Recent developments in time-of-flight PET

EJNMMI Physics - Tập 3 Số 1 - 2016
Stefaan Vandenberghe1, Ekaterina Mikhaylova1, Ester D’Hoe1, Pieter Mollet1, Joel S. Karp2
1ELIS-IMINDS-Medical IT-IBITECH Ghent University, De Pintelaan 185, Blok B, Gent, 9000, Belgium
2Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Campagnolo RE, Garderet P, Vacher J. Tomographie par emeterurs positrons avec mesure de temp de vol. In: Colloque National sur Le Traitement du Signal. Nice, France: 1979.

Gariod R, Allemand R, Cormoreche E, Laval M, Moszynski M. The leti positron tomograph architecture and time of flight improvements. In: Proceedings of The Workshop on Time of Flight Tomography. St Louis, USA: 1982.

Yamamoto M, Ficke DC, Ter-Pogossian MM. Experimental assessment of the gain achieved by the utilization of time-of-flight information in a positron emission tomograph (Super PETT I). IEEE Trans Med Imaging. 1982; 1(3):187–92. doi: 10.1109/TMI.1982.4307571 .

Budinger TF. Time-of-flight positron emission tomography: status relative to conventional PET. J Nucl Med. 1983; 24(1):73–8.

Wong WH. PET camera performance design evaluation for BGO and BaF2scintillators (non-time-of-flight). J Nucl Med. 1988; 29(3):338–47.

Mallon A, Grangeat P. Three-dimensional PET reconstruction with time-of-flight measurement. Phys Med Biol. 1992; 37(3):717–29.

Ter-Pogossian MM, Mullani NA, Ficke DC, Markham J, Snyder DL. Photon time-of-flight-assisted positron emission tomography. J Comput Assist Tomogr. 1981; 5(2):227–39.

Moses WW, Derenzo SE. Prospects for time-of-flight PET using LSO scintillator. Nuclear Sci IEEE Trans. 1999; 46(3):474–8. doi: 10.1109/23.775565 .

Lewellen TK. Time-of-flight PET. Semin Nucl Med. 1998; 28(3):268–75.

Chai BH, Ji Y. Lutetium yttrium orthosilicate single crystal scintillator detector. US Patent 920 6,921,901. July 26, 2005.

Surti S, Kuhn A, Werner ME, Perkins AE, Kolthammer J, Karp JS. Performance of Philips Gemini TF PET/CT scanner with special consideration for its time-of-flight imaging capabilities. J Nucl Med. 2007; 48(3):471–80.

Karp JS, Surti S, Daube-Witherspoon ME, Muehllehner G. Benefit of time-of-flight in PET: experimental and clinical results. J Nucl Med. 2008; 49(3):462–70.

Jakoby BW, Bercier Y, Conti M, Casey ME, Bendriem B, Townsend DW. Physical and clinical performance of the mCT time-of-flight PET/CT scanner. Phys Med Biol. 2011; 56(8):2375.

Bettinardi V, Presotto L, Rapisarda E, Picchio M, Gianolli L, Gilardi MC. Physical performance of the new hybrid PET/CT Discovery-690. Med Phys. 2011; 38(10):5394–411.

Muehllehner G, Karp JS. Positron emission tomography. Phys Med Biol. 2006; 51(13):117–37. doi: 10.1088/0031-9155/51/13/R08 .

Conti M. Focus on time-of-flight PET: the benefits of improved time resolution. Eur J Nucl Med Mol Imaging. 2011; 38(6):1147–57. doi: 10.1007/s00259-010-1711-y .

Lois C, Jakoby BW, Long MJ, Hubner KF, Barker DW, Casey ME, et al.An assessment of the impact of incorporating time-of-flight information into clinical PET/CT imaging. J Nucl Med. 2010; 51(2):237–45.

Surti S, Karp JS, Muehllehner G. Image quality assessment of LaBr3-based whole-body 3D PET scanners: a Monte Carlo evaluation. Phys Med Biol. 2004; 49(19):4593–610.

Popescu LM, Lewitt RM. Small nodule detectability evaluation using a generalized scan-statistic model. Phys Med Biol. 2006; 51(23):6225–44. doi: 10.1088/0031-9155/51/23/020 .

