Recent progress and remaining challenges in post-combustion CO2 capture using metal-organic frameworks (MOFs)
Tài liệu tham khảo
Hajilary, 2018, Evaluation of socio-economic factors on CO2 missions in Iran: factorial design and multivariable methods, J Clean Prod, 189, 10.1016/j.jclepro.2018.04.067
Zhang, 2013, MOFs for CO2 capture and separation from flue gas mixtures: the effect of multifunctional sites on their adsorption capacity and selectivity, Chem Commun, 49, 653, 10.1039/C2CC35561B
Liu, 2012, Progress in adsorption-based CO2 capture by metal–organic frameworks, Chem Soc Rev, 41, 2308, 10.1039/C1CS15221A
Li, 2011, Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks, Coord Chem Rev, 255, 1791, 10.1016/j.ccr.2011.02.012
Hester, 2009
Rochelle, 2009, Amine scrubbing for CO2 capture, Science, 325, 1652, 10.1126/science.1176731
Samanta, 2012, Post-combustion CO2 capture using solid sorbents: a review, Ind Eng Chem Res, 51, 1438, 10.1021/ie200686q
Yang, 2008, Progress in carbon dioxide separation and capture: a review, J Environ Sci, 20, 14, 10.1016/S1001-0742(08)60002-9
D'Alessandro, 2010, Carbon dioxide capture: prospects for new materials, Angew Chemie Int Ed, 49, 6058, 10.1002/anie.201000431
William, 2007, A review of the stern review on the economics of climate change, J Econ Lit, XLV, 686
Zhang, 2017, Effect of flow and module configuration on SO2 absorption by using membrane contactors, Glob Nest J, 19, 716
Rezakazemi, 2017, Hybrid systems: combining membrane and absorption technologies leads to more efficient acid gases (CO2 and H2 S) removal from natural gas, J CO2 Util, 18, 362, 10.1016/j.jcou.2017.02.006
Shirazian, 2012, Separation of CO 2 by single and mixed aqueous amine solvents in membrane contactors: fluid flow and mass transfer modeling, Eng Comput, 28, 189, 10.1007/s00366-011-0237-7
Fasihi, 2012, Computational fluid dynamics simulation of transport phenomena in ceramic membranes for SO2 separation, Math Comput Model, 56, 278, 10.1016/j.mcm.2012.01.010
2018, CFD modeling of CO2 capture by water-based nanofluids using hollow fiber membrane contactor, Int J Greenh Gas Control
Rezakazemi, 2019, CO2 absorption enhancement by water-based nanofluids of CNT and SiO2 using hollow-fiber membrane contactor, Sep Purif Technol, 210, 920, 10.1016/j.seppur.2018.09.005
Razavi, 2016, Simulation of CO2 absorption by solution of ammonium ionic liquid in hollow-fiber contactors, Chem Eng Process Process Intensif, 108, 27, 10.1016/j.cep.2016.07.001
Mesbah, 2018, Accurate prediction of miscibility of CO2 and supercritical CO2 in ionic liquids using machine learning, J CO2 Util, 25, 99, 10.1016/j.jcou.2018.03.004
Dashti, 2018, Estimating CH4 and CO2 solubilities in ionic liquids using computational intelligence approaches, J Mol Liq, 271, 661, 10.1016/j.molliq.2018.08.150
Soroush, 2018, A robust predictive tool for estimating CO2 solubility in potassium based amino acid salt solutions, Chin J Chem Eng, 10.1016/j.cjche.2017.10.002
Soroush, 2019, ANFIS modeling for prediction of CO 2 solubility in potassium and sodium based amino acid Salt solutions, J Environ Chem Eng, 7, 10.1016/j.jece.2019.102925
Walton, 2008, Understanding inflections and steps in carbon dioxide adsorption isotherms in metal-organic frameworks, J Am Chem Soc, 130, 406, 10.1021/ja076595g
Mueller, 2006, Metal–organic frameworks—prospective industrial applications, J Mater Chem, 16, 626, 10.1039/B511962F
Chae, 2004, A route to high surface area, porosity and inclusion of large molecules in crystals, Nature, 427, 523, 10.1038/nature02311
Kitagawa, 2004, Functional porous coordination polymers, Angew Chemie Int Ed, 43, 2334, 10.1002/anie.200300610
Rowsell, 2004, Hydrogen sorption in functionalized metal−organic frameworks, J Am Chem Soc, 126, 5666, 10.1021/ja049408c
Rowsell, 2006, Effects of functionalization, catenation, and variation of the metal oxide and organic linking units on the low-pressure hydrogen adsorption properties of metal−organic frameworks, J Am Chem Soc, 128, 1304, 10.1021/ja056639q
Ma, 2008, Metal-organic framework from an anthracene derivative containing nanoscopic cages exhibiting high methane uptake, J Am Chem Soc, 130, 1012, 10.1021/ja0771639
Li, 1999, Design and synthesis of an exceptionally stable and highly porous metal-organic framework, Nature, 402, 276, 10.1038/46248
Eddaoudi, 2002, Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage, Science, 295, 469, 10.1126/science.1067208
Howarth, 2016, Chemical, thermal and mechanical stabilities of metal–organic frameworks, Nat Rev Mater, 1, 15018, 10.1038/natrevmats.2015.18
Abrahams, 1994, Assembly of porphyrin building blocks into network structures with large channels, Nature, 369, 727, 10.1038/369727a0
Koppens, 2005, Control and detection of singlet-triplet mixing in a random nuclear field, Science, 309, 1346, 10.1126/science.1113719
Rezakazemi, 2014, State-of-the-art membrane based CO2 separation using mixed matrix membranes (MMMs): an overview on current status and future directions, Prog Polym Sci, 39, 817, 10.1016/j.progpolymsci.2014.01.003
Long, 2009, The pervasive chemistry of metal–organic frameworks, Chem Soc Rev, 38, 1213, 10.1039/b903811f
Tranchemontagne, 2009, Secondary building units, nets and bonding in the chemistry of metal–organic frameworks, Chem Soc Rev, 38, 1257, 10.1039/b817735j
