Recent progress and future trends on damage identification methods for bridge structures

Yonghui An1, Eleni Chatzi2, Sung‐Han Sim3, Simon Laflamme4, Bartłomiej Blachowski5, Jinping Ou1
1Department of Civil Engineering, State Key Laboratory of Coastal and Offshore Engineering Dalian University of Technology Dalian China
2Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zurich, Switzerland
3School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
4Department of Civil, Construction, and Environmental Engineering, Iowa State University, Ames, Iowa, USA
5Department of Intelligent Technologies, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland

Tóm tắt

Từ khóa


Tài liệu tham khảo

10.1088/1361-6501/28/1/014011

10.1098/rsta.2006.1925

SimSH SpencerBF.Decentralized identification and multimetric monitoring of civil infrastructure using smart sensors.Newmark Structural Laboratory Report Series2015; University of Illinois at Urbana‐Champaign Report 38.

10.1088/0964-1726/23/8/085014

AdamN AbdaouiA BadawyA ElfoulyT AhmedM ShehataM.Structural health monitoring using wireless sensor networks: a comprehensive survey. IEEE Communications Surveys & Tutorials 2017.

Laflamme S, 2016, Damage detection and localization from dense network of strain sensors, Shock Vib, 2016

10.1088/0957-0233/27/12/124016

10.1061/(ASCE)0899-1561(2003)15:3(298)

DoeblingSW FarrarCR PrimeMB ShevitzDW.Damage identification and health monitoring of structural and mechanical systems from changes in their vibration characteristics: a literature review.Los Alamos National Laboratory Report 1996;LA‐13070‐MS.

10.1016/S0141-0296(96)00149-6

10.1177/1475921703036169

SohnH FarrarCR HemezFM CzarneckiJJ.A review of structural health monitoring literature: 1996‐2001.Los Alamos National Laboratory Report2004; LA‐13976‐MS.

10.1177/1475921710365419

10.1002/stc.1559

10.1002/stc.2107

10.1002/stc.2343

10.1007/s11831-012-9069-x

LimongelliMP ChatziE DöhlerM LombaertG ReyndersE.Towards extraction of vibration‐based damage indicators.8th European Workshop on Structural Health Monitoring Bilbao Spain July 2016.

10.1006/mssp.2002.1548

ReyndersE De RoeckG.Continuous vibration monitoring and progressive damage testing on the Z24 bridge.Encyclopedia of Structural Health Monitoring2009; John Wiley and Sons Ltd 2149‐2158.

10.1007/978-3-642-36197-5_72-1

10.1061/AJRUA6.0000872

SpiridonakosMD ChatziEN.Polynomial chaos expansion models for SHM under environmental variability.Proceedings of the 9th European Conference on Structural Dynamics Porto Portugal 30 June‐2 July2014.

10.1007/978-3-642-36197-5_91-1

10.1016/j.jsv.2015.02.039

10.1016/j.ymssp.2012.07.005

ShokraniY DertimanisVK ChatziEN SavoiaM.Structural damage localization under varying environmental conditions.11th HSTAM International Congress on Mechanics Athens Greece 27‐30 May2016.

Farrar CR, 2013, Structural Health Monitoring: A Machine Learning Perspective

Casas JR, 2017, Bridge damage detection based on vibration data: past and new developments, Front Built Environ, 3, 2297

10.1088/1742-6596/628/1/012044

Walsh KK, 2014, Damage identification for prestressed adjacent box‐beam bridges, Adv Civ Eng, 2014

10.4236/eng.2017.92004

10.12989/sem.2013.46.2.231

10.1016/j.ymssp.2012.08.001

10.1006/jsvi.1999.2340

10.1016/j.ymssp.2014.08.014

10.1177/1369433216643583

10.1177/1045389X11434172

10.1016/j.measurement.2013.11.009

10.1002/stc.1760

10.1016/j.jsv.2014.08.021

Sun Z, 2016, A damage detection algorithm utilizing dynamic displacement of bridge under moving vehicle, Shock Vib, 2016, 8454567

Yashodhya Swarna Sri Dhanapala LK.Application of wavelet transform in structural health monitoring. Master's Theses Master of Science in Engineering Western Michigan University 2016.

Ding K, 2013, Study on damage detection of bridge based on wavelet multi‐scale analysis, Adv Mat Res, 640, 1010

10.1016/j.ymssp.2011.06.007

Golmohamadi M, Damage Diagnosis in Bridges Using Wavelet. 2012 IACSIT Coimbatore Conferences IPCSIT

10.11648/j.ajce.20140202.12

McgetrickPJ KimCW.Wavelet based damage detection approach for bridge structures utilising vehicle vibration.In Proceedings of 9th German Japanese Bridge Symposium (GJBS09) Kyoto Japan 10‐11 September 2012.