Surti S, Karp JS, Popescu LM, Daube-Witherspoon ME, Werner M. Investigation of time-of-flight benefit for fully 3-D PET. IEEE Trans Med Imaging. 2006; 25(5):529–38.

El Fakhri G, Surti S, Trott CM, Scheuermann J, Karp JS. Improvement in lesion detection with whole-body oncologic time-of-flight PET. J Nucl Med. 2011; 52(3):347–53.

Vunckx K, Zhou L, Matej S, Defrise M, Nuyts J. Fisher information-based evaluation of image quality for time-of-flight PET. In: Nuclear Science Symposium Conference Record, 2007. NSS ’07. vol. 6. Honolulu, Hawaii, USA: IEEE: 2007. p. 4129–136.

Mullani NA, Markham J, Ter-Pogossian MM. Feasibility of time-of-flight reconstruction in positron emission tomography. J Nucl Med. 1980; 21(11):1095–7.

Defrise M, Casey ME, Michel C, Conti M. Fourier rebinning of time-of-flight PET data. Phys Med Biol. 2005; 50(12):2749–63. doi: 10.1088/0031-9155/50/12/002 .

Vandenberghe S, Daube-Witherspoon ME, Lewitt RM, Karp JS. Fast reconstruction of 3D time-of-flight PET data by axial rebinning and transverse mashing. Phys Med Biol. 2006; 51(6):1603–21. doi: 10.1088/0031-9155/51/6/017 .

Matej S, Surti S, Jayanthi S, Daube-Witherspoon ME, Lewitt RM, Karp JS. Efficient 3-D TOF PET reconstruction using view-grouped histo-images: DIRECT–direct image reconstruction for TOF. Med Imaging, IEEE Trans. 2009; 28(5):739–51.

Parra L, Barrett HH. List-mode likelihood: EM algorithm and image quality estimation demonstrated on 2-D PET. IEEE Trans Med Imaging. 1998; 17(2):228–35.

Surti S, Karp JS, Muehllehner G, Raby PS. Investigation of lanthanum scintillators for 3D PET. In: Nuclear Science Symposium Conference Record, 2002 IEEE. vol. 2: 2002. p. 1177–11812. doi: 10.1109/NSSMIC.2002.1239531 .

Karp JS, Kuhn A, Perkins AE, Surti S, Werner ME, Daube-Witherspoon ME, et al.Characterization of a time-of-flight PET scanner based on lanthanum bromide. In: Nuclear Science Symposium Conference Record, 2005 IEEE. vol. 4: 2005. p. 5. doi: 10.1109/NSSMIC.2005.1596707 .

Daube-Witherspoon M, Surti S, Perkins A, Kyba C, Wiener R, Werner M, et al.The imaging performance of a LaBr3-based PET scanner. Phys Med Biol. 2010; 55(1):45.

Shah KS, Glodo J, Klugerman M, Higgins W, Gupta T, Wong P, et al.LuI3:Ce—a new scintillator for gamma ray spectroscopy. In: Nuclear Science Symposium Conference Record, 2003 IEEE. vol. 2: 2003. p. 891–942. doi: 10.1109/NSSMIC.2003.1351839 .

Glodo J, Shah KS, Klugerman M, Wong P, Higgins B, Dorenbos P. Scintillation properties of LuI3:Ce. Nuclear Instrum Methods Phys Res Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2005; 537(1–2):279–81. doi: 10.1016/j.nima.2004.08.026 . Proceedings of the 7th International Conference on Inorganic Scintillators and their Use in Scientific adn Industrial Applications.

Nikl M, Ogino H, Krasnikov A, Beitlerova A, Yoshikawa A, Fukuda T. Photo- and radioluminescence of Pr-doped Lu3Al5O12 single crystal. Physica Status Solidi (a). 2005; 202(1):4–6. doi: 10.1002/pssa.200409079 .

Ogino H, Yoshikawa A, Nikl M, Pejchalm J, Fukuda T. Growth and luminescence properties of Pr-doped Lu3(Ga,Al)5O12 single crystals. Jpn J Appl Phys. 2007; 46(6A):3514–7.

