Recent developments in supercritical fluid extraction of bioactive compounds from microalgae: Role of key parameters, technological achievements and challenges

Journal of CO2 Utilization - Tập 36 - Trang 196-209 - 2020
Antonio Molino1, Sanjeet Mehariya1,2, Giuseppe Di Sanzo3, Vincenzo Larocca3, Maria Martino3, Gian Paolo Leone4, Tiziana Marino2, Simeone Chianese2, Roberto Balducchi3, Dino Musmarra2
1ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Department of Sustainability - CR Portici, P. Enrico Fermi, 1, 80055 Portici, NA, Italy
2Department of Engineering, University of Campania “Luigi Vanvitelli”, Real Casa dell’Annunziata, Via Roma 29, 81031 Aversa (CE), Italy
3ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Department of Sustainability - CR Trisaia, SS Jonica 106, 75026 Rotondella, MT, Italy
4ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Department of Sustainability - CR Casaccia, Via Angullarese 301, 00123 Roma, RM, Italy

Tài liệu tham khảo

Shah, 2016, Astaxanthin-producing green microalga Haematococcus pluvialis: from single cell to high value commercial products, Front. Plant Sci., 7, 531, 10.3389/fpls.2016.00531 Adarme-Vega, 2012, Microalgal biofactories: a promising approach towards sustainable omega-3 fatty acid production, Microb. Cell Fact., 11, 96, 10.1186/1475-2859-11-96 Nobre, 2013, A biorefinery from Nannochloropsissp. microalga – extraction of oils and pigments. Production of biohydrogen from the leftover biomass, Bioresour. Technol., 135, 128, 10.1016/j.biortech.2012.11.084 Bhatia, 2017, An overview of microdiesel — a sustainable future source of renewable energy, Renew. Sustain. Energy Rev., 79, 1078, 10.1016/j.rser.2017.05.138 Daneshvar, 2019, Sequential cultivation of microalgae in raw and recycled dairy wastewater: microalgal growth, wastewater treatment and biochemical composition, Bioresour. Technol., 273, 556, 10.1016/j.biortech.2018.11.059 Wang, 2008, CO2 bio-mitigation using microalgae, Appl. Microbiol. Biotechnol., 79, 707, 10.1007/s00253-008-1518-y Bhatia, 2019, Carbon dioxide capture and bioenergy production using biological system – a review, Renew. Sustain. Energy Rev., 110, 143, 10.1016/j.rser.2019.04.070 Mehariya, 2018, Co-digestion of food waste and sewage sludge for methane production: current status and perspective, Bioresour. Technol., 265, 519, 10.1016/j.biortech.2018.04.030 da Silva Vaz, 2016, Microalgae as a new source of bioactive compounds in food supplements, Curr. Opin. Food Sci., 7, 73, 10.1016/j.cofs.2015.12.006 Patil, 2019, Microalga Scenedesmus bajacalifornicus BBKLP-07, a new source of bioactive compounds with in vitro pharmacological applications, Bioprocess Biosyst. Eng., 42, 979, 10.1007/s00449-019-02099-5 Sudhakar, 2019, A review on bioenergy and bioactive compounds from microalgae and macroalgae-sustainable energy perspective, J. Clean. Prod., 228, 1320, 10.1016/j.jclepro.2019.04.287 Kumar, 2019, Microalgae as rich source of polyunsaturated fatty acids, Biocatal. Agric. Biotechnol., 17, 583, 10.1016/j.bcab.2019.01.017 Molino, 2018, Microalgae characterization for consolidated and new application in human food, animal feed and nutraceuticals, Int. J. Environ. Res. Public Health, 15, 2436, 10.3390/ijerph15112436 Singh, 2016, Antioxidant and cytotoxic activity of carotenes produced by Dunaliella salina under stress, Pharm. Biol., 54, 2269, 10.3109/13880209.2016.1153660 Srinivasan, 2017, Oral administration of lyophilized Dunaliella salina, a carotenoid-rich marine alga, reduces tumor progression in mammary cancer induced rats, Food Funct., 8, 4517, 10.1039/C7FO01328K Ercolano, 2019, New drugs from the sea: pro-apoptotic activity of sponges and algae derived compounds, Mar. Drugs, 17, 31, 10.3390/md17010031 Atasever-Arslan, 2015, Cytotoxic effect of extract from Dunaliella salina against SH-SY5Y neuroblastoma cells, Gen. Physiol. Biophys., 34, 201, 10.4149/gpb_2014034 Poojary, 2016, Innovative alternative technologies to extract carotenoids from microalgae and seaweeds, Mar. Drugs, 14, 214, 10.3390/md14110214 Cardoso, 2012, Extraction of carotenoids and fatty acids from microalgae using supercritical technology, Am. J. Anal. Chem., 3, 877, 10.4236/ajac.2012.312A116 Conde, 2015, Supercritical CO2 extraction of fatty acids, phenolics and fucoxanthin from freeze-dried Sargassum muticum, J. Appl. Phycol., 27, 957, 10.1007/s10811-014-0389-0 da Silva, 2016, Supercritical fluid extraction of bioactive compounds, TrAC Trends Anal. Chem., 76, 40, 10.1016/j.trac.2015.11.013 Valderrama, 2003, Extraction of Astaxantine and phycocyanine from microalgae with supercritical carbon dioxide, J. Chem. Eng. Data, 48, 827, 10.1021/je020128r Bartley, 1994, Supercritical fluid extraction of Australian-grown ginger (Zingiber officinale), J. Sci. Food Agric., 66, 365, 10.1002/jsfa.2740660314 Di Sanzo, 2018, Supercritical carbon dioxide extraction of astaxanthin, lutein, and fatty acids from Haematococcus pluvialis microalgae, Mar. Drugs, 16, 334, 10.3390/md16090334 Herrero, 2010, Supercritical fluid extraction: recent advances and applications, J. Chromatogr. A, 1217, 2495, 10.1016/j.chroma.2009.12.019 Jacobson, 1997, Supercritical fluid extraction of 11c-labeled metabolites in tissue using supercritical ammonia, Anal. Chem., 69, 275, 10.1021/ac960786c Krichnavaruk, 2008, Supercritical carbon dioxide extraction of astaxanthin from Haematococcus pluvialis with vegetable oils as co-solvent, Bioresour. Technol., 99, 5556, 10.1016/j.biortech.2007.10.049 Liang, 1998, Extraction of petroleum hydrocarbons from soil using supercritical argon, Anal. Chem., 70, 616, 10.1021/ac970983r Mohamed, 2002, Extraction of caffeine, theobromine, and cocoa butter from Brazilian cocoa beans using supercritical CO2 and ethane, Ind. Eng. Chem. Res., 41, 6751, 10.1021/ie0203936 Reverchon, 1997, Supercritical fluid extraction and fractionation of essential oils and related products, J. Supercrit. Fluids, 10, 1, 10.1016/S0896-8446(97)00014-4 Praveenkumar, 2015, Breaking dormancy: an energy-efficient means of recovering astaxanthin from microalgae, Green Chem., 17, 1226, 10.1039/C4GC01413H Lorente, 2015, Steam explosion as a fractionation step in biofuel production from microalgae, Fuel Process Technol., 131, 93, 10.1016/j.fuproc.2014.11.009 Kim, 2016, Cell-wall disruption and lipid/astaxanthin extraction from microalgae: Chlorella and Haematococcus, Bioresour. Technol., 199, 300, 10.1016/j.biortech.2015.08.107 Molino, 2018, Biofuels production by biomass gasification: a review, Energies, 11, 811, 10.3390/en11040811 Bhatia, 2017, Current status and strategies for second generation biofuel production using microbial systems, Energy Convers. Manage., 148, 1142, 10.1016/j.enconman.2017.06.073 Saini, 2018, Microbial platforms to produce commercially vital carotenoids at industrial scale: an updated review of critical issues, J. Ind. Microbiol. Biotechnol. Centella, 2017, Marine-derived bioactive compounds for value-added applications in bio- and non-bio sectors, J. Clean. Prod., 168, 1559, 10.1016/j.jclepro.2017.05.086 Saini, 2018, Carotenoid extraction methods: a review of recent developments, Food Chem., 240, 90, 10.1016/j.foodchem.2017.07.099 Jaime, 2007, β-carotene isomer composition of sub- and supercritical carbon dioxide extracts. Antioxidant