Recent developments in supercritical fluid extraction of bioactive compounds from microalgae: Role of key parameters, technological achievements and challenges
Tài liệu tham khảo
Shah, 2016, Astaxanthin-producing green microalga Haematococcus pluvialis: from single cell to high value commercial products, Front. Plant Sci., 7, 531, 10.3389/fpls.2016.00531
Adarme-Vega, 2012, Microalgal biofactories: a promising approach towards sustainable omega-3 fatty acid production, Microb. Cell Fact., 11, 96, 10.1186/1475-2859-11-96
Nobre, 2013, A biorefinery from Nannochloropsissp. microalga – extraction of oils and pigments. Production of biohydrogen from the leftover biomass, Bioresour. Technol., 135, 128, 10.1016/j.biortech.2012.11.084
Bhatia, 2017, An overview of microdiesel — a sustainable future source of renewable energy, Renew. Sustain. Energy Rev., 79, 1078, 10.1016/j.rser.2017.05.138
Daneshvar, 2019, Sequential cultivation of microalgae in raw and recycled dairy wastewater: microalgal growth, wastewater treatment and biochemical composition, Bioresour. Technol., 273, 556, 10.1016/j.biortech.2018.11.059
Wang, 2008, CO2 bio-mitigation using microalgae, Appl. Microbiol. Biotechnol., 79, 707, 10.1007/s00253-008-1518-y
Bhatia, 2019, Carbon dioxide capture and bioenergy production using biological system – a review, Renew. Sustain. Energy Rev., 110, 143, 10.1016/j.rser.2019.04.070
Mehariya, 2018, Co-digestion of food waste and sewage sludge for methane production: current status and perspective, Bioresour. Technol., 265, 519, 10.1016/j.biortech.2018.04.030
da Silva Vaz, 2016, Microalgae as a new source of bioactive compounds in food supplements, Curr. Opin. Food Sci., 7, 73, 10.1016/j.cofs.2015.12.006
Patil, 2019, Microalga Scenedesmus bajacalifornicus BBKLP-07, a new source of bioactive compounds with in vitro pharmacological applications, Bioprocess Biosyst. Eng., 42, 979, 10.1007/s00449-019-02099-5
Sudhakar, 2019, A review on bioenergy and bioactive compounds from microalgae and macroalgae-sustainable energy perspective, J. Clean. Prod., 228, 1320, 10.1016/j.jclepro.2019.04.287
Kumar, 2019, Microalgae as rich source of polyunsaturated fatty acids, Biocatal. Agric. Biotechnol., 17, 583, 10.1016/j.bcab.2019.01.017
Molino, 2018, Microalgae characterization for consolidated and new application in human food, animal feed and nutraceuticals, Int. J. Environ. Res. Public Health, 15, 2436, 10.3390/ijerph15112436
Singh, 2016, Antioxidant and cytotoxic activity of carotenes produced by Dunaliella salina under stress, Pharm. Biol., 54, 2269, 10.3109/13880209.2016.1153660
Srinivasan, 2017, Oral administration of lyophilized Dunaliella salina, a carotenoid-rich marine alga, reduces tumor progression in mammary cancer induced rats, Food Funct., 8, 4517, 10.1039/C7FO01328K
Ercolano, 2019, New drugs from the sea: pro-apoptotic activity of sponges and algae derived compounds, Mar. Drugs, 17, 31, 10.3390/md17010031
Atasever-Arslan, 2015, Cytotoxic effect of extract from Dunaliella salina against SH-SY5Y neuroblastoma cells, Gen. Physiol. Biophys., 34, 201, 10.4149/gpb_2014034