Moses WW. Time of flight in pet revisited. Nuclear Sci IEEE Trans. 2003; 50(5):1325–30.

Moses WW, Ullisch M. Factors influencing timing resolution in a commercial LSO pet camera. Nuclear Sci IEEE Trans. 2006; 53(1):78–85. doi: 10.1109/TNS.2005.862980 .

Kuhn A, Surti S, Karp JS, Muehllehner G, Newcomer FM, VanBerg R. Performance assessment of pixelated LaBr3 detector modules for time-of-flight pet. Nuclear Sci IEEE Trans. 2006; 53(3):1090–5. doi: 10.1109/TNS.2006.873708 .

Choong WS. The timing resolution of scintillation-detector systems: Monte Carlo analysis. Phys Med Biol. 2009; 54(21):6495–513.

Szczesniak T, Moszynski M, Swiderski L, Nassalski A, Syntfeld-Kazuch A, Dehaine AG, et al.A comparative study of fast photomultipliers for timing experiments and TOF PET. Nuclear Sci IEEE Trans. 2009; 56(3):1017–23. doi: 10.1109/TNS.2008.2011482 .

Kolthammer JA, Su KH, Grover A, Narayanan M, Jordan DW, Muzic RF. Performance evaluation of the Ingenuity TF PET/CT scanner with a focus on high count-rate conditions. Phys Med Biol. 2014; 59(14):3843–59.

Miller M, Zhang J, Binzel K, Griesmer J, Laurence T, Narayanan M, et al.Characterization of the Vereos Digital Photon Counting PET System. J Nucl Med. 2015; 56(supplement 3):434.

Zaidi H, Ojha N, Morich M, Griesmer J, Hu Z, Maniawski P, et al.Design and performance evaluation of a whole-body Ingenuity TF PET-MRI system. Phys Med Biol. 2011; 56(10):3091–106.

Burr KC, Wang G-CJ, Du H, Mann G, Balakrishnan K, Wang J, et al.A new modular and scalable detector for a time-of-flight pet scanner. In: Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), 2012 IEEE: 2012. p. 2830–834. doi: 10.1109/NSSMIC.2012.6551645 .

Frach T, Prescher G, Degenhardt C, de Gruyter R, Schmitz A, Ballizany R. The digital silicon photomultiplier—principle of operation and intrinsic detector performance. In: Nuclear Science Symposium Conference Record (NSS/MIC), 2009 IEEE: 2009. p. 1959–1965. doi: 10.1109/NSSMIC.2009.5402143 .

Delso G, Furst S, Jakoby B, Ladebeck R, Ganter C, Nekolla SG, et al.Performance measurements of the Siemens mMR integrated whole-body PET/MR scanner. J Nucl Med. 2011; 52(12):1914–22.

Delso G, Khalighi M, Hofbauer M, Porto M, Veit-Haibach P, von Schulthess G. Preliminary evaluation of MR image quality in a new clinical TOF-PET/MR system. Nuclear Sci IEEE Trans. 2015; 62(3):600–3. doi: 10.1109/TNS.2015.2414275 .

Hu Z, Ojha N, Renisch S, Schulz V, Torres I, Pal D, et al.MR-based attenuation correction for a whole-body sequential PET/MR system. In: IEEE Medical Imaging Conference, 2009. Orlando, Florida, USA: 2009.

Daube-Witherspoon ME, Surti S, Perkins A, Kyba CC, Wiener R, Werner ME, et al.The imaging performance of a LaBr3-based PET scanner. Phys Med Biol. 2010; 55(1):45–64.

Karp JS, Wiener R, Surti S, Schmall JP, Ferri A, Gola A, et al.Timing and energy resolution of new near-uv SiPMs coupled to LaBr3:Ce for TOF-PET. In: Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), 2013 IEEE: 2013. p. 1–5. doi: 10.1109/NSSMIC.2013.6829015 .

Son JW, Yoon HS, Won JY, Kim KY, Lee MS, GB Ko, Lee JS. Development and evaluation of a proof-of-concept prototype time-of-flight PET system based on high quantum efficiency multi-anode PMTs. J Nucl Med. 2015; 56(432).