Yaghi, 2003, Reticular synthesis and the design of new materials, Nature, 423, 705, 10.1038/nature01650
O'Keeffe, 2009, Design of MOFs and intellectual content in reticular chemistry: a personal view, Chem Soc Rev, 38, 1215, 10.1039/b802802h
Way, 2011, Sun-driven microbial synthesis of chemicals in space, Int J Astrobiol, 10, 359, 10.1017/S1473550411000218
Allen, 2016, Associations of cognitive function scores with carbon dioxide, ventilation, and volatile organic compound exposures in office workers: a controlled exposure study of green and conventional office environments, Environ Health Perspect, 124, 805, 10.1289/ehp.1510037
Lawson, 2019, Amine-functionalized MIL-101 monoliths for CO2 removal from enclosed environments, Energy Fuels, 33, 2399, 10.1021/acs.energyfuels.8b04508
Darunte, 2016, Direct air capture of CO2 using amine functionalized MIL-101(Cr), ACS Sustain Chem Eng, 4, 5761, 10.1021/acssuschemeng.6b01692
Chaemchuen, 2013, Metal–organic frameworks for upgrading biogas via CO2 adsorption to biogas green energy, Chem Soc Rev, 42, 9304, 10.1039/c3cs60244c
Tchalala, 2019, Fluorinated MOF platform for selective removal and sensing of SO2 from flue gas and air, Nat Commun, 10, 1328, 10.1038/s41467-019-09157-2
Clark, 2019, Highly defective UiO-66 materials for the adsorptive removal of perfluorooctanesulfonate, ACS Sustain Chem Eng, 7, 6619, 10.1021/acssuschemeng.8b05572
Liu, 2012, Recent advances in carbon dioxide capture with metal-organic frameworks, Greenh Gases Sci Technol, 2, 239, 10.1002/ghg.1296
Erucar, 2018, High-throughput molecular simulations of metal organic frameworks for CO2 separation: opportunities and challenges, Front Mater, 5, 4, 10.3389/fmats.2018.00004
Seoane, 2015, Metal–organic framework based mixed matrix membranes: a solution for highly efficient CO2 capture?, Chem Soc Rev, 44, 2421, 10.1039/C4CS00437J
Belmabkhout, 2016, Low concentration CO2 capture using physical adsorbents: are metal–organic frameworks becoming the new benchmark materials?, Chem Eng J, 296, 386, 10.1016/j.cej.2016.03.124
Yu, 2017, CO2 capture and separations using MOFs: computational and experimental studies, Chem Rev, 117, 9674, 10.1021/acs.chemrev.6b00626
Li, 2018, Recent advances in gas storage and separation using metal–organic frameworks, Mater Today, 21, 108, 10.1016/j.mattod.2017.07.006
Lin, 2017, Metal-organic frameworks for carbon dioxide capture and methane storage, Adv Energy Mater, 7, 10.1002/aenm.201601296
Hu, 2019, CO2 Capture in metal-organic framework adsorbents: an engineering perspective, Adv Sustain Syst, 3
Sumida, 2012, Carbon dioxide capture in metal–organic frameworks, Chem Rev, 112, 724, 10.1021/cr2003272
Trickett, 2017, The chemistry of metal–organic frameworks for CO2 capture, regeneration and conversion, Nat Rev Mater, 2, 17045, 10.1038/natrevmats.2017.45
Hu Z., Wang Y., Shah B.B., Zhao D. CO2 Capture in Metal-Organic Framework Adsorbents: An Engineering Perspective. Adv Sustain Syst 2019;3:1800080. doi:10.1002/adsu.201800080.
Ding, 2019, Carbon capture and conversion using metal–organic frameworks and MOF-based materials, Chem Soc Rev, 48, 2783, 10.1039/C8CS00829A
Wang, 2017, A review of post-combustion CO2 capture technologies from coal-fired power plants, Energy Proc, 114, 650, 10.1016/j.egypro.2017.03.1209
Zhang, 2020
Li, 2017, Recent advances in gas storage and separation using metal – organic frameworks, Mater Today, xx
Sohaib, 2020, Modeling pre-combustion CO2 capture with tubular membrane contactor using ionic liquids at elevated temperatures, Sep Purif Technol, 241, 10.1016/j.seppur.2020.116677
Ge, 2020, CO2 capture and separation of metal–organic frameworks, 2050, 5
Rezakazemi, 2011, CFD simulation of natural gas sweetening in a gas–liquid hollow-fiber membrane contactor, Chem Eng J, 168, 1217, 10.1016/j.cej.2011.02.019
Berger, 2011, Comparing physisorption and chemisorption solid sorbents for use separating CO2 from flue gas using temperature swing adsorption, Energy Proc, 4, 562, 10.1016/j.egypro.2011.01.089
Xiang, 2012, Microporous metal-organic framework with potential for carbon dioxide capture at ambient conditions, Nat Commun, 3, 954, 10.1038/ncomms1956
Zhou, 2012, Introduction to metal–organic frameworks, Chem Rev, 112, 673, 10.1021/cr300014x
Qiao, 2019, [Zn4O] Cluster-based metal-organic frameworks as catalysts for conversion of CO2, Chinese J Chem, 37, 474, 10.1002/cjoc.201800587
Hou, 2019, A noble-metal-free metal-organic framework (MOF) catalyst for the highly efficient conversion of CO2 with propargylic alcohols, Angew Chem, 131, 587, 10.1002/ange.201811506
Sun, 2019, A stable mesoporous Zr-based metal organic framework for highly efficient CO2 conversion, Inorg Chem, 58, 7480, 10.1021/acs.inorgchem.9b00701
Qian, 2013, Structure stability of metal-organic framework MIL-53 (Al) in aqueous solutions, Int J Hydrog Energy, 38, 16710, 10.1016/j.ijhydene.2013.07.054
Xiang, 2010, Multiscale simulation and modelling of adsorptive processes for energy gas storage and carbon dioxide capture in porous coordination frameworks, Energy Environ Sci, 3, 1469, 10.1039/c0ee00049c
Mutyala, 2019, CO2 capture and adsorption kinetic study of amine-modified MIL-101 (Cr), Chem Eng Res Des, 143, 241, 10.1016/j.cherd.2019.01.020
