbert, 2008, Comparative secretome analyses of two Trichoderma reesei RUT-C30 and CL847 hypersecretory strains, Biotechnol Biofuels, 1, 18, 10.1186/1754-6834-1-18
Nagendran, 2009, Reduced genomic potential for secreted plant cell-wall-degrading enzymes in the ectomycorrhizal fungus Amanita bisporigera, based on the secretome of Trichoderma reesei, Fungal Genet Biol, 46, 427, 10.1016/j.fgb.2009.02.001
Fierobe, 2005, Action of designer cellulosomes on homogeneous versus complex substrates—controlled incorporation of three distinct enzymes into a defined trifunctional scaffoldin, J Biol Chem, 280, 16325, 10.1074/jbc.M414449200
Hyeon, 2011, Production of minicellulosomes for the enhanced hydrolysis of cellulosic substrates by recombinant Corynebacterium glutamicum, Enzyme Microb Technol, 48, 371, 10.1016/j.enzmictec.2010.12.014
Lilly, 2009, Heterologous expression of a Clostridium minicellulosome in Saccharomyces cerevisiae, Fems Yeast Res, 9, 1236, 10.1111/j.1567-1364.2009.00564.x
Tsai, 2009, Functional assembly of minicellulosomes on the saccharomyces cerevisiae cell surface for cellulose hydrolysis and ethanol production, Appl Environ Microbiol, 75, 6087, 10.1128/AEM.01538-09
Wen, 2009, Yeast surface display of trifunctional minicellulosomes for simultaneous saccharification and fermentation of cellulose to ethanol, Appl Environ Microbiol, 76, 1251, 10.1128/AEM.01687-09
Tsai, 2010, Surface display of a functional minicellulosome by intracellular complementation using a synthetic yeast consortium and its application to cellulose hydrolysis and ethanol production, Appl Environ Microbiol, 76, 7514, 10.1128/AEM.01777-10
Den Haan, 2007, Hydrolysis and fermentation of amorphous cellulose by recombinant Saccharomyces cerevisiae, Metab Eng, 9, 87, 10.1016/j.ymben.2006.08.005
Yamada, 2011, Direct and efficient ethanol production from high-yielding rice using a Saccharomyces cerevisiae strain that express amylases, Enzyme Microb Technol, 48, 393, 10.1016/j.enzmictec.2011.01.002
Zhang, 2011, One-step production of lactate from cellulose as the sole carbon source without any other organic nutrient by recombinant cellulolytic Bacillus subtilis, Metab Eng, 13, 364, 10.1016/j.ymben.2011.04.003
McBride JE, Brevnova E, Ghandi C, Mellon M, Froehlich A, Deleault K, Rajgharia V, Flatt J, Van Zyl E, Den Haan R, et al.: Yeast expressing cellulases for simultaneous saccharification and fermentation using cellulose. US Patent 2010.
Matsushika, 2009, Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: current state and perspectives, Appl Microbiol Biotechnol, 84, 37, 10.1007/s00253-009-2101-x
Ha, 2011, Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentation, Proc Natl Acad Sci, 108, 504, 10.1073/pnas.1010456108
Sakamoto, 2012, Direct ethanol production from hemicellulosic materials of rice straw by use of an engineered yeast strain codisplaying three types of hemicellulolytic enzymes on the surface of xylose-utilizing Saccharomyces cerevisiae cells, J Biotechnol, 158, 203, 10.1016/j.jbiotec.2011.06.025
Shin, 2010, Escherichia coli binary culture engineered for direct fermentation of hemicellulose to a biofuel, Appl Environ Microbiol, 76, 8150, 10.1128/AEM.00908-10
Steen, 2010, Microbial production of fatty-acid-derived fuels and chemicals from plant biomass, Nature, 463, 10.1038/nature08721
Zhang, 2005, Cellulose utilization by Clostridium thermocellum: bioenergetics and hydrolysis product assimilation, Proc Natl Acad Sci USA, 102, 9430, 10.1073/pnas.0408734102
Fan, 2005, Theoretical analysis of selection-based strain improvement for microorganisms with growth dependent upon extracytoplasmic enzymes, Biotechnol Bioeng, 92, 35, 10.1002/bit.20576
Raman, 2011, Transcriptomic analysis of Clostridium thermocellum ATCC 27405 cellulose fermentation, BMC Microbiol, 11, 10.1186/1471-2180-11-134
Raman, 2009, Impact of pretreated switchgrass and biomass carbohydrates on Clostridium thermocellum ATCC 27405 cellulosome composition: a quantitative proteomic analysis, PLoS ONE, 4, e5271, 10.1371/journal.pone.0005271
Brown, 2007, Construction and evaluation of a Clostridium thermocellum ATCC 27405 whole-genome oligonucleotide microarray, Appl Biochem Biotechnol, 663
Nataf, 2010, Clostridium thermocellum cellulosomal genes are regulated by extracytoplasmic polysaccharides via alternative sigma factors, Proc Natl Acad Sci USA, 107, 18646, 10.1073/pnas.1012175107