Huo L, Cui R, Xing H, Li N, Zhu C, Wu H, et al.Performance evaluation of a new high-sensitivity TOF clinical PET/CT system. J Nucl Med. 2015; 56(supplement 3):432.

Tsuda T, Kitamura K, Ohi J, Tonami H, Satoh M, Kumazawa Y. Advantage of the four-layer DOI information in the time resolution for a TOF-PET detector. In: Nuclear Science Symposium Conference Record, 2008. NSS ’08. IEEE: 2008. p. 3926–9. doi: 10.1109/NSSMIC.2008.4774142 .

Schmall JP, Surti S, Karp JS. Characterization of stacked-crystal PET detector designs for measurement of both TOF and DOI. Phys Med Biol. 2015; 60(9):3549.

Schug D, Lerche C, Weissler B, Gebhardt P, Goldschmidt B, Wehner J, et al.Initial PET performance evaluation of a preclinical insert for PET/MRI with digital SiPM technology. arXiv.1507.00536.

Seifert S, Schaart DR. Improving the time resolution of TOF-PET detectors by double-sided readout. Nuclear Sci IEEE Trans. 2015; 62(1):3–11. doi: 10.1109/TNS.2014.2368932 .

Blanco A, Chepel V, Ferreira-Marques R, Fonte P, Lopes MI, Peskov V, et al.Perspectives for positron emission tomography with RPCs. Nuclear Instrum Methods Phys Res Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2003; 508(1–2):88–93. doi: 10.1016/S0168-9002(03)01283-X . Proceedings of the Sixth International Workshop on Resistive Plate Chambers and Related Detectors.

Blanco A, Couceiro M, Crespo P, Ferreira NC, Marques RF, Fonte P, et al.Efficiency of RPC detectors for whole-body human TOF-PET. Nuclear Instrum Methods Phys Res Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2009; 602(3):780–3. doi: 10.1016/j.nima.2008.12.134 . Proceedings of the 9th International Workshop on Resistive Plate Chambers and Related Detectors - RPC08.

Martins P, Blanco A, Crespo P, Fátima Ferreira Marques M, Ferreira Marques R, Gordo PM, et al.Towards very high resolution RPC-PET for small animals. J Instrum. 2014; 9:1–5.

Korpar S, Dolenec R, Križan P, Pestotnik R, Stanovnik A. Study of TOF PET using Cherenkov light. Phys Procedia. 2012; 37:1531–6.

Brunner SE, Gruber L, Marton J, Suzuki K, Hirtl A. Studies on the Cherenkov effect for improved time resolution of TOF-PET. Nuclear Sci IEEE Trans. 2014; 61(1):443–7. doi: 10.1109/TNS.2013.2281667 .

Yvon D, Renault JP, Tauzin G, Verrecchia P, Flouzat C, Sharyy S, et al.Calipso: An novel detector concept for PET imaging. Nuclear Sci IEEE Trans. 2014; 61(1):60–6. doi: 10.1109/TNS.2013.2291971 .

Wang W, Hu Z, Gualtieri EE, Parma MJ, Walsh ES, Sebok D, et al.Systematic and distributed time-of-flight list mode pet reconstruction. In: Nuclear Science Symposium Conference Record, 2006. IEEE. vol. 3: 2006. p. 1715–1722. doi: 10.1109/NSSMIC.2006.354229 .

Vandenberghe S, van Elmbt L, Guerchaft M, Clementel E, Verhaeghe J, Bol A, et al.Optimization of time-of-flight reconstruction on Philips GEMINI TF. Eur J Nucl Med Mol Imaging. 2009. doi: 10.1007/s00259-009-1164-3 .

Popescu LM, Matej S, Lewitt RM. Iterative image reconstruction using geometrically ordered subsets with list-mode data. In: Nuclear Science Symposium Conference Record, 2004 IEEE. vol. 6. Rome, Italy: IEEE: 2004. p. 3536–540.

Cho S, Ahn S, Li Q, Leahy RM. Exact and approximate Fourier rebinning of PET data from time-of-flight to non-time-of-flight. Phys Med Biol. 2009; 54(3):467–84. doi: 10.1088/0031-9155/54/3/001 .

