Recent developments in plastic forming technology of titanium alloys

He Yang1, Xiaoguang Fan1, Zhichao Sun1, Liang Guo1, Mei Zhan1
1State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Leyens C, Peters M. Titanium and Titanium alloys. Weinheim: Wiley-VCH, 2003

Chen F, Chiu K. Stamping formability of pure titanium sheets. J Mater Process Technol, 2005, 170: 181–186

Jiang Z Q, Yang H, Zhan M, et al. Establishment of a 3D FE model for the bending of a titanium alloy tube. Int J Mech Sci, 2010, 52(9): 1115–1124

Jiang Z Q, Yang H, Zhan M, et al. Coupling effects of material properties and the bending angle on the springback angle of a titanium alloy tube during numerically controlled bending. Mater Design, 2010, 31(4): 2001–2010

Toussaint F, Tabourot L, Ducher F. Experimental and numerical analysis of the forming process of a CP titanium scoliotic instrumentation. J Mater Process Technol, 2008, 197(1–3): 10–16

Adamus J, Lacki P. Forming of the titanium elements by bending. Comput Mater Sci, 2010, doi:10.1016/j.commatsci.2010.03.011

Zhang L, Lu Q, Han Z, et al. Shape distortion of TC1M titanium alloy sheet during drawing process (in Chinese). Acta Metall Sin, 2007, 43(8): 875–878

Torng C, Huang C, Chang H M. Springback analysis of Ti-6Al-4V in hydro-forming process for aerospace sheet metal parts. Steel Res Int, 2008, (special issue 1): 288–292

Ou H, Lana J, Armstrong C, et al. An FE simulation and optimisation approach for the forging of aeroengine components. J Mater Process Technol, 2004, 151(1–3): 208–216

Gao T, Yang H, Liu Y. Backward tracing simulation of precision forging process for blade based on 3D FEM. Trans Nonferrous Met Soc China, 2006, 16(2): 639–644

Gao T, Yang H, Liu Y. Influence of dynamic boundary conditions on preform design for deformation uniformity in backward simulation. J Mater Process Technol, 2008, 197(1–3): 255–260

Ou H, Armstrong C. Evaluating the effect of press and die elasticity in forging of aerofoil sections using finite element simulation. Finite Elem Anal Des, 2006, 42(10): 856–867

Ou H, Armstrong C, Price M. Die shape optimisation in forging of aerofoil sections. J Mater Process Technol, 2003, 132(1–3): 21–27

Ou H, Armstrong C. Die shape compensation in hot forging of titanium aerofoil sections. J Mater Process Technol, 2002, 125–126: 347–352

Poorganji B, Yamaguchi M, Itsumi Y, et al. Microstructure evolution during deformation of a near-α titanium alloy with different initial structures in the two-phase region. Scripta Mater, 2009, 61(4): 419–422

Niu Y, Hou H, Li M, et al. High temperature deformation behavior of a near alpha Ti600 titanium alloy. Mater Sci Eng A, 2008, 492(1–2): 24–28

Li A B, Huang L J, Meng Q Y, et al. Hot working of Ti-6Al-3Mo-2Zr-0.3Si alloy with lamellar α+β starting structure using processing map. Mater Design, 2009, 30(5): 1625–1631

Huang L J, Geng L, Li A B, et al. Characteristics of hot compression behavior of Ti-6.5Al-3.5Mo-1.5Zr-0.3Si alloy with an equiaxed microstructure. Mater Sci Eng A, 2009, 505(1–2): 136–143

Huang L J, Geng L, Li A B, et al. Effects of hot compression and heat treatment on the microstructure and tensile property of Ti-6.5Al-3.5Mo-1.5Zr-0.3Si alloy. Mater Sci Eng A, 2008, 489(1–2): 330–336

Ma F, Lu W, Qin J, et al. Microstructure evolution of near-α titanium alloys during thermomechanical processing. Mater Sci Eng A, 2006, 416(1–2): 59–65

Duan Y P, Li P, Xue K M, et al. Flow behavior and microstructure evolution of TB8 alloy during hot deformation process. Trans Nonferrous Met Soc China, 2007, 17(6): 1199–1204