activity measurement, J. Agric. Food Chem., 55, 10585, 10.1021/jf0711789 GMI204, 2018 FOD025F, 2018 GMI202, 2018 GMI752, 2018 de O. Finco, 2017, Technological trends and market perspectives for production of microbial oils rich in omega-3, Crit. Rev. Biotechnol., 37, 656, 10.1080/07388551.2016.1213221 GVR, 2014 Ruxton, 2004, The health benefits of omega-3 polyunsaturated fatty acids: a review of the evidence, J. Hum. Nutr. Diet., 17, 449, 10.1111/j.1365-277X.2004.00552.x IM, 2005 FMI, 2018 Lin, 2015, Lutein production from biomass: marigold flowers versus microalgae, Bioresour. Technol., 184, 421, 10.1016/j.biortech.2014.09.099 Cantrill, 2005, 1 Cezare-Gomes, 2019, Potential of microalgae carotenoids for industrial application, Appl. Biochem. Biotechnol., 188, 602, 10.1007/s12010-018-02945-4 European regulation No.231/2012, 2015, 1 Wong, 2011, Prevention of age-related macular degeneration, Int. Ophthalmol., 31, 73, 10.1007/s10792-010-9397-5 Sheu, 2008, Ethanol extract of Dunaliella salina induces cell cycle arrest and apoptosis in A549 human non-small cell lung cancer cells, In Vivo (Brooklyn), 22, 369 Camacho-Rodríguez, 2014, A quantitative study of eicosapentaenoic acid (EPA) production by Nannochloropsis gaditana for aquaculture as a function of dilution rate, temperature and average irradiance, Appl. Microbiol. Biotechnol., 98, 2429, 10.1007/s00253-013-5413-9 Sijtsma, 2004, Biotechnological production and applications of the ω-3 polyunsaturated fatty acid docosahexaenoic acid, Appl. Microbiol. Biotechnol., 64, 146, 10.1007/s00253-003-1525-y Horrocks, 1999, Health benefits of docosahexaenoic acid (DHA), Pharmacol. Res., 40, 211, 10.1006/phrs.1999.0495 Swanson, 2012, Omega-3 fatty acids EPA and DHA: health benefits throughout life, Adv. Nutr., 3, 1, 10.3945/an.111.000893 Damude, 2008, Enhancing plant seed oils for human nutrition, Plant Physiol., 147, 962, 10.1104/pp.108.121681 Ambati, 2014, Astaxanthin: Sources, extraction, stability, biological activities and its commercial applications—a review, Mar. Drugs, 12, 128, 10.3390/md12010128 Agostoni, 2012, Scientific opinion on the tolerable upper intake level of eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and docosapentaenoic acid (DPA): EFSA panel on dietetic products, nutrition and allergies (NDA), EFSA J., 10, 1 EFSA, 2006, 1 Spiller, 2003, Safety of an astaxanthin-rich Haematococcus pluvialis algal extract: a randomized clinical Trial, J. Med. Food, 6, 51, 10.1089/109662003765184741 Singh, 2015, Understanding response surface optimisation to the modeling of astaxanthin extraction from a novel strain Thraustochytrium sp. S7, Algal Res., 11, 113, 10.1016/j.algal.2015.06.005 Gerken, 2013, Enzymatic cell wall degradation of Chlorella vulgaris and other microalgae for biofuels production, Planta, 237, 239, 10.1007/s00425-012-1765-0 Lee, 2012, Disruption of microalgal cells for the extraction of lipids for biofuels: processes and specific energy requirements, Biomass Bioenergy, 46, 89, 10.1016/j.biombioe.2012.06.034 Molino, 2018, Extraction of astaxanthin from microalga Haematococcus pluvialis in red phase by using generally recognized as safe solvents and accelerated extraction, J. Biotechnol., 283, 51, 10.1016/j.jbiotec.2018.07.010 Zou, 2013, Response surface methodology for ultrasound-assisted extraction of astaxanthin from Haematococcus pluvialis, Mar. Drugs, 11, 1644, 10.3390/md11051644 Lee, 2010, Comparison of several methods for effective lipid extraction from microalgae, Bioresour. Technol., 101, S75, 10.1016/j.biortech.2009.03.058 Halim, 2012, Microalgal cell disruption for biofuel development, Appl. Energy, 