Jones WF, Breeding E, Conti M, Kehren F, Casey ME. On-line time-of-flight mashing: the PDR card applied to a long-axis PET-TOF system for reduced transaxial angular sampling with 3-D nearest-neighbor projection-space rebinning in clinical PET/CT. In: Nuclear Science Symposium Conference Record, 2006. IEEE. vol. 4: 2006. p. 2537–541. doi: 10.1109/NSSMIC.2006.354426 .

Matej S, Surti S, Jayanthi S, Daube-Witherspoon ME, Lewitt RM, Karp JS. Efficient 3-D TOF PET reconstruction using view-grouped histo-images: DIRECT-direct image reconstruction for TOF. IEEE Trans Med Imaging. 2009; 28(5):739–51. doi: 10.1109/TMI.2008.2012034 .

Defrise M, Panin V, Michel C, Casey ME. Continuous and discrete data rebinning in time-of-flight PET. IEEE Trans Med Imaging. 2008; 27(9):1310–22. doi: 10.1109/TMI.2008.922688 .

Cho S, Ahn S, Li Q, Leahy RM. Analytical properties of time-of-flight PET data. Phys Med Biol. 2008; 53(11):2809–21. doi: 10.1088/0031-9155/53/11/004 .

Thompson CJ, Camborde ML, Casey ME. A central positron source to perform the timing alignment of detectors in a pet scanner. Nuclear Sci IEEE Trans. 2005; 52(5):1300–1304. doi: 10.1109/TNS.2005.858234 .

Perkins AE, Werner M, Kuhn A, Surti S, Muehllehner G, Karp JS. Time of flight coincidence timing calibration techniques using radioactive sources. In: Nuclear Science Symposium Conference Record, 2005 IEEE. vol. 5: 2005. p. 2488–491. doi: 10.1109/NSSMIC.2005.1596845 .

Clementel E, Mollet P, Vandenberghe S. Effect of local TOF kernel miscalibrations on contrast-noise in TOF pet. Nuclear Sci IEEE Trans. 2013; 60(3):1578–88. doi: 10.1109/TNS.2013.2255134 .

Werner M, Karp J. TOF PET offset calibration from clinical data. Phys Med Biol. 2013; 58(12):4031.

Manjeshwar R, Asma E. Theoretical investigation of the effects of timing calibration errors on time-of-flight pet image quality. In: Nuclear Science Symposium Conference Record, 2008. NSS ’08. IEEE: 2008. p. 5175–178. doi: 10.1109/NSSMIC.2008.4774401 .

Vandenberghe S, Verhaeghe J, Lemahieu I, Matej S, Daube-Witherspoon ME, Karp JS, et al.Determining timing resolution from TOF-PET emission data. In: Nuclear Science Symposium Conference Record, 2007. NSS ’07. IEEE. vol. 4. Honolulu, Hawaii, USA: 2007. p. 2727–731.

Daube-Witherspoon ME, Surti S, Matej S, Werner M, Jayanthi S, Karp JS. Influence of time-of-flight kernel accuracy in TOF-PET reconstruction. In: Nuclear Science Symposium Conference Record, 2006. IEEE. vol. 3. San Diego, California, USA: 2006. p. 1723–1727.

Accorsi R, Adam LE, Werner ME, Karp JS. Optimization of a fully 3D single scatter simulation algorithm for 3D PET. Phys Med Biol. 2004; 49(12):2577–98.

Werner ME, Surti S, Karp JS. Implementation and evaluation of a 3D pet single scatter simulation with TOF modeling. In: Nuclear Science Symposium Conference Record, 2006. vol. 3. San Diego, California, USA: IEEE: 2006. p. 1768–1773.

Watson CC. Extension of single scatter simulation to scatter correction of time-of-flight PET. In: Nuclear Science Symposium Conference Record, 2005 IEEE. vol. 5: 2005. p. 2492–496.

Nuyts J, Dupont P, Stroobants S, Benninck R, Mortelmans L, Suetens P. Simultaneous maximum a posteriori reconstruction of attenuation and activity distributions from emission sinograms. IEEE Trans Med Imaging. 1999; 18(5):393–403.