Yang, 2010, Synthesis of metal–organic framework MIL-101 in TMAOH-Cr(NO3)3-H2BDC-H2O and its hydrogen-storage behavior, Microporous Mesoporous Mater, 130, 174, 10.1016/j.micromeso.2009.11.001
Wang, 2019, A new microporous metal-organic framework with a novel trinuclear nickel cluster for selective CO2 adsorption, Inorg Chem Commun, 104, 78, 10.1016/j.inoche.2019.03.029
Yang, 2019, A Ni3O-cluster based porous MOF for catalytic conversion of CO2 to cyclic carbonates, J Solid State Chem, 276, 190, 10.1016/j.jssc.2019.05.010
Liao, 2019, Acidity and Cd 2+ fluorescent sensing and selective CO2 adsorption by a water-stable Eu-MOF, Dalt Trans, 48, 4489, 10.1039/C9DT00539K
Wang, 2017, Lanthanide-based metal-organic framework nanosheets with unique fluorescence quenching properties for two-color intracellular adenosine imaging in living cells, NPG Asia Mater, 9, 1, 10.1038/am.2017.7
Kurisingal, 2019, Binary metal-organic frameworks: catalysts for the efficient solvent-free CO2 fixation reaction via cyclic carbonates synthesis, Appl Catal A Gen, 571, 1, 10.1016/j.apcata.2018.11.035
Xiang, 2019, Enhanced cycloaddition of CO2 to epichlorohydrin over zeolitic imidazolate frameworks with mixed linkers under solventless and co-catalyst-free condition, Catal Today, 0
Agarwal, 2019, Flexible Zn-MOF exhibiting selective CO2 adsorption and efficient lewis acidic catalytic activity, Cryst Growth Des, 19, 2010, 10.1021/acs.cgd.8b01462
Liu, 2019, Photosensitizing single-site metal−organic framework enabling visible-light-driven CO2 reduction for syngas production, Appl Catal B Environ, 245, 496, 10.1016/j.apcatb.2019.01.014
Li, 2019, Specific K + binding sites as CO2 traps in a porous MOF for enhanced CO2 selective sorption, Small, 15
Sun, 2019, MOF-801 incorporated PEBA mixed-matrix composite membranes for CO2 capture, Sep Purif Technol, 217, 229, 10.1016/j.seppur.2019.02.036
Yang, 2012, CO2 capture and conversion using Mg-MOF-74 prepared by a sonochemical method, Energy Environ Sci, 5, 6465, 10.1039/C1EE02234B
ul, 2015, Structural stability of metal organic frameworks in aqueous media – Controlling factors and methods to improve hydrostability and hydrothermal cyclic stability, Microporous Mesoporous Mater, 201, 61, 10.1016/j.micromeso.2014.09.034
Park, 2006, Exceptional chemical and thermal stability of zeolitic imidazolate frameworks, Proc Natl Acad Sci, 103, 10186, 10.1073/pnas.0602439103
Burtch, 2014, Water stability and adsorption in metal–organic frameworks, Chem Rev, 114, 10575, 10.1021/cr5002589
Coe, 1995, Structural effects on the adsorptive properties of molecular sieves for air separation, 213
Nouar, 2008, Supermolecular building blocks (SBBs) for the design and synthesis of highly porous metal-organic frameworks, J Am Chem Soc, 130, 1833, 10.1021/ja710123s
Leus, 2016, Systematic study of the chemical and hydrothermal stability of selected “stable” metal organic frameworks, Microporous Mesoporous Mater, 226, 110, 10.1016/j.micromeso.2015.11.055
Kang, 2011, Chemical and thermal stability of isotypic metal–organic frameworks: effect of metal ions, Chem – A Eur J, 17, 6437, 10.1002/chem.201100316
Kandiah, 2010, Synthesis and stability of tagged UiO-66 Zr-MOFs, Chem Mater, 22, 6632, 10.1021/cm102601v
Jhung, 2012, Analogous porous metal–organic frameworks: synthesis, stability and application in adsorption, CrystEngComm, 14, 7099, 10.1039/c2ce25760b
Leus, 2016, Systematic study of the chemical and hydrothermal stability of selected “stable” metal organic frameworks, Microporous Mesoporous Mater, 226, 110, 10.1016/j.micromeso.2015.11.055
Devic, 2014, High valence 3p and transition metal based MOFs, Chem Soc Rev, 43, 6097, 10.1039/C4CS00081A
Mondloch, 2013, Vapor-phase metalation by atomic layer deposition in a metal–organic framework, J Am Chem Soc, 135, 10294, 10.1021/ja4050828
Canivet, 2014, Water adsorption in MOFs: fundamentals and applications, Chem Soc Rev, 43, 5594, 10.1039/C4CS00078A
Gu, 2010, MOF-5 metal−organic framework as sorbent for in-field sampling and preconcentration in combination with thermal desorption GC/MS for determination of atmospheric formaldehyde, Anal Chem, 82, 1365, 10.1021/ac902450f
Hu, 2015, Ionized Zr-MOFs for highly efficient post-combustion CO2 capture, Chem Eng Sci, 124, 61, 10.1016/j.ces.2014.09.032
Hester, 2016, On thermal stability and catalytic reactivity of Zr-based metal – organic framework (UiO-67) encapsulated Pt catalysts, J Catal, 340, 85, 10.1016/j.jcat.2016.05.003
Katz, 2015, Exploiting parameter space in MOFs: a 20-fold enhancement of phosphate-ester hydrolysis with UiO-66-NH 2, Chem Sci, 6, 2286, 10.1039/C4SC03613A
Tan, 2011, Mechanical properties of hybrid inorganic–organic framework materials: establishing fundamental structure–property relationships, Chem Soc Rev, 40, 1059, 10.1039/c0cs00163e
Qian, 2013, Structure stability of metal-organic framework MIL-53 (Al) in aqueous solutions, Int J Hydrog Energy, 38, 16710, 10.1016/j.ijhydene.2013.07.054
Ren, 2014, Modulated synthesis of chromium-based metal-organic framework (MIL-101) with enhanced hydrogen uptake, Int J Hydrog Energy, 39, 12018, 10.1016/j.ijhydene.2014.06.019
Lv D., Chen J., Chen Y., Liu Z., Xu Y., Duan C. et al. Moisture stability of ethane-selective Ni(II), Fe(III), Zr(IV)-based metalorganic frameworks. AIChE J 2019;65. doi:10.1002/aic.16616.