10.1080/13632469.2013.804467

10.1061/(ASCE)CP.1943-5487.0000289

Nguyen VH, 2014, Use of time‐ and frequency‐domain approaches for damage detection in civil engineering structures, Shock Vib, 2014

FarrarCR BakerWE BellTM ConeKM DarlingTW DuffeyTA EklundA MiglioriA.Dynamic characterization and damage detection in the I‐40 bridge over the Rio Grande.Report LA‐12767‐MS Los Alamos National Laboratory 1994.

10.1177/1475921711419995

10.12989/sss.2015.16.1.047

Saidou SandaM GauronO TurcotteN LamarcheCP PaultreP TalbotM LaflammeJF.Efficient finite elements model updating for damage detection in bridges. International Conference on Experimental Vibration Analysis for Civil Engineering Structures Experimental Vibration Analysis for Civil Structures 2017;293‐305.

10.1016/j.proeng.2017.09.156

10.3390/s17071657

BettiR.Finite element model updating and damage detection for bridges using vibration measurements.Final Project Report University Transportation Research Center2013; 01516424.

Mirzaee A, 2014, Damage detection of bridges using vibration data by adjoint variable method, Shock Vib, 2014

10.1016/j.compstruc.2012.10.018

10.1016/j.engstruct.2014.08.042

10.1061/(ASCE)BE.1943-5592.0000611

10.12989/sss.2015.15.2.395

10.1016/j.autcon.2015.10.001

10.1016/j.ymssp.2014.11.001

10.1177/1475921710373290

10.1007/s00779-014-0800-5

10.1111/mice.12141

10.1061/(ASCE)BE.1943-5592.0000811

10.1016/j.conbuildmat.2017.04.096

10.1111/mice.12313

Liang Y. J. Huan S. andTao W. J.(2017). “Research on damage identification of bridge based on digital image measurement.”1st International Conference on Frontiers of Materials Synthesis and Processing (FMSP) Changsha China 28‐29 October 2017.

10.1016/j.oceaneng.2010.11.013

10.1061/(ASCE)MT.1943-5533.0001096

10.1260/1369-4332.18.11.1875

10.1061/(ASCE)0733-9399(2006)132:6(651)

10.1016/j.engstruct.2012.02.001

10.1177/1475921711419995

10.1016/j.aei.2013.03.002

10.1061/(ASCE)ST.1943-541X.0000846

Lakshmi K, 2016, Structural damage detection using ARMAX time series models and cepstral distances, Sādhanā, 41, 1081, 10.1007/s12046-016-0534-3

Rytter A, 1993, Vibration based inspection of civil engineering structure, Earthq Eng Struct Dyn, 29, 37

10.1016/j.ymssp.2012.12.011

LeyderC ChatziE LombaertG FrangiA.Comparison of optimal sensor placement algorithms via the implementation on an innovative timber structure.Proceedings of the 5th International Symposium on Life‐Cycle Civil Engineering (IALCCE 2016) Delft The Netherlands 16‐19 October2016.

10.18063/JSC.2016.02.001

10.1016/j.proeng.2017.09.115

NunoK.Damage detection of a steel truss bridge using frequency response function curvature method. KTH Royal Institute of Technology2013 TRITA‐BKN Rapport ISSN 1103‐4289 ISRN: KTH/BKN/R‐148‐SE.

KimCW KitauchiS SugiuraK.Damage detection of a steel truss bridge through on‐site moving vehicle experiments. SMAR‐2nd International Conference on Smart Monitoring Assessment and Rehabilitation of Civil Structures Istanbul Turkey September 2013.

KimCW ChangKC KitauchiS KawataniM.Real‐world application of vibration‐based damage detection for health monitoring of steel truss bridges.IASCM‐the 6th edition of the World Conference of the International Association for Structural Control and Monitoring Barcelona Barcelona Spain July 2014.

KimCW ChangKC KitauchiS KawataniM.Vibration‐based damage detection and damage‐induced stress redistribution of a real steel truss bridge.7th International Conference on Bridge Maintenance Safety and Management (IABMAS) Shanghai China 07‐11 July2014.

10.12989/sem.2011.39.2.187

10.1088/0964-1726/21/5/055017

Mendrok K, 2012, Application of the modal filtration to the damage detection in truss structure, Diagnostyka, 4, 31

10.7494/mech.2014.33.1.10

10.12989/sss.2014.14.2.105

10.1002/stc.1849

10.1061/(ASCE)0733-9399(2002)128:1(7)

10.1016/j.engstruct.2016.04.057

10.1002/stc.1768

10.1088/0964-1726/25/7/075032

10.1080/17415977.2015.1101761

Kanta P, 2017, Damage detection in railway truss bridges employing data sensitivity under bayesian framework: a numerical investigation, Shock Vib, 2017

KimCW ChangKC KitauchiS McGetrickPJ HashimotoK SugiuraK.Changes in modal parameters of a steel truss bridge due to artificial damage.ICOSSAR‐the 11th International Conference on Structural Safety and Reliability New York USA. 16‐20 Junly2013.