Defrise M, Rezaei A, Nuyts J. Time-of-flight PET data determine the attenuation sinogram up to a constant. Phys Med Biol. 2012; 57(4):885–99.

Rezaei A, Defrise M, Bal G, Michel C, Conti M, Watson C, et al.Simultaneous reconstruction of activity and attenuation in time-of-flight PET. IEEE Trans Med Imaging. 2012; 31(12):2224–33.

Panin VY, Aykac M, Casey ME. Simultaneous reconstruction of emission activity and attenuation coefficient distribution from TOF data, acquired with external transmission source. Phys Med Biol. 2013; 58(11): 3649–69.

D’Hoe E, Mollet P, Mikhaylova E, Defrise M, Vandenberghe S. Simultaneous reconstruction of attenuation and activity in TOF PET/MRI with additional transmission data. EJNMMI Physics. 2015; 2(Suppl 1):A33.

Conti M. Effect of randoms on signal-to-noise ratio in TOF PET. Nuclear Sci IEEE Trans. 2006; 53(3):1188–93. doi: 10.1109/TNS.2006.875066 .

Surti S. Update on time-of-flight PET imaging. Journal of Nuclear Medicine. 2015; 56(1):98–105.

Surti S, Scheuermann J, El Fakhri G, Daube-Witherspoon ME, Lim R, Abi-Hatem N, et al.Impact of time-of-flight PET on whole-body oncologic studies: a human observer lesion detection and localization study. J Nuclear Med. 2011; 52(5):712–9.

Daube-Witherspoon ME, Surti S, Perkins AE, Karp JS. Determination of accuracy and precision of lesion uptake measurements in human subjects with time-of-flight PET. J Nuclear Med. 2014; 55(4):602–7.

Surti S, Karp JS, Popescu LM, Daube-Witherspoon ME, Werner M. Investigation of image quality and NEC in a TOF-capable PET scanner. In: Nuclear Science Symposium Conference Record, 2004 IEEE. vol. 7: 2004. p. 4032–037. doi: 10.1109/NSSMIC.2004.1466780 .

Surti S, El-Fakhri G, Karp JS. Optimizing acquisition parameters in TOF PET scanners. In: Nuclear Science Symposium Conference Record, 2006. IEEE. vol. 4: 2006. p. 2354–359. doi: 10.1109/NSSMIC.2006.354386 .

Kadrmas DJ, Casey ME, Conti M, Jakoby BW, Lois C, Townsend DW. Impact of time-of-flight on PET tumor detection. J Nucl Med. 2009; 50(8):1315–23. doi: 10.2967/jnumed.109.063016 .

Perkins A, Saffer J, Scheuermann J, Werner M, Karp J, Divgi C. Clinical optimization of the acquisition time of FDG time-of-flight PET. J Nucl Med Meeting Abstracts. 2007; 48 (MeetingAbstracts):91.

Vandenberghe S, Karp J, Lemahieu I. Influence of TOF resolution on object dependent convergence in iterative listmode MLEM. J Nucl Med Meeting Abstracts. 2006; 47(suppl 1):58.

Clementel E, van Elmbt L, Guerchaft M, Bol A, Staelens S, Vandenberghe S. Impact of time-of-flight on quantitative accuracy and volume determination in non-uniform phantoms. J Nucl Med Meeting Abstracts. 2009; 50 (Meeting Abstracts):1493.

Conti M. Why is TOF PET reconstruction a more robust method in the presence of inconsistent data?Phys Med Biol. 2011; 56(1):155.

Werner ME, Karp JS. Detector efficiency calibration from clinical listmode TOF PET data. In: Nuclear Science Symposium Conference Record, 2014 IEEE. Seattle, Washington, USA: IEEE: 2014.

Wang W. Investigation of the local tomography property of TOF-PET OS-EM reconstructions. In: Fully 3D Conference, 2007. Lindau, Germany: 2007.

Davison H, Ter Voert EE, de Galiza Barbosa F, Veit-Haibach P, Delso G. Incorporation of time-of-flight information reduces metal artifacts in simultaneous positron emission tomography/magnetic resonance imaging: a simulation study. Invest Radiol. 2015; 50(7):423–9.