Poojary, 2016, Innovative alternative technologies to extract carotenoids from microalgae and seaweeds, Mar. Drugs, 14, 214, 10.3390/md14110214
Cardoso, 2012, Extraction of carotenoids and fatty acids from microalgae using supercritical technology, Am. J. Anal. Chem., 3, 877, 10.4236/ajac.2012.312A116
Conde, 2015, Supercritical CO2 extraction of fatty acids, phenolics and fucoxanthin from freeze-dried Sargassum muticum, J. Appl. Phycol., 27, 957, 10.1007/s10811-014-0389-0
da Silva, 2016, Supercritical fluid extraction of bioactive compounds, TrAC Trends Anal. Chem., 76, 40, 10.1016/j.trac.2015.11.013
Valderrama, 2003, Extraction of Astaxantine and phycocyanine from microalgae with supercritical carbon dioxide, J. Chem. Eng. Data, 48, 827, 10.1021/je020128r
Bartley, 1994, Supercritical fluid extraction of Australian-grown ginger (Zingiber officinale), J. Sci. Food Agric., 66, 365, 10.1002/jsfa.2740660314
Di Sanzo, 2018, Supercritical carbon dioxide extraction of astaxanthin, lutein, and fatty acids from Haematococcus pluvialis microalgae, Mar. Drugs, 16, 334, 10.3390/md16090334
Herrero, 2010, Supercritical fluid extraction: recent advances and applications, J. Chromatogr. A, 1217, 2495, 10.1016/j.chroma.2009.12.019
Jacobson, 1997, Supercritical fluid extraction of 11c-labeled metabolites in tissue using supercritical ammonia, Anal. Chem., 69, 275, 10.1021/ac960786c
Krichnavaruk, 2008, Supercritical carbon dioxide extraction of astaxanthin from Haematococcus pluvialis with vegetable oils as co-solvent, Bioresour. Technol., 99, 5556, 10.1016/j.biortech.2007.10.049
Liang, 1998, Extraction of petroleum hydrocarbons from soil using supercritical argon, Anal. Chem., 70, 616, 10.1021/ac970983r
Mohamed, 2002, Extraction of caffeine, theobromine, and cocoa butter from Brazilian cocoa beans using supercritical CO2 and ethane, Ind. Eng. Chem. Res., 41, 6751, 10.1021/ie0203936
Reverchon, 1997, Supercritical fluid extraction and fractionation of essential oils and related products, J. Supercrit. Fluids, 10, 1, 10.1016/S0896-8446(97)00014-4
Praveenkumar, 2015, Breaking dormancy: an energy-efficient means of recovering astaxanthin from microalgae, Green Chem., 17, 1226, 10.1039/C4GC01413H
Lorente, 2015, Steam explosion as a fractionation step in biofuel production from microalgae, Fuel Process Technol., 131, 93, 10.1016/j.fuproc.2014.11.009
Kim, 2016, Cell-wall disruption and lipid/astaxanthin extraction from microalgae: Chlorella and Haematococcus, Bioresour. Technol., 199, 300, 10.1016/j.biortech.2015.08.107
Molino, 2018, Biofuels production by biomass gasification: a review, Energies, 11, 811, 10.3390/en11040811
Bhatia, 2017, Current status and strategies for second generation biofuel production using microbial systems, Energy Convers. Manage., 148, 1142, 10.1016/j.enconman.2017.06.073
Saini, 2018, Microbial platforms to produce commercially vital carotenoids at industrial scale: an updated review of critical issues, J. Ind. Microbiol. Biotechnol.