10.1631/jzus.A1300030

AltammarH.Damage detection of mixed‐mode cracks in large truss structures using wavelet transform.Master Thesis 2014 University of Wisconsin‐Milwaukee.

AltammarH DhingraA KaulS.Use of wavelets for mixed‐mode damage diagnostics in warren truss structures.ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (DETC) New York USA 17‐20 August2014.

10.1016/j.measurement.2015.12.009

Knitter‐Piatkowska A, 2016, Application of discrete wavelet transformation to defect detection in truss structures with rigidly connected bars, Eng Trans, 64, 157

10.1177/1475921710373291

10.1007/s13349-013-0041-8

10.1080/15732479.2011.560164

10.1007/s12206-014-0830-y

10.4208/aamm.2013.m377

10.1142/S0219455417500900

10.1142/S0219455417500730

10.1002/stc.480

10.1088/0964-1726/23/12/125034

10.12989/sss.2013.12.2.181

10.3141/2460-13

10.1002/stc.1684

10.1007/s13296-015-6016-3

10.18180/tecciencia.2016.20.7

10.1061/(ASCE)BE.1943-5592.0001044

10.1177/1045389X13483027

10.1177/1475921715627506

10.1016/j.jsv.2005.06.016

10.1061/(ASCE)EM.1943-7889.0001052

10.1111/mice.12258

10.1016/j.ymssp.2011.03.005

10.1016/j.aei.2011.01.001

10.1002/stc.481

BaoYQ ZhouSM LiH OuJP.Structural damage identification based on substructure sensitivity and l(1) sparse regularization.Conference on Sensors and Smart Structures Technologies for Civil Mechanical and Aerospace Systems2013; San Diego CA

10.1002/stc.1720

10.1002/stc.1785

10.1080/13873954.2016.1213752

10.1007/s13349-017-0222-y

10.1177/1475921710395813

Lee ET, 2011, Damage detection of truss structure based on the variation in axial stress and strain energy predicted from incomplete measurements, J Vibroengineering, 13, 173

SiebelT MayerD.Damage detection on a truss structure using transmissibility functions.EURODYN‐International Conference on Structural Dynamics Leuven Belgium 4‐6 July 2011.

10.1007/s00707-016-1590-9

10.12989/sss.2016.18.3.501

10.1007/s11012-015-0350-6

10.1002/stc.1972

10.1007/s13042-015-0453-3

10.1016/j.conbuildmat.2011.04.019

10.1002/stc.1854

YamaguchiH MatsumotoY KawaraiK DammikaAJ ShahzadS TakanamiR.Damage detection based on modal damping change in bridges. ICSBE‐2012:International Conference on Sustainable Built Environment Kandy Sri Lanka 14‐16 December 2012.

10.1061/(ASCE)BE.1943-5592.0000691

10.1016/j.optlastec.2011.10.014

10.1007/978-3-642-03718-4_7

10.12989/smm.2014.1.1.069

10.1061/(ASCE)BE.1943-5592.0001072

10.1061/(ASCE)CF.1943-5509.0001097

10.1061/(ASCE)CF.1943-5509.0000820

10.1061/(ASCE)CF.1943-5509.0000932

10.1177/1687814016683316

Ye XW, 2017, Strain‐based structural condition assessment of an instrumented arch bridge using FBG monitoring data, Smart Struct Syst, 20, 139

DuanYFLY XiangYQ.Strain‐temperature correlation analysis of a tied arch bridge using monitoring data.International Conference on Multimedia Technology (ICMT) 2011;Hangzhou China 26‐28 July 2011.

10.1016/j.ymssp.2010.08.001

10.1016/j.ymssp.2011.06.011

10.1177/1475921716650630

10.1088/0964-1726/20/11/115009

10.1088/0964-1726/20/11/115010

RuocciG QuattroneA De StefanoA.Multi‐domain feature selection aimed at the damage detection of historical bridges.9th International Conference on Damage Assessment of Structures (DAMAS) Journal of Physics Univ Oxford St Annes Coll Oxford England 11‐13 July2011.