Iagaru A, Minamimoto R, Levin C, Barkhodari A, Jamali M, Holley D, et al.The potential of TOF PET-MRI for reducing artifacts in PET images.EJNMMI Phys. 2015; 2(Suppl 1):A77.

Mehranian A, Zaidi H. Impact of time-of-flight PET on quantification errors in MR imaging-based attenuation correction. J Nucl Med. 2015; 56(4):635–41.

Vandenberghe S, Marsden PK. PET-MRI: a review of challenges and solutions in the development of integrated multimodality imaging. Phys Med Biol. 2015; 60(4):115–54.

Mollet P, Keereman V, Bini J, Izquierdo-Garcia D, Fayad ZA, Vandenberghe S. Improvement of attenuation correction in time-of-flight PET/MR imaging with a positron-emitting source. J Nucl Med. 2014; 55(2):329–36.

Mollet P, Keereman V, Clementel E, Vandenberghe S. Simultaneous MR-compatible emission and transmission imaging for PET using time-of-flight information. IEEE Trans Med Imaging. 2012; 31(9):1734–42.

Surti S, Scheuermann R, Karp JS. Correction technique for cascade gammas in I-124 imaging on a fully-3D, Time-of-Flight PET Scanner. IEEE Trans Nucl Sci. 2009; 56(3):653–60. doi: 10.1109/TNS.2008.2011805 .

Lhommel R, Goffette P, den Eynde MV, Jamar F, Pauwels S, Bilbao J, et al.Yttrium-90 TOF PET scan demonstrates high-resolution biodistribution after liver SIRT. Eur J Nucl Med Mol Imaging. 2009. doi: 10.1007/s00259-009-1210-1 .

Kurz C, Bauer J, Conti M, Guérin L, Eriksson L, Parodi K. Investigating the limits of PET/CT imaging at very low true count rates and high random fractions in ion-beam therapy monitoring. Med Phys. 2015; 42(7):3979–91.

Surti S, Karp JS. Design considerations for a limited angle, dedicated breast, TOF PET scanner. Phys Med Biol. 2008; 53(11):2911–21. doi: 10.1088/0031-9155/53/11/010 .

Krishnamoorthy S, Werner ME, LeGeyt B, Kaul M, Karp JS, Surti S. Initial imaging results from a high spatial-resolution time-of-flight PET detector designed for dedicated breast imaging. In: Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), 2013 IEEE: 2013. p. 1–6. doi: 10.1109/NSSMIC.2013.6829091 .

Lee E, Werner ME, Karp JS, Surti S. Design optimization of a time-of-flight, breast PET scanner. Nuclear Sci IEEE Trans. 2013; 60(3):1645–52.

Crespo P, Shakirin G, Fiedler F, Enghardt W, Wagner A. Direct time-of-flight for quantitative, real-time in-beam PET: a concept and feasibility study. Phys Med Biol. 2007; 52(23):6795–811. doi: 10.1088/0031-9155/52/23/002 .

Del Guerra A, Belcari N, Bisogni MG, Corsi F, Foresta M, Guerra P, et al.Silicon photomultipliers (SiPM) as novel photodetectors for PET. Nuclear Instrum Methods Phys Res Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2011; 648:232–5.

Morrocchi M, Marcatili S, Belcari N, Bisogni MG, Collazuol G, Ambrosi G, et al.Timing performances of a data acquisition system for time of flight PET. Nuclear Instrum Methods Phys Res Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2012; 695:210–2.

Watts D, Borghi G, Sauli F, Amaldi U. The use of multi-gap resistive plate chambers for in-beam PET in proton and carbon ion therapy. J Radiat Res. 2013; 54(suppl 1):136–42.

Torres-Espallardo I, Diblen F, Rohling H, Solevi P, Gillam J, Watts D, et al.Evaluation of resistive-plate-chamber-based TOF-PET applied to in-beam particle therapy monitoring. Phys Med Biol. 2015; 60(9):187.

Tashima H, Yamaya T, Yoshida E, Kinouchi S, Watanabe M, Tanaka E. A single-ring OpenPET enabling PET imaging during radiotherapy. Phys Med Biol. 2012; 57(14):4705.