Centella, 2017, Marine-derived bioactive compounds for value-added applications in bio- and non-bio sectors, J. Clean. Prod., 168, 1559, 10.1016/j.jclepro.2017.05.086
Saini, 2018, Carotenoid extraction methods: a review of recent developments, Food Chem., 240, 90, 10.1016/j.foodchem.2017.07.099
Jaime, 2007, β-carotene isomer composition of sub- and supercritical carbon dioxide extracts. Antioxidant activity measurement, J. Agric. Food Chem., 55, 10585, 10.1021/jf0711789
GMI204, 2018
FOD025F, 2018
GMI202, 2018
GMI752, 2018
de O. Finco, 2017, Technological trends and market perspectives for production of microbial oils rich in omega-3, Crit. Rev. Biotechnol., 37, 656, 10.1080/07388551.2016.1213221
GVR, 2014
Ruxton, 2004, The health benefits of omega-3 polyunsaturated fatty acids: a review of the evidence, J. Hum. Nutr. Diet., 17, 449, 10.1111/j.1365-277X.2004.00552.x
IM, 2005
FMI, 2018
Lin, 2015, Lutein production from biomass: marigold flowers versus microalgae, Bioresour. Technol., 184, 421, 10.1016/j.biortech.2014.09.099
Cantrill, 2005, 1
Cezare-Gomes, 2019, Potential of microalgae carotenoids for industrial application, Appl. Biochem. Biotechnol., 188, 602, 10.1007/s12010-018-02945-4
European regulation No.231/2012, 2015, 1
Wong, 2011, Prevention of age-related macular degeneration, Int. Ophthalmol., 31, 73, 10.1007/s10792-010-9397-5
Sheu, 2008, Ethanol extract of Dunaliella salina induces cell cycle arrest and apoptosis in A549 human non-small cell lung cancer cells, In Vivo (Brooklyn), 22, 369
Camacho-Rodríguez, 2014, A quantitative study of eicosapentaenoic acid (EPA) production by Nannochloropsis gaditana for aquaculture as a function of dilution rate, temperature and average irradiance, Appl. Microbiol. Biotechnol., 98, 2429, 10.1007/s00253-013-5413-9
Sijtsma, 2004, Biotechnological production and applications of the ω-3 polyunsaturated fatty acid docosahexaenoic acid, Appl. Microbiol. Biotechnol., 64, 146, 10.1007/s00253-003-1525-y
Horrocks, 1999, Health benefits of docosahexaenoic acid (DHA), Pharmacol. Res., 40, 211, 10.1006/phrs.1999.0495
Swanson, 2012, Omega-3 fatty acids EPA and DHA: health benefits throughout life, Adv. Nutr., 3, 1, 10.3945/an.111.000893
Damude, 2008, Enhancing plant seed oils for human nutrition, Plant Physiol., 147, 962, 10.1104/pp.108.121681
Ambati, 2014, Astaxanthin: Sources, extraction, stability, biological activities and its commercial applications—a review, Mar. Drugs, 12, 128, 10.3390/md12010128
Agostoni, 2012, Scientific opinion on the tolerable upper intake level of eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and docosapentaenoic acid (DPA): EFSA panel on dietetic products, nutrition and allergies (NDA), EFSA J., 10, 1
EFSA, 2006, 1
Spiller, 2003, Safety of an astaxanthin-rich Haematococcus pluvialis algal extract: a randomized clinical Trial, J. Med. Food, 6, 51, 10.1089/109662003765184741
Singh, 2015, Understanding response surface optimisation to the modeling of astaxanthin extraction from a novel strain Thraustochytrium sp. S7, Algal Res., 11, 113, 10.1016/j.algal.2015.06.005
Gerken, 2013, Enzymatic cell wall degradation of Chlorella vulgaris and other microalgae for biofuels production, Planta, 237, 239, 10.1007/s00425-012-1765-0
Lee, 2012, Disruption of microalgal cells for the extraction of lipids for biofuels: processes and specific energy requirements, Biomass Bioenergy, 46, 89, 10.1016/j.biombioe.2012.06.034
Molino, 2018, Extraction of astaxanthin from microalga Haematococcus pluvialis in red phase by using generally recognized as safe solvents and accelerated extraction, J. Biotechnol., 283, 51, 10.1016/j.jbiotec.2018.07.010
Zou, 2013, Response surface methodology for ultrasound-assisted extraction of astaxanthin from Haematococcus pluvialis, Mar. Drugs, 11, 1644, 10.3390/md11051644