Zong Y Y, Shan D B, Xu M, et al. Flow softening and microstruc tural evolution of TC11 titanium alloy during hot deformation. J Mater Process Technol, 2009, 209(4): 1988–1994

Wanjara P, Jahazi M, Monajati H, et al. Influence of thermomechanical processing on microstructural evolution in near-α alloy IMI834. Mater Sci Eng A, 2006, 416(1–2): 300–311

Wang K, Lu S, Fu M W, et al. Optimization of β/near-β forging process parameters of Ti-6.5Al-3.5Mo-1.5Zr-0.3Si by using processing maps. Mater Character, 2009, 60(6): 492–498

Luo J, Li M, Yu W, et al. Effect of the strain on processing maps of titanium alloys in isothermal compression. Mater Sci Eng A, 2009, 504(1–2): 90–98

Jones N, Dashwood R, Dye D, et al. Thermomechanical processing of Ti-5Al-5Mo-5V-3Cr. Mater Sci Eng A, 2008, 490(1–2): 369–377

Zong Y Y, Shan D B, Lu Y. Microstructural evolution of a Ti-4.5Al-3Mo-1V alloy during hot working. J Mater Sci, 2006, 41(12): 3753–3760

Vo P, Jahazi M, Yue S. Recrystallization during thermomechanical processing of IMI834. Metall Mater Trans A, 2008, 39(12): 2965–2980

Song H, Zhang S, Cheng M. Dynamic globularization kinetics during hot working of a two phase titanium alloy with a colony alpha microstructure. J Alloy Compd, 2009, 480(2): 922–927

Wang K, Zeng W, Zhao Y, et al. Dynamic globularization kinetics during hot working of Ti-17 alloy with initial lamellar microstructure. Mater Sci Eng A, 2010, 527(10–11): 2559–2566

Li X, Li M. A set of microstructure-based constitutive equations in hot forming of a titanium alloy. J Univ Sci Technol B, 2006, 13(5): 435–441

Luo J, Li M, Li X, et al. Constitutive model for high temperature deformation of titanium alloys using internal state variables. Mech Mater, 2010, 42(2): 157–165

Semiatin S L, Lehner T M, Miller J D, et al. Alpha/beta heat treatment of a titanium alloy with a nonuniform microstructure. Metall Mater Trans A, 2007, 38(4): 910–921

Miller J D, Semiatin S L. Effect of the size distribution of alpha particles on microstructure evolution during heat treatment of an alpha/beta titanium alloy. Metall Mater Trans A, 2005, 36(1): 259–262

Sun Z, Yang H, Han G, et al. A numerical model based on internal-state-variable method for the microstructure evolution during hot-working process of TA15 titanium alloy. Mater Sci Eng A, 2010, 527(15): 3464–3471

Bache M R, Evans W J. Impact of texture on mechanical properties in an advanced titanium alloy. Mater Sci Eng A, 2001, 319–321: 409–414

Bache M R, Evans W J, Suddell B, et al. The effects of texture in titanium alloys for engineering components under fatigue. Int J Fatigue, 2001, 23: S153–S159

Whittaker M T, Evans W J, Lancaster R, et al. The effect of microstructure and texture on mechanical properties of Ti6-4. Int J Fatigue, 2009, 31(11–12): 2022–2030

Evans W J, Jones J P, Whittaker M T. Texture effects under tension and torsion loading conditions in titanium alloys. Int J Fatigue, 2005, 27(10-12): 1244–1250

Hoseini M, Shahryari A, Omanovic S, Szpunar J A. Comparative effect of grain size and texture on the corrosion behaviour of commercially pure titanium processed by equal channel angular pressing. Corros Sci, 2009, 51(12): 3064–3067

Martin E’, Azzi M, Salishchev G A, et al. Influence of microstructure and texture on the corrosion and tribocorrosion behavior of Ti-6Al-4V. Tribol Int, 2010, 43(5–6): 918–924

Bridier F, Villechaise P, Mendez J. Slip and fatigue crack formation processes in an α/β titanium alloy in relation to crystallographic texture on different scales. Acta Mater, 2008, 56(15): 3951–3962