Mondloch, 2014, Are Zr 6 -based MOFs water stable? Linker hydrolysis vs. capillary-force-driven channel collapse, Chem Commun, 50, 8944, 10.1039/C4CC02401J
Henninger, 2012, MOFs for use in adsorption heat pump processes, Eur J Inorg Chem, 2012, 2625, 10.1002/ejic.201101056
Nugent, 2013, Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation, Nature, 495, 80, 10.1038/nature11893
Fracaroli, 2014, Metal–organic frameworks with precisely designed interior for carbon dioxide capture in the presence of water, J Am Chem Soc, 136, 8863, 10.1021/ja503296c
Li, 2018, Stable aluminum metal–organic frameworks (Al-MOFs) for balanced CO2 and water selectivity, ACS Appl Mater Interfaces, 10, 3160, 10.1021/acsami.7b17026
Liu, 2011, Stability effects on CO2 adsorption for the DOBDC series of metal–organic frameworks, Langmuir, 27, 11451, 10.1021/la201774x
Liu, 2015, Topology-guided design and syntheses of highly stable mesoporous porphyrinic zirconium metal–organic frameworks with high surface area, J Am Chem Soc, 137, 413, 10.1021/ja5111317
Kalidindi, 2015, Chemical and structural stability of zirconium-based metal-organic frameworks with large three-dimensional pores by linker engineering, Angew Chem Int Ed, 54, 221, 10.1002/anie.201406501
Low, 2009, Virtual high throughput screening confirmed experimentally: porous coordination polymer hydration, J Am Chem Soc, 131, 15834, 10.1021/ja9061344
Schoenecker, 2012, Effect of water adsorption on retention of structure and surface area of metal–organic frameworks, Ind Eng Chem Res, 51, 6513, 10.1021/ie202325p
Milner, 2017, A diaminopropane-appended metal–organic framework enabling efficient CO2 capture from coal flue gas via a mixed adsorption mechanism, J Am Chem Soc, 139, 13541, 10.1021/jacs.7b07612
Hong, 2009, Porous chromium terephthalate MIL-101 with coordinatively unsaturated sites: surface functionalization, encapsulation, sorption and catalysis, Adv Funct Mater, 19, 1537, 10.1002/adfm.200801130
Wittmann, 2015, Enhancing the water stability of Al-MIL-101-NH 2 via postsynthetic modification, Chem – A Eur J, 21, 314, 10.1002/chem.201404654
Bezverkhyy, 2014, MIL-53(Al) under reflux in water: formation of γ-AlO(OH) shell and H2BDC molecules intercalated into the pores, Microporous Mesoporous Mater, 183, 156, 10.1016/j.micromeso.2013.09.015
DeCoste, 2013, Stability and degradation mechanisms of metal–organic frameworks containing the Zr6O4(OH)4 secondary building unit, J Mater Chem A, 1, 5642, 10.1039/c3ta10662d
Yang, 2007, Fluorous metal−organic frameworks for high-density gas adsorption, J Am Chem Soc, 129, 15454, 10.1021/ja0775265
Chen, 2019, Highly efficient synthesis of a moisture-stable nitrogen-abundant metal–organic framework (MOF) for large-scale CO2 capture, Ind Eng Chem Res, 58, 1773, 10.1021/acs.iecr.8b05239
Katsenis, 2015, In situ X-ray diffraction monitoring of a mechanochemical reaction reveals a unique topology metal-organic framework, Nat Commun, 6, 6662, 10.1038/ncomms7662
Coudert, 2015, Responsive metal–organic frameworks and framework materials: under pressure, taking the heat, in the spotlight, with friends, Chem Mater, 27, 1905, 10.1021/acs.chemmater.5b00046
Wu, 2013, Exceptional mechanical stability of highly porous zirconium metal–organic framework UiO-66 and its important implications, J Phys Chem Lett, 4, 925, 10.1021/jz4002345
Van de Voorde, 2015, Improving the mechanical stability of zirconium-based metal–organic frameworks by incorporation of acidic modulators, J Mater Chem A, 3, 1737, 10.1039/C4TA06396A
Bennett, 2015, Mechanical properties of zeolitic metal–organic frameworks: mechanically flexible topologies and stabilization against structural collapse, CrystEngComm, 17, 286, 10.1039/C4CE02145B
Samanta, 2006, Theoretical assessment of the elastic constants and hydrogen storage capacity of some metal-organic framework materials, J Chem Phys, 125, 10.1063/1.2337287
Tan, 2012, Exceptionally low shear modulus in a prototypical imidazole-based metal-organic framework, Phys Rev Lett, 108, 10.1103/PhysRevLett.108.095502
Zhou, 2006, Lattice dynamics of metal-organic frameworks: neutron inelastic scattering and first-principles calculations, Phys Rev B, 74, 10.1103/PhysRevB.74.180301
Santos, 2019, Effect of high pressure CO2 sorption on the stability of metalorganic framework MOF-177 at different temperatures, J Solid State Chem, 269, 320, 10.1016/j.jssc.2018.09.046