Lee, 2010, Comparison of several methods for effective lipid extraction from microalgae, Bioresour. Technol., 101, S75, 10.1016/j.biortech.2009.03.058
Halim, 2012, Microalgal cell disruption for biofuel development, Appl. Energy, 91, 116, 10.1016/j.apenergy.2011.08.048
Nurra, 2014, Biorefinery concept in a microalgae pilot plant. Culturing, dynamic filtration and steam explosion fractionation, Bioresour. Technol., 163, 136, 10.1016/j.biortech.2014.04.009
Lorente, 2017, Microalgae fractionation using steam explosion, dynamic and tangential cross-flow membrane filtration, Bioresour. Technol., 237, 3, 10.1016/j.biortech.2017.03.129
Molino, 2018, Extraction of astaxanthin and lutein from microalga Haematococcus pluvialis in the red phase using CO2 supercritical fluid extraction technology with ethanol as co-solvent, Mar. Drugs, 16, 432, 10.3390/md16110432
Reyes, 2014, Astaxanthin extraction from Haematococcus pluvialis using CO2-expanded ethanol, J. Supercrit. Fluids, 92, 75, 10.1016/j.supflu.2014.05.013
Pereira, 2010, Supercritical fluid extraction of bioactive compounds: fundamentals, applications and economic perspectives, Food Bioprocess Technol., 3, 340, 10.1007/s11947-009-0263-2
Herrero, 2006, Sub- and supercritical fluid extraction of functional ingredients from different natural sources: plants, food-by-products, algae and microalgae: a review, Food Chem., 98, 136, 10.1016/j.foodchem.2005.05.058
Salim, 2014, Phytosterols and their extraction from various plant matrices using supercritical carbon dioxide: a review, J. Sci. Food Agric., 95, 1385
Goto, 2015, Extraction of carotenoids and lipids from algae by supercritical CO2 and subcritical dimethyl ether, J. Supercrit. Fluids, 96, 245, 10.1016/j.supflu.2014.10.003
Catchpole, 2003, Extraction of chili, black pepper, and ginger with near-critical CO2, propane, and dimethyl ether: analysis of the extracts by quantitative nuclear magnetic resonance, J. Agric. Food Chem., 51, 4853, 10.1021/jf0301246
Shende, 2002, Supercritical extraction with carbon dioxide and ethylene of poly(vinyl butyral) and dioctyl phthalate from multilayer ceramic capacitors, J. Supercrit. Fluids, 23, 153, 10.1016/S0896-8446(02)00023-2
Capriel, 1986, Supercritical methanol: an efficacious technique for the extraction of bound pesticide residues from soil and plant samples, J. Agric. Food Chem., 34, 70, 10.1021/jf00067a020
Khakdaman, 2007, Separation of catalyst particles and wax from effluent of a fischer–Tropsch slurry reactor using supercritical hexane, Chem. Eng. Res. Des., 85, 263, 10.1205/cherd06034
Leal, 2007, Sweet basil (Ocimum basilicum) extracts obtained by supercritical fluid extraction (SFE): global yields, chemical composition, antioxidant activity, and estimation of the cost of manufacturing, Food Bioprocess Technol., 1, 326, 10.1007/s11947-007-0030-1
Ndiaye, 2006, Phase behavior of olive and soybean oils in compressed propane and n-butane, Brazilian J. Chem. Eng., 23, 405, 10.1590/S0104-66322006000300014
Cheng, 2018, Low pressure supercritical CO2 extraction of astaxanthin from Haematococcus pluvialis demonstrated on a microfluidic chip, Bioresour. Technol., 250, 481, 10.1016/j.biortech.2017.11.070
Ruen-Ngam, 2012, Selective extraction of lutein from alcohol treated Chlorella vulgaris by supercritical CO2, Chem. Eng. Technol., 35, 255, 10.1002/ceat.201100251
Macías-Sánchez, 2010, Supercritical fluid extraction of carotenoids from Scenedesmus almeriensis, Food Chem., 123, 928, 10.1016/j.foodchem.2010.04.076
Nobre, 2006, Supercritical carbon dioxide extraction of astaxanthin and other carotenoids from the microalga Haematococcus pluvialis, Eur. Food Res. Technol., 223, 787, 10.1007/s00217-006-0270-8