Abdou, 2008, Transcriptional regulation of the Clostridium cellulolyticum cip-cel operon: a complex mechanism involving a catabolite-responsive element, J Bacteriol, 190, 1499, 10.1128/JB.01160-07
Gold, 2007, Global view of the Clostridium thermocellum cellulosome revealed by quantitative proteomic analysis, J Bacteriol, 189, 6787, 10.1128/JB.00882-07
Newcomb, 2007, Induction of the celC operon of Clostridium thermocellum by laminaribiose, Proc Natl Acad Sci USA, 104, 3747, 10.1073/pnas.0700087104
Olson, 2010, Deletion of the Cel48S cellulase from Clostridium thermocellum, Proc Natl Acad Sci, 107, 17727, 10.1073/pnas.1003584107
Hinman, 1992, Preliminary estimate of the cost of ethanol production for ssf technology, Appl Biochem Biotechnol, 34, 639, 10.1007/BF02920584
Hettenhaus, 1997
Wiselogel, 1998
Hettenhaus, 2000
Tetarenko, 2000
2004
Tuli, 2004
Petiot, 2008, On the road to cost-competitive cellulosic ethanol, Chimica Oggi-Chemistry Today, 26, 20
Sheridan, 2008, Europe lags, US leads 2nd-generation biofuels, Nat Biotechnol, 26, 1319, 10.1038/nbt1208-1319
McMillan, 2004
Bryant, 2011, Putting the pieces together, cellulosic commercialization
Penttila, 1988, Efficient secretion of 2 fungal cellobiohydrolases by Saccharomyces cerevisiae, Gene, 63, 103, 10.1016/0378-1119(88)90549-5
Reinikainen, 1992, Investigation of the function of mutated cellulose-binding domains of Trichoderma reesei cellobiohydrolase I, Proteins Struct Funct Bioinform, 14, 475, 10.1002/prot.340140408
Den Haan, 2007, Functional expression of cellobiohydrolases in Saccharomyces cerevisiae towards one-step conversion of cellulose to ethanol, Enzyme Microb Technol, 40, 1291, 10.1016/j.enzmictec.2006.09.022
Hong, 2003, Cloning of a gene encoding a thermo-stable endo-beta-1,4-glucanase from Thermoascus aurantiacus and its expression in yeast, Biotechnol Lett, 25, 657, 10.1023/A:1023072311980
Takada, 1998, Expression of Aspergillus aculeatus no. F-50 cellobiohydrolase I (cbhI) and beta-glucosidase 1 (bgl1) genes by Saccharomyces cerevisiae, Biosci Biotechnol Biochem, 62, 1615, 10.1271/bbb.62.1615
Heinzelman, 2010, Efficient screening of fungal cellobiohydrolase class I enzymes for thermostabilizing sequence blocks by SCHEMA structure-guided recombination, Protein Eng Design Selection, 23, 871, 10.1093/protein/gzq063
Ilmen, 2011, High level secretion of cellobiohydrolases by Saccharomyces cerevisiae, Biotechnol Biofuels, 4, 30, 10.1186/1754-6834-4-30
Zurbriggen, 1990, Pilot scale production of a heterologous Trichoderma reesei cellulase by Saccharomyces cerevisiae, J Biotechnol, 13, 267, 10.1016/0168-1656(90)90075-M
Heinzelman, 2009, A family of thermostable fungal cellulases created by structure-guided recombination, Proc Natl Acad Sci USA, 106, 5610, 10.1073/pnas.0901417106
Verduyn, 1991, A theoretical evaluation of growth yields of yeasts, Antonie Van Leeuwenhoek Int J Gen Mol Microbiol, 59, 49, 10.1007/BF00582119
Guedon, 2002, Improvement of cellulolytic properties of Clostridium cellulolyticum by metabolic engineering, Appl Environ Microbiol, 68, 53, 10.1128/AEM.68.1.53-58.2002
Jin, 2011, Consolidated Bioprocessing (CBP) Performance of Clostridium phytofermentans on AFEX-Treated Corn Stover for Ethanol Production, Biotechnol Bioeng, 108, 1290, 10.1002/bit.23059
Zambare, 2011, Bioprocessing of agricultural residues to ethanol utilizing a cellulolytic extremophile, Extremophiles, 15, 611, 10.1007/s00792-011-0391-2
Okamoto, 2011, Direct ethanol production from starch, wheat bran and rice straw by the white rot fungus Trametes hirsuta, Enzyme Microb Technol, 48, 273, 10.1016/j.enzmictec.2010.12.001
Tolonen, 2011, Proteome-wide systems analysis of a cellulosic biofuel-producing microbe, Mol Sys Biol, 6
Cai, 2011, Disruption of lactate dehydrogenase through homologous recombination to improve bioethanol production in Thermoanaerobacterium aotearoense, Enzyme Microb Technol, 48, 155, 10.1016/j.enzmictec.2010.10.006
Yao, 2010, Metabolic engineering to improve ethanol production in Thermoanaerobacter mathranii, Appl Microbiol Biotechnol, 88, 199, 10.1007/s00253-010-2703-3
Lee, 2011, Detoxification of woody hydrolyzates with activated carbon for bioconversion to ethanol by the thermophilic anaerobic bacterium Thermoanaerobacterium saccharolyticum, Biomass Bioenergy, 35, 626, 10.1016/j.biombioe.2010.10.021