Adams, 2010, Metal organic framework mixed matrix membranes for gas separations, Microporous Mesoporous Mater, 131, 13, 10.1016/j.micromeso.2009.11.035
Schoedel, 2016, The role of metal–organic frameworks in a carbon-neutral energy cycle, Nat Energy, 1, 16034, 10.1038/nenergy.2016.34
Zornoza, 2013, Metal organic framework based mixed matrix membranes: an increasingly important field of research with a large application potential, Microporous Mesoporous Mater, 166, 67, 10.1016/j.micromeso.2012.03.012
Ben-Mansour, 2018, An efficient temperature swing adsorption (TSA) process for separating CO2 from CO2/N2 mixture using Mg-MOF-74, Energy Convers Manag, 156, 10, 10.1016/j.enconman.2017.11.010
Rajagopalan, 2018, The effect of nitrogen adsorption on vacuum swing adsorption based post-combustion CO2 capture, Int J Greenh Gas Control, 78, 437, 10.1016/j.ijggc.2018.09.002
Maring, 2013, A new simplified pressure/vacuum swing adsorption model for rapid adsorbent screening for CO2 capture applications, Int J Greenh Gas Control, 15, 16, 10.1016/j.ijggc.2013.01.009
Adhikari, 2016, Improving CO2 adsorption capacities and CO2/N2 separation efficiencies of MOF-74 (Ni, Co) by doping palladium-containing activated carbon, Chem Eng J, 284, 1348, 10.1016/j.cej.2015.09.086
Pai, 2019, Separation and purification technology evaluation of diamine-appended metal-organic frameworks for post-combustion CO2 capture by vacuum swing adsorption, Sep Purif Technol, 211, 540, 10.1016/j.seppur.2018.10.015
Dasgupta, 2012, CO2 recovery from mixtures with nitrogen in a vacuum swing adsorber using metal organic framework adsorbent : a comparative study, Int J Greenh Gas Control, 7, 225, 10.1016/j.ijggc.2011.10.007
Aaron, 2005, Separation of CO2 from flue gas: a review, Sep Sci Technol, 40, 321, 10.1081/SS-200042244
Chen, 2019, Microwave-assisted rapid synthesis of well-shaped MOF-74 (Ni) for CO2 efficient capture, Inorg Chem, 58, 2717, 10.1021/acs.inorgchem.8b03271
Banerjee, 2009, Control of pore size and functionality in isoreticular zeolitic imidazolate frameworks and their carbon dioxide selective capture properties, J Am Chem Soc, 131, 3875, 10.1021/ja809459e
Niu, 2008, Copper-catalyzed coupling of tertiary aliphatic amines with terminal alkynes to propargylamines via C−H activation, J Org Chem, 73, 3961, 10.1021/jo800279j
Bastin, 2008, A microporous metal−organic framework for separation of CO2/N2 and CO2 /CH4 by Fixed-bed adsorption, J Phys Chem C, 112, 1575, 10.1021/jp077618g
Chen, 2007, A triply interpenetrated microporous metal−organic framework for selective sorption of gas molecules, Inorg Chem, 46, 8490, 10.1021/ic7014034
Llewellyn, 2008, High uptakes of CO2 and CH4 in mesoporous metal–organic frameworks MIL-100 and MIL-101, Langmuir, 24, 7245, 10.1021/la800227x
Dietzel, 2009, Application of metal–organic frameworks with coordinatively unsaturated metal sites in storage and separation of methane and carbon dioxide, J Mater Chem, 19, 7362, 10.1039/b911242a
Qianmei, 2017, Carbon dioxide adsorption over amine-functionalized MOFs assessing the feasibility of using the heat demand-outdoor temperature function for a long-term district heat demand forecast, Energy Proc, 142, 2152
Mutyala, 2019, Chemical engineering research and design CO2 capture and adsorption kinetic study of amine-modified MIL-101 (Cr), Chem Eng Res Des, 143, 241, 10.1016/j.cherd.2019.01.020
Wang R., Mi J., Dong X., Liu X., Lv Y., Du J. et al. Creating a Polar Surface in Carbon Frameworks from Single-Source MetalOrganic Frameworks for Advanced CO2 Uptake and LithiumSulfur Batteries. Chem Mater 2019;31:4258–4266. doi:10.1021/acs.chemmater.9b01264.
Demessence, 2009, Strong CO2 binding in a water-stable, triazolate-bridged metal−organic framework functionalized with ethylenediamine, J Am Chem Soc, 131, 8784, 10.1021/ja903411w
Couck, 2009, An amine-functionalized MIL-53 metal−organic framework with large separation power for CO2 and CH4, J Am Chem Soc, 131, 6326, 10.1021/ja900555r
Zheng, 2011, Enhanced CO2 binding affinity of a high-uptake rht-type metal−organic framework decorated with acylamide groups, J Am Chem Soc, 133, 748, 10.1021/ja110042b
Bloch, 2010, Metal insertion in a microporous metal−organic framework lined with 2,2′-bipyridine, J Am Chem Soc, 132, 14382, 10.1021/ja106935d
Forgan R.S. The surface chemistry of metalorganic frameworks and their applications. Dalt Trans 2019;48:9037–9042. doi:10.1039/C9DT01710K.