Yen, 2012, Supercritical fluid extraction of lutein from Scenedesmus cultured in an autotrophical photobioreactor, J. Taiwan Inst. Chem. Eng., 43, 53, 10.1016/j.jtice.2011.07.010
Macías-Sánchez, 2009, Comparison of supercritical fluid and ultrasound-assisted extraction of carotenoids and chlorophyll a from Dunaliella salina, Talanta, 77, 948, 10.1016/j.talanta.2008.07.032
Machmudah, 2006, Extraction of astaxanthin from Haematococcus pluvialis using supercritical CO2 and ethanol as entrainer, Ind. Eng. Chem. Res., 45, 3652, 10.1021/ie051357k
Wang, 2012, Supercritical fluid extraction of astaxanthin from Haematococcus pluvialis and its antioxidant potential in sunflower oil, Innov. Food Sci. Emerg. Technol., 13, 120, 10.1016/j.ifset.2011.09.004
Molino, 2019, Eicosapentaenoic acid extraction from Nannochloropsis gaditana using carbon dioxide at supercritical conditions, Mar. Drugs, 17, 132, 10.3390/md17020132
Molino, 2019, Extraction of bioactive compounds using supercritical carbon dioxide, Molecules, 24, 782, 10.3390/molecules24040782
Mehariya, 2019, Supercritical fluid extraction of lutein from Scenedesmus almeriensis, Molecules, 24, 1324, 10.3390/molecules24071324
Leone, 2019, Selective extraction of ω-3 fatty acids from Nannochloropsis sp. using supercritical CO2 extraction, Molecules, 24, 2406, 10.3390/molecules24132406
Saravana, 2017, Influence of co-solvents on fucoxanthin and phlorotannin recovery from brown seaweed using supercritical CO2, J. Supercrit. Fluids, 120, 295, 10.1016/j.supflu.2016.05.037
Sivagnanam, 2015, Biological properties of fucoxanthin in oil recovered from two brown seaweeds using supercritical CO2 extraction, Mar. Drugs, 13, 3422, 10.3390/md13063422
Liau, 2011, Separation of sight-protecting zeaxanthin from Nannochloropsis oculata by using supercritical fluids extraction coupled with elution chromatography, Sep. Purif. Technol., 78, 1, 10.1016/j.seppur.2011.01.008
del C. Cerón-García, 2010, Stability of carotenoids in Scenedesmus almeriensis biomass and extracts under various storage conditions, J. Agric. Food Chem., 58, 6944, 10.1021/jf100020s
Fujii, 2012, Process integration of supercritical carbon dioxide extraction and acid treatment for astaxanthin extraction from a vegetative microalga, Food Bioprod. Process., 90, 762, 10.1016/j.fbp.2012.01.006
Kitada, 2009, Supercritical CO2 extraction of pigment components with pharmaceutical importance from Chlorella vulgaris, J. Chem. Technol. Biotechnol., 84, 657, 10.1002/jctb.2096
Ota, 2009, Carotenoid production from Chlorococcum littorale in photoautotrophic cultures with downstream supercritical fluid processing, J. Sep. Sci., 32, 2327, 10.1002/jssc.200900154
Gouveia, 2007, Functional food oil coloured by pigments extracted from microalgae with supercritical CO2, Food Chem., 101, 717, 10.1016/j.foodchem.2006.02.027
Liau, 2010, Supercritical fluids extraction and anti-solvent purification of carotenoids from microalgae and associated bioactivity, J. Supercrit. Fluids, 55, 169, 10.1016/j.supflu.2010.07.002
Macías-Sánchez, 2008, Extraction of carotenoids and chlorophyll from microalgae with supercritical carbon dioxide and ethanol as cosolvent, J. Sep. Sci., 31, 1352, 10.1002/jssc.200700503
Esquivel-Hernández, 2016, Supercritical carbon dioxide and microwave-assisted extraction of functional lipophilic compounds from Arthrospira platensis, Int. J. Mol. Sci., 17, 658, 10.3390/ijms17050658
Tirado, 2019, The Hansen theory to choose the best cosolvent for supercritical CO2 extraction of β-carotene from Dunaliella salina, J. Supercrit. Fluids, 145, 211, 10.1016/j.supflu.2018.12.013
Bermejo, 2016, Effect of cosolvents (ethyl lactate, ethyl acetate and ethanol) on the supercritical CO2 extraction of caffeine from green tea, J. Supercrit. Fluids, 107, 507, 10.1016/j.supflu.2015.07.008