Bantounas I, Lindley T, Rugg D, et al. Effect of microtexture on fatigue cracking in Ti-6Al-4V. Acta Mater, 2007, 55(16): 5655–5665

Germain L, Gey N, Humbert M, et al. Analysis of sharp microtexture heterogeneities in a bimodal IMI 834 billet. Acta Mater, 2005, 53(13): 3535–3543

Germain L, Gey N, Humbert M, et al. Texture heterogeneities induced by subtransus processing of near α titanium alloys. Acta Mater, 2008, 56(16): 4298–4308

Zeng Z, Zhang Y, Jonsson S. Microstructure and texture evolution of commercial pure titanium deformed at elevated temperatures. Mater Sci Eng A, 2009, 513–514: 83–90

Raghunathan S L, Dashwood R J, Jackson M, et al. The evolution of microtexture and macrotexture during subtransus forging of Ti-10V-2Fe-3Al. Mater Sci Eng A, 2008, 488(1–2): 8–15

Sander B, Raabe D. Texture inhomogeneity in a Ti-Nb-based β-titanium alloy after warm rolling and recrystallization. Mater Sci Eng A, 2008, 479(1–2): 236–247

Wagner F, Bozzolo N, Landuyt O, et al. Evolution of recrystallisation texture and microstructure in low alloyed titanium sheets. Acta Mater, 2002, 50(5): 1245–1259

Bozzolo N, Dewobroto N, Grosdidier T, et al. Texture evolution during grain growth in recrystallized commercially pure titanium. Mater Sci Eng A, 2005, 397(1–2): 346–355

Bozzolo N, Dewobroto N, Wenk H R, et al. Microstructure and microtexture of highly cold-rolled commercially pure titanium. J Mater Sci, 2007, 42(7): 2405–2416

Chun Y B, Yu S H, Semiatin S L, et al. Effect of deformation twinning on microstructure and texture evolution during cold rolling of CP-titanium. Mater Sci Eng A, 2005, 398(1–2): 209–219

Zhong Y, Yin F X, Nayai K. Role of deformation twin on texture evolution in cold-rolled commercial-purity Ti. J Mater Res, 2008, 23(11): 2954–2966

Gurao N, A A A, Suwas S. Study of texture evolution in metastable β-Ti alloy as a function of strain path and its effect on α transformation texture. Mater Sci Eng A, 2009, 504(1–2): 24–35

Salem A A, Glavicic M G, Semiatin S L. The effect of preheat temperature and inter-pass reheating on microstructure and texture evolution during hot rolling of Ti-6Al-4V. Mater Sci Eng A, 2008, 496(1–2): 169–176

Huang X, Suzuki K, Chino Y. Improvement of stretch formability of pure titanium sheet by differential speed rolling. Scripta Mater, 2010, 63(5): 473–476

Zhu Y T, Langdon T G. The fundamentals of nanostructured materials processed by severe plastic deformation. JOM, 2004, 56(10): 58–63

Semiatin S L, DeLo D P. Equal channel angular extrusion of difficult-to-work alloys. Mater Design, 2000, 21(4): 311–322

Delo D P, Semiatin S L. Hot working of Ti-6Al-4V via equal channel angular extrusion. Metall Mater Trans A, 1999, 30(9): 2473–2481

Edalati K, Matsubara E, Horita Z. Processing pure Ti by high-pressure torsion in wide ranges of pressures and strain. Metall Mater Trans A, 2009, 40(9): 2079–2086

Xu W, Wu X L, Figueiredo R B, et al. Nanocrystalline body-centred cubic beta-titanium alloy processed by high-pressure torsion. Int J Mater Res, 2009, 100(12): 1662–1667

Islamgaliev R K, Kazyhanov V U, Shestakova L O, et al. Microstructure and mechanical properties of titanium (Grade 4) processed by high-pressure torsion. Mater Sci Eng A, 2008, 493(1–2): 190–194

Pachla W, Kulczyk M, Sus-Ryszkowska M, et al. Nanocrystalline titanium produced by hydrostatic extrusion. J Mater Process Technol, 2008, 205(1–3): 173–182