Hu, 2018, High CO2 adsorption capacities in UiO type MOFs comprising heterocyclic ligand, Microporous Mesoporous Mater, 256, 25, 10.1016/j.micromeso.2017.07.051
Asgari, 2020, Understanding how ligand functionalization influences CO2 and N2 adsorption in a sodalite metal–organic framework, Chem Mater, 10.1021/acs.chemmater.9b04631
Kazemi, 2018, Carbon dioxide capture in MOFs: the effect of ligand functionalization, Polyhedron, 154, 236, 10.1016/j.poly.2018.07.042
Wang, 2018, Three Cd(II) MOFs with different functional groups: selective CO2 capture and metal ions detection, Inorg Chem, 57, 5232, 10.1021/acs.inorgchem.8b00272
He, 2019, Incorporation of bifunctional aminopyridine into an NbO-type MOF for the markedly enhanced adsorption of CO2 and C2H2 over CH4, Inorg Chem Front, 6, 1177, 10.1039/C9QI00195F
Wang, 2018, Three Cd(II) MOFs with different functional groups: selective CO2 capture and metal ions detection, Inorg Chem, 57, 5232, 10.1021/acs.inorgchem.8b00272
Belmabkhout, 2018, Natural gas upgrading using a fluorinated MOF with tuned H2S and CO2 adsorption selectivity, Nat Energy, 3, 1059, 10.1038/s41560-018-0267-0
Belmabkhout, 2011, Simultaneous adsorption of H2S and CO2 on triamine-grafted pore-expanded mesoporous MCM-41 silica, Energy Fuels, 25, 1310, 10.1021/ef1015704
Zhao, 2013, The hydrolysis of carbonyl sulfide at low temperature: a review, Sci World J
Kadijani, 2014, Adsorptive desulfurization of liquefied petroleum gas for carbonyl sulfide removal, Open J Chem Eng Sci, 1, 79, 10.15764/OJCES.2014.01006
Tsai, 2001, Removal of H2S from exhaust gas by use of alkaline activated carbon, Adsorption, 7, 357, 10.1023/A:1013142405297
Bhatt, 2016, A fine-tuned fluorinated MOF addresses the needs for trace CO2 removal and air capture using physisorption, J Am Chem Soc, 138, 9301, 10.1021/jacs.6b05345
Shekhah, 2015, A facile solvent-free synthesis route for the assembly of a highly CO2 selective and H2S tolerant NiSIFSIX metal–organic framework, Chem Commun, 51, 13595, 10.1039/C5CC04487A
Guillerm, 2018, Postsynthetic selective ligand cleavage by solid–gas phase ozonolysis fuses micropores into mesopores in metal–organic frameworks, J Am Chem Soc, 140, 15022, 10.1021/jacs.8b09682
Criegee, 1975, Mechanism of ozonolysis, Angew Chem Int Ed Engl, 14, 745, 10.1002/anie.197507451
Marshall, 2016, Postsynthetic modification of zirconium metal-organic frameworks, Eur J Inorg Chem, 2016, 4310, 10.1002/ejic.201600394
Rezakazemi, 2012, Sorption properties of hydrogen-selective PDMS/zeolite 4A mixed matrix membrane, Int J Hydrog Energy, 37, 17275, 10.1016/j.ijhydene.2012.08.109
Rostamizadeh, 2013, Gas permeation through H2-selective mixed matrix membranes: experimental and neural network modeling, Int J Hydrog Energy, 38, 1128, 10.1016/j.ijhydene.2012.10.069
Rezakazemi, 2012, Hydrogen separation and purification using crosslinkable PDMS/zeolite A nanoparticles mixed matrix membranes, Int J Hydrog Energy, 37, 14576, 10.1016/j.ijhydene.2012.06.104
Rezakazemi, 2013, Gas sorption in H2 -selective mixed matrix membranes: experimental and neural network modeling, Int J Hydrog Energy, 38, 14035, 10.1016/j.ijhydene.2013.08.062
Rezakazemi, 2017, H2 -selective mixed matrix membranes modeling using ANFIS, PSO-ANFIS, GA-ANFIS, Int J Hydrog Energy, 42, 15211, 10.1016/j.ijhydene.2017.04.044
Dashti, 2018, Accurate prediction of solubility of gases within H2 -selective nanocomposite membranes using committee machine intelligent system, Int J Hydrog Energy, 43, 6614, 10.1016/j.ijhydene.2018.02.046
2018, Polyurethane-SAPO-34 mixed matrix membrane for CO2/CH4 and CO2/N2 separation, Chin J Chem Eng
Riasat Harami, 2019, Mass transfer through PDMS/zeolite 4A MMMs for hydrogen separation: molecular dynamics and grand canonical Monte Carlo simulations, Int Commun Heat Mass Transf, 108, 10.1016/j.icheatmasstransfer.2019.05.005
Zhang, 2018, Modeling of a CO2-piperazine-membrane absorption system, Chem Eng Res Des, 131, 375, 10.1016/j.cherd.2017.11.024
Asadollahzadeh, 2018, Simulation of nonporous polymeric membranes using CFD for bioethanol purification, Macromol Theory Simul, 27, 10.1002/mats.201700084
Mirqasemi, 2020, Zeolitic imidazolate framework membranes for gas and water purification, Environ Chem Lett, 18, 1, 10.1007/s10311-019-00933-6
Rezakazemi, 2018, Thermally stable polymers for advanced high-performance gas separation membranes, Prog Energy Combust Sci, 66, 1, 10.1016/j.pecs.2017.11.002
Rezakazemi, 2015, Synergistic interactions between POSS and fumed silica and their effect on the properties of crosslinked PDMS nanocomposite membranes, RSC Adv, 5, 82460, 10.1039/C5RA13609A
Rezakazemi, 2016, Synthesis and gas transport properties of crosslinked poly(dimethylsiloxane) nanocomposite membranes using octatrimethylsiloxy POSS nanoparticles, J Nat Gas Sci Eng, 30, 10, 10.1016/j.jngse.2016.01.033
Riasat Harami, 2019, Sorption in mixed matrix membranes: experimental and molecular dynamic simulation and grand canonical monte carlo method, J Mol Liq, 282, 566, 10.1016/j.molliq.2019.03.047
Ahmad, 2018, Recent advances in poly (Amide-B-Ethylene) based membranes for carbon dioxide (CO2) Capture : a review recent advances in poly (Amide-B-Ethylene) based membranes for carbon, Polym Plast Technol Eng, 00, 1
Fan L., Kang Z., Shen Y., Wang S., Zhao H., Sun H. et al. Mixed Matrix Membranes Based on MetalOrganic Frameworks with Tunable Pore Size for CO2 Separation. Cryst Growth Des 2018;18:4365–4371. doi:10.1021/acs.cgd.8b00307.