10.1002/stc.1976

10.12989/sss.2016.17.3.413

10.12989/sss.2016.17.3.445

10.12989/sss.2016.17.3.491

10.1007/s13349-015-0115-x

10.1080/15732479.2014.951867

10.12989/eas.2015.8.5.1113

10.1111/j.1467-8667.2010.00684.x

10.1115/1.4002128

10.1155/2014/837963

10.1002/stc.1922

10.1016/j.jsv.2016.01.055

10.1016/j.ndteint.2013.04.006

10.1166/asl.2012.3881

10.1061/(ASCE)BE.1943-5592.0001010

10.1061/(ASCE)0733-9445(1996)122:6(651)

Kim BH, 2005, Estimation of cable tension using system identification technique: II. Experiments and applications, J Korean Soc Civ Eng, 25, 669

Park TH, 2005, Estimation of cable tension using system identification technique: I. theory, J Kor Soc Civil Eng, 25, 661

10.1520/JTE20160138

10.1177/1475921713500513

10.1088/0964-1726/23/2/025006

10.1061/(ASCE)ST.1943-541X.0001337

10.12989/sss.2013.12.3_4.465

10.1061/(ASCE)BE.1943-5592.0000421

ChenCC WuWH LiuCY LaiGL.Damage detection of cable‐stayed bridges based on the variation of stay cable forces eliminating environmental temperature effects.The 2015 World Congress on Advances in Structural Engineering and Mechanics (ASEM15) Incheon Korea 25‐29 August2015.

10.1177/1369433216659927

10.1002/stc.1889

Zhang QC, 2011, Damage Detection of Self‐Anchored Suspension Bridge Based on Neural Network Model and Genetic‐Simulated Annealing Algorithm, Adv Mat Res, 243

10.12989/smm.2015.2.1.077

GuanDQ LiJ ChenJ.Optimization method of wavelet neural network for suspension bridge damage identification.2nd International Conference on Artificial Intelligence and Industrial Engineering (AIIE2016) Beijing China 20‐21 November2016.

10.1002/stc.420

Chen ZW, 2013, Probabilistic Fatigue Assessment Based on Bayesian Learning for Wind‐Excited Long‐Span Bridges Installed with WASHMS, Int J Distrib Sens Netw, 2013

10.1016/j.engstruct.2015.06.031

Cho T, 2017, Bayesian correlation prediction model between hydrogen‐induced cracking in structural members, Metals, 7(6)

10.1007/s11771-013-1480-4

10.1260/1369-4332.18.12.2129

10.1061/(ASCE)BE.1943-5592.0001003

10.4028/www.scientific.net/AMM.193-194.976

10.1016/j.ijfatigue.2012.01.015

DomaneschiM LimongelliMP MartinelliL.Structural damage localization in a suspension bridge under seismic excitation.The 15th World Conference on Earthquake Engineering 2012;Lisbon Portugal 2012.

Domaneschi M, 2013, Multi‐site damage localization in a suspension bridge via aftershock monitoring, Ingegneria Sismica, 30, 56

10.12989/sss.2013.12.6.679

10.1016/j.ymssp.2012.08.026

10.1007/s11012-012-9650-2

TalebinejadI SedaratH Emami‐NaeiniA KrimotatA LynchJ.Implementation of damage detection algorithms for the Alfred Zampa memorial suspension bridge.Conference on Nondestructive Characterization for Composite Materials Aerospace Engineering Civil Infrastructure and Homeland Security San Diego CA 10‐13 May 2014.

10.1061/(ASCE)BE.1943-5592.0000681

10.1007/s11771-015-2811-4

10.1111/mice.12144

GuanDQ LuoD LiR.Damage identification method of suspension bridge structure based on wavelet‐artificial immune algorithm. Proceedings of the 5th International Conference on Civil Engineering and Transportation Guangzhou China 28‐29 November2015 860‐863.

10.2749/101686616X14555429844004

10.1016/j.jsv.2016.04.025

Heo G, 2016, An Experimental Study of Structural Identification of Bridges Using the Kinetic Energy Optimization Technique and the Direct Matrix Updating Method, Shock Vib, 2016

10.3846/bjrbe.2016.02

XuYL.SHM‐based fatigue damage prognosis for long‐span cable‐supported bridges under multiple dynamic loadings.8th International Conference on Bridge Maintenance Safety and Management (IABMAS) Foz do Iguacu BRAZIL 26‐30 June 2016.

10.1088/1361-665X/aa7600

10.12989/sss.2016.17.6.1107

10.1007/s13349-014-0078-3

10.1061/(ASCE)0899-1561(2003)15:3(287)

WielenAVD CourardL NguyenF.Nondestructive detection of delaminations in concrete bridge decks.Proceedings of the XIII International Conference on Ground Penetrating Radar Lecce Italy 21‐25 June2010.

10.1061/(ASCE)1084-0702(2007)12:2(215)

10.1016/S0963-8695(02)00061-0

Miki C, 2005, Performance evaluation test of automatic ultrasonic testing systems for welded joints of steel bridges, J Test Eval, 33, 246, 10.1520/JTE12443

Zou ZQ, 2013, Application of Ultrasonic Testing in Concrete Filled Steel Tubular Arch Bridge, Adv Mat Res, 639, 1025

10.1016/j.jcsr.2011.03.005