Kurzydlowski K J, Lewandowska M. Fabrication of nanostructured materials by hydrostatic extrusion: advantages and limitations. Mater Sci Forum, 2007, 561–565: 913–916

Raducanu D, Cojocaru V D, Cinca I, et al. Materials development on the nanoscale by accumulative roll bonding procedure. J Optoelectron Adv Mater, 2007, 9(11): 3346–3349

Terada D, Inoue S, Tsuji N. Microstructure and mechanical properties of commercial purity titanium severely deformed by ARB process. J Mater Sci, 2007, 42(5): 1673–1681

Salishchev G A, Galeyev R M, Malysheva S P, et al. Structure and density of submicrocrystalline titanium produced by severe plastic deformation. Nanostruct Mater, 1999, 11(3): 407–414

Valiev R Z, Langdon T G. Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog Mater Sci, 2006, 51(7): 881–981

Semiatin S L, Delo D P, Shell E B. The effect of material properties and tooling design on deformation and fracture during equal channel angular extrusion. Acta Mater, 2000, 48(8): 1841–1851

Son I, Lee J H, Im Y T. Finite element investigation of equal channel angular extrusion with back pressure. J Mater Process Technol, 2006, 171(3): 480–487

Zhang Z J, Son I H, Im Y T, et al. Finite element analysis of plastic deformation of CP-Ti by multi-pass equal channel angular extrusion at medium hot-working temperature. Mater Sci Eng A, 2007, 447(1–2): 134–141

Lee J H. Design guideline of multi-pass equal channel angular extrusion for uniform strain distribution. J Mater Process Technol, 2007, 191(1–3): 39–43

Chen Y J, Li Y J, Walmsley J C, et al. Microstructure evolution of commercial pure titanium during equal channel angular pressing. Mater Sci Eng A, 2010, 527(3): 789–796

Chen Y J, Li Y J, Walmsley J C, et al. Deformation structures of pure titanium during shear deformation. Metall Mater Trans A, 2010, 41(4): 787–794

Semenova I P, Raab G I, Saitova L R, et al. The effect of equal channel angular pressing on the structure and mechanical behavior of Ti6Al4V alloy. Mater Sci Eng A, 2004, 387-389: 805–808

Raab G I, Soshnikova E P, Valiev R E. Influence of temperature and hydrostatic pressure during equal channel angular pressing on the microstructure of commercial purity Ti. Mater Sci Eng A, 2004, 387–389: 674–677

Kim I, Kim J, Shin D H, et al. Effects of equal channel angular pressing temperature on deformation structures of pure Ti. Mater Sci Eng A, 2003, 342(1–2): 302–310

Purcek G, Saray O, Kul O, et al. Mechanical and wear properties of ultrafine-grained pure Ti produced by multi-pass equal-channel angular extrusion. Mater Sci Eng A, 2009, 517(1–2): 97–104

Shin D H, Kim I, Kim J, et al. Microstructure development during equal-channel angular pressing of titanium. Acta Mater, 2003, 51(4): 983–996

Stolyarov V V, Zeipper L, Mingler B, et al. Influence of post- deformation on CP-Ti processed by equal channel angular pressing. Mater Sci Eng A, 2008, 476(1–2): 98–105

Semenova I P, Valiev R Z, Yakushina E B, et al. Strength and fatigue properties enhancement in ultrafine-grained Ti produced by severe plastic deformation. J Mater Sci, 2008, 43(23–24): 7354–7359

Hou H L, Li Z Q, Wang Y J, et al. Technology of hydrogen treatment for titanium alloy and its application prospect (in Chinese). Chinese J Nonferr Metal, 2003, 13(3): 533–549

Froes F H, Senkov O N, Qazi J I. Hydrogen as a temporary alloying element in titanium alloys: thermohydrogen processing. Int Mater Rev, 2004, 49(3–4): 227–245

Niu Y, Li M. Application of thermohydrogen processing for formation of ultrafine equiaxed grains in near α Ti600 alloy. Metall Mater Trans A, 2009, 40(12): 3009–3015

Niu Y, Li M. Effect of 0.16 wt% hydrogen addition