Liu, 2018, Enhanced CO2/CH4 separation performance of a mixed matrix membrane based on tailored MOF-polymer formulations, Adv Sci, 5, 2, 10.1002/advs.201800982
Sabetghadam A., Liu X., Benzaqui M., Gkaniatsou E., Orsi A., Lozinska M.M. et al. Influence of Filler Pore Structure and Polymer on the Performance of MOF-Based Mixed-Matrix Membranes for CO2 Capture. Chem - A Eur J 2018;24:7949–7956. doi:10.1002/chem.201800253.
Shen, 2016, UiO-66-polyether block amide mixed matrix membranes for CO2 separation, J Memb Sci, 513, 155, 10.1016/j.memsci.2016.04.045
Aykac Ozen, 2019, Gas separation characteristic of mixed matrix membrane prepared by MOF-5 including different metals, Sep Purif Technol, 211, 514, 10.1016/j.seppur.2018.09.052
Cheng, 2019, Mixed matrix membranes containing MOF@COF hybrid fillers for efficient CO2/CH4 separation, J Memb Sci, 573, 97, 10.1016/j.memsci.2018.11.060
Sabetghadam, 2019, Thin mixed matrix and dual layer membranes containing metal-organic framework nanosheets and Polyactive™ for CO2 capture, J Memb Sci, 570–571, 226, 10.1016/j.memsci.2018.10.047
Prasetya, 2018, A new and highly robust light-responsive Azo-UiO-66 for highly selective and low energy post-combustion CO2 capture and its application in a mixed matrix membrane for CO2/N2 separation, J Mater Chem A, 6, 16390, 10.1039/C8TA03553A
Thür, 2019, Bipyridine-based UiO-67 as novel filler in mixed-matrix membranes for CO2-selective gas separation, J Memb Sci, 576, 78, 10.1016/j.memsci.2019.01.016
Li, 2019, Facile synthesis of amine-functionalized MOFs incorporated polyimide MMMs with enhanced CO2 permselectivity, ChemistrySelect, 4, 2368, 10.1002/slct.201803944
Zhang, 2019, In situ generation of an N-heterocyclic carbene functionalized metal–organic framework by postsynthetic ligand exchange: efficient and selective hydrosilylation of CO2, Angew Chem, 131, 2870, 10.1002/ange.201813064
Guo, 2019, A novel 2D Cu(II)-MOF as a heterogeneous catalyst for the cycloaddition reaction of epoxides and CO2 into cyclic carbonates, J Mol Struct, 1184, 557, 10.1016/j.molstruc.2019.02.076
Crake, 2019, The effect of materials architecture in TiO2/MOF composites on CO2 photoreduction and charge transfer, Small, 15
Wu, 2019, Ruthenium complexes immobilized on an azolium based metal organic framework for highly efficient conversion of CO2 into formic acid, ChemCatChem, 11, 1256, 10.1002/cctc.201801701
Wang, 2019, In-situ incorporation of Copper(II) porphyrin functionalized zirconium MOF and TiO2 for efficient photocatalytic CO2 reduction, Sci Bull, 64, 926, 10.1016/j.scib.2019.05.012
Kim, 2019, Metal–organic framework-mediated strategy for enhanced methane production on copper nanoparticles in electrochemical CO2 reduction, Electrochim Acta, 306, 28, 10.1016/j.electacta.2019.03.101
Han, 2019, Noble metal (Pt, Au@Pd) nanoparticles supported on metal organic framework (MOF-74) nanoshuttles as high-selectivity CO2 conversion catalysts, J Catal, 370, 70, 10.1016/j.jcat.2018.12.005
Yan, 2019, Synthesis of porous ZnMn2O4 flower-like microspheres by using MOF as precursors and its application on photoreduction of CO2 into CO, Appl Surf Sci, 465, 383, 10.1016/j.apsusc.2018.09.211
Liu, 2019, Anchoring Co II ions into a thiol-laced metal–organic framework for efficient visible-light-driven conversion of CO2 into CO, ChemSusChem, 12, 2166, 10.1002/cssc.201900338
Wang, 2019, Monometallic catalytic models hosted in stable metal–organic frameworks for tunable CO2 photoreduction, ACS Catal, 9, 1726, 10.1021/acscatal.8b04887
Li, 2019, Adenine components in biomimetic metal–organic frameworks for efficient CO2 photoconversion, Angew Chem, 131, 5280, 10.1002/ange.201814729
Hou, 2019, A noble-metal-free metal-organic framework (MOF) catalyst for the highly efficient conversion of CO2 with propargylic alcohols, Angew Chem Int Ed, 58, 577, 10.1002/anie.201811506
Mengting, 2019, Applicability of BaTiO3/graphene oxide (GO) composite for enhanced photodegradation of methylene blue (MB) in synthetic wastewater under UV–vis irradiation, Environ Pollut, 255, 10.1016/j.envpol.2019.113182
Alkhatib, 2020, Metal-organic frameworks for photocatalytic CO2 reduction under visible radiation: a review of strategies and applications, Catal Today, 340, 209, 10.1016/j.cattod.2018.09.032
Alvaro, 2007, Semiconductor behavior of a metal-organic framework (MOF), Chem – A Eur J, 13, 5106, 10.1002/chem.200601003
Zhang, 2014, Metal–organic frameworks for artificial photosynthesis and photocatalysis, Chem Soc Rev, 43, 5982, 10.1039/C4CS00103F
Zhou, 2020, A leaf-branch TiO2/carbon@MOF composite for selective CO2 photoreduction, Appl Catal B Environ, 264, 10.1016/j.apcatb.2019.118519
Hu, 2020, In situ fabrication of amorphous TiO2/NH2-MIL-125(Ti) for enhanced photocatalytic CO2 into CH4 with H2O under visible-light irradiation, J Colloid Interface Sci, 560, 857, 10.1016/j.jcis.2019.11.003