91, 116, 10.1016/j.apenergy.2011.08.048 Nurra, 2014, Biorefinery concept in a microalgae pilot plant. Culturing, dynamic filtration and steam explosion fractionation, Bioresour. Technol., 163, 136, 10.1016/j.biortech.2014.04.009 Lorente, 2017, Microalgae fractionation using steam explosion, dynamic and tangential cross-flow membrane filtration, Bioresour. Technol., 237, 3, 10.1016/j.biortech.2017.03.129 Molino, 2018, Extraction of astaxanthin and lutein from microalga Haematococcus pluvialis in the red phase using CO2 supercritical fluid extraction technology with ethanol as co-solvent, Mar. Drugs, 16, 432, 10.3390/md16110432 Reyes, 2014, Astaxanthin extraction from Haematococcus pluvialis using CO2-expanded ethanol, J. Supercrit. Fluids, 92, 75, 10.1016/j.supflu.2014.05.013 Pereira, 2010, Supercritical fluid extraction of bioactive compounds: fundamentals, applications and economic perspectives, Food Bioprocess Technol., 3, 340, 10.1007/s11947-009-0263-2 Herrero, 2006, Sub- and supercritical fluid extraction of functional ingredients from different natural sources: plants, food-by-products, algae and microalgae: a review, Food Chem., 98, 136, 10.1016/j.foodchem.2005.05.058 Salim, 2014, Phytosterols and their extraction from various plant matrices using supercritical carbon dioxide: a review, J. Sci. Food Agric., 95, 1385 Goto, 2015, Extraction of carotenoids and lipids from algae by supercritical CO2 and subcritical dimethyl ether, J. Supercrit. Fluids, 96, 245, 10.1016/j.supflu.2014.10.003 Catchpole, 2003, Extraction of chili, black pepper, and ginger with near-critical CO2, propane, and dimethyl ether: analysis of the extracts by quantitative nuclear magnetic resonance, J. Agric. Food Chem., 51, 4853, 10.1021/jf0301246 Shende, 2002, Supercritical extraction with carbon dioxide and ethylene of poly(vinyl butyral) and dioctyl phthalate from multilayer ceramic capacitors, J. Supercrit. Fluids, 23, 153, 10.1016/S0896-8446(02)00023-2 Capriel, 1986, Supercritical methanol: an efficacious technique for the extraction of bound pesticide residues from soil and plant samples, J. Agric. Food Chem., 34, 70, 10.1021/jf00067a020 Khakdaman, 2007, Separation of catalyst particles and wax from effluent of a fischer–Tropsch slurry reactor using supercritical hexane, Chem. Eng. Res. Des., 85, 263, 10.1205/cherd06034 Leal, 2007, Sweet basil (Ocimum basilicum) extracts obtained by supercritical fluid extraction (SFE): global yields, chemical composition, antioxidant activity, and estimation of the cost of manufacturing, Food Bioprocess Technol., 1, 326, 10.1007/s11947-007-0030-1 Ndiaye, 2006, Phase behavior of olive and soybean oils in compressed propane and n-butane, Brazilian J. Chem. Eng., 23, 405, 10.1590/S0104-66322006000300014 Cheng, 2018, Low pressure supercritical CO2 extraction of astaxanthin from Haematococcus pluvialis demonstrated on a microfluidic chip, Bioresour. Technol., 250, 481, 10.1016/j.biortech.2017.11.070 Ruen-Ngam, 2012, Selective extraction of lutein from alcohol treated Chlorella vulgaris by supercritical CO2, Chem. Eng. Technol., 35, 255, 10.1002/ceat.201100251 Macías-Sánchez, 2010, Supercritical fluid extraction of carotenoids from Scenedesmus almeriensis, Food Chem., 123, 928, 10.1016/j.foodchem.2010.04.076 Nobre, 2006, Supercritical carbon dioxide extraction of astaxanthin and other carotenoids from the microalga Haematococcus pluvialis, Eur. Food Res. Technol., 223, 787, 10.1007/s00217-006-0270-8 Yen, 2012, Supercritical fluid extraction of lutein from Scenedesmus cultured in an autotrophical photobioreactor, J. Taiwan Inst. Chem. Eng., 43, 53, 10.1016/j.jtice.2011.07.010 Macías-Sánchez, 2009, Comparison of supercritical fluid and ultrasound-assisted extraction of carotenoids and chlorophyll a from Dunaliella salina, Talanta, 77, 948, 10.1016/j.talanta.2008.07.032 Machmudah, 2006, Extraction of astaxanthin from Haematococcus pluvialis using supercritical CO2 and ethanol as entrainer, Ind. Eng. Chem. Res., 45, 3652, 10.1021/ie051357k Wang, 2012, Supercritical fluid extraction of astaxanthin from Haematococcus pluvialis and its antioxidant potential in sunflower oil, Innov. Food Sci. Emerg. Technol., 13, 120, 10.1016/j.ifset.2011.09.004 Molino, 2019, Eicosapentaenoic acid extraction from Nannochloropsis gaditana using carbon dioxide at supercritical conditions, Mar. Drugs, 17, 132, 10.3390/md17020132 Molino, 2019, Extraction of bioactive compounds using supercritical carbon dioxide, Molecules, 24, 782, 10.3390/molecules24040782 Mehariya, 2019, Supercritical fluid extraction of lutein from Scenedesmus almeriensis, Molecules, 24, 1324, 10.3390/molecules24071324 Leone, 2019, Selective extraction of ω-3 fatty acids from Nannochloropsis sp. using supercritical CO2 extraction, Molecules, 24, 2406, 10.3390/molecules24132406 Saravana, 2017, Influence of co-solvents on fucoxanthin and phlorotannin recovery from brown seaweed using supercritical CO2, J. Supercrit. Fluids, 120, 295, 10.1016/j.supflu.2016.05.037 Sivagnanam, 2015, Biological properties of fucoxanthin in oil recovered from two brown seaweeds using supercritical CO2 extraction, Mar. Drugs, 13, 3422, 10.3390/md13063422 Liau, 2011, Separation of sight-protecting zeaxanthin from Nannochloropsis oculata by using supercritical fluids extraction coupled with elution chromatography, Sep. Purif. Technol., 78, 1, 10.1016/j.seppur.2011.01.008 del C. Cerón-García, 2010, Stability of carotenoids in Scenedesmus almeriensis biomass and extracts under various storage conditions, J. Agric. Food Chem., 58, 6944, 10.1021/jf100020s Fujii, 2012, Process integration of supercritical carbon dioxide extraction and acid treatment for astaxanthin extraction from a vegetative microalga, Food Bioprod. Process., 90, 762, 10.1016/j.fbp.2012.01.006 Kitada, 2009, Supercritical CO2 extraction of pigment components with pharmaceutical importance from Chlorella vulgaris, J. Chem. Technol. Biotechnol., 84, 657, 10.1002/jctb.2096 Ota, 2009, Carotenoid production from Chlorococcum littorale in photoautotrophic cultures with downstream supercritical fluid processing, J. Sep. Sci., 32, 2327, 10.1002/jssc.200900154 Gouveia, 2007, Functional food oil coloured by pigments extracted from microalgae with supercritical CO2, Food Chem., 101, 717, 10.1016/j.foodchem.2006.02.027 Liau, 2010, Supercritical fluids extraction and anti-solvent purification of carotenoids from microalgae and associated bioactivity, J. Supercrit. Fluids, 55, 169, 10.1016/j.supflu.2010.07.002 Macías-Sánchez, 2008, Extraction of carotenoids and chlorophyll from microalgae with supercritical carbon dioxide and ethanol as cosolvent, J. Sep. Sci., 31, 1352, 10.1002/jssc.200700503 Esquivel-Hernández, 2016, Supercritical carbon dioxide and microwave-assisted extraction of functional lipophilic compounds from Arthrospira platensis, Int. J. Mol. Sci., 17, 658, 10.3390/ijms17050658 Tirado, 2019, The Hansen theory to choose the best cosolvent for supercritical CO2 extraction of β-carotene from Dunaliella salina, J. Supercrit. Fluids, 145, 211, 10.1016/j.supflu.2018.12.013 Bermejo, 2016, Effect of cosolvents (ethyl lactate, ethyl acetate and ethanol) on the supercritical CO2 extraction of caffeine from green tea, J. Supercrit. Fluids, 107, 507, 10.1016/j.supflu.2015.07.008