Chen, 2019, A simple strategy for engineering heterostructures of Au nanoparticle-loaded metal–organic framework nanosheets to achieve plasmon-enhanced photocatalytic CO2 conversion under visible light, J Mater Chem A, 7, 11355, 10.1039/C9TA01840A
Li, 2019, Adenine components in biomimetic metal-organic frameworks for efficient CO2 photoconversion, Angew Chem Int Ed, 58, 5226, 10.1002/anie.201814729
Chen, 2020, Integration of enzymes and photosensitizers in a hierarchical mesoporous metal–organic framework for light-driven CO2 reduction, J Am Chem Soc, 142, 1768, 10.1021/jacs.9b12828
Mu, 2020, Electrostatic charge transfer for boosting the photocatalytic CO2 reduction on metal centers of 2D MOF/rGO heterostructure, Appl Catal B Environ, 262, 10.1016/j.apcatb.2019.118144
Gao, 2018, Heterogeneous single-atom catalyst for visible-light-driven high-turnover CO2 reduction: the role of electron transfer, Adv Mater, 30, 10.1002/adma.201704624
Wu, 2019, Encapsulating perovskite quantum dots in iron-based metal-organic frameworks (MOFs) for Efficient photocatalytic CO2 reduction, Angew Chem Int Ed, 58, 9491, 10.1002/anie.201904537
Ding, 2019, Impregnation of semiconductor CdS NPs in MOFs cavities via double solvent method for effective photocatalytic CO2 conversion, J Catal, 375, 21, 10.1016/j.jcat.2019.05.015
Wei, 2019, Different functional group modified zirconium frameworks for the photocatalytic reduction of carbon dioxide, Dalt Trans, 48, 8221, 10.1039/C9DT01767D
Dao, 2019, Solvent-free photoreduction of CO2 to CO catalyzed by Fe-MOFs with superior selectivity, Inorg Chem, 58, 8517, 10.1021/acs.inorgchem.9b00824
Sun, 2020, Electrocatalytic reduction of carbon dioxide: opportunities with heterogeneous molecular catalysts, Energy Environ Sci, 10.1039/C9EE03660A
Lee, 2020, Aluminum metal–organic framework triggers carbon dioxide reduction activity, ACS Appl Energy Mater
Dou, 2019, Boosting electrochemical CO2 reduction on metal-organic frameworks via ligand doping, Angew Chemie Int Ed, 58, 4041, 10.1002/anie.201814711
Yang, 2020, Covalently anchoring cobalt phthalocyanine on zeolitic imidazolate frameworks for efficient carbon dioxide electroreduction, CrystEngComm, 10.1039/C9CE01517E
Tan, 2019, Restructuring of Cu2O to Cu2O@Cu-metal–organic frameworks for selective electrochemical reduction of CO2, ACS Appl Mater Interfaces, 11, 9904, 10.1021/acsami.8b19111
Albo, 2019, Cu/Bi metal-organic framework-based systems for an enhanced electrochemical transformation of CO2 to alcohols, J CO2 Util, 33, 157, 10.1016/j.jcou.2019.05.025
Xin, 2020, Metallocene implanted metalloporphyrin organic framework for highly selective CO2 electroreduction, Nano Energy, 67, 10.1016/j.nanoen.2019.104233
Rezakazemi, 2018, Computational simulation of mass transfer in molecular separation using microporous polymeric membranes, Chem Eng Technol, 41, 1975, 10.1002/ceat.201800082
Lesch D.A. Carbon Dioxide Removal from Flue Gas Using Microporous Metal Organic Frameworks. United States: N. p., 2010. Web. doi:10.2172/1003992.
DeSantis, 2017, Techno-economic analysis of metal–organic frameworks for hydrogen and natural gas storage, Energy Fuels, 31, 2024, 10.1021/acs.energyfuels.6b02510
Mason, 2011, Evaluating metal–organic frameworks for post-combustion carbon dioxide capture via temperature swing adsorption, Energy Environ Sci, 4, 3030, 10.1039/c1ee01720a
McDonald, 2015, Cooperative insertion of CO2 in diamine-appended metal-organic frameworks, Nature, 519, 303, 10.1038/nature14327
Weiland, 1997, Heat capacity of aqueous monoethanolamine, diethanolamine, N-Methyldiethanolamine, and N-methyldiethanolamine-based blends with carbon dioxide, J Chem Eng Data, 42, 1004, 10.1021/je960314v
Queen, 2014, Comprehensive study of carbon dioxide adsorption in the metal–organic frameworks M2 (dobdc) (M = Mg, Mn, Fe, Co, Ni, Cu, Zn), Chem Sci, 5, 4569, 10.1039/C4SC02064B
Jiao, 2015, Tuning the kinetic water stability and adsorption interactions of Mg-MOF-74 by partial substitution with Co or Ni, Ind Eng Chem Res, 54, 12408, 10.1021/acs.iecr.5b03843
McDonald, 2012, Capture of carbon dioxide from air and flue gas in the alkylamine-appended metal–organic framework mmen-Mg 2 (dobpdc), J Am Chem Soc, 134, 7056, 10.1021/ja300034j
Su, 2017, Postsynthetic functionalization of Mg-MOF-74 with tetraethylenepentamine: structural characterization and enhanced CO2 adsorption, ACS Appl Mater Interfaces, 9, 11299, 10.1021/acsami.7b02471
Danaci, 2020, Exploring the limits of adsorption-based CO2 capture using MOFs with PVSA – from molecular design to process economics, Mol Syst Des Eng, 5, 212, 10.1039/C9ME00102F
Zhang, 2018, The fixation of carbon dioxide with epoxides catalyzed by cation-exchanged metal-organic framework, Microporous Mesoporous Mater, 258, 55, 10.1016/j.micromeso.2017.08.013
Calleja, 2010, Hydrogen adsorption over Zeolite-like MOF materials modified by ion exchange, Int J Hydrog Energy, 35, 9916, 10.1016/j.ijhydene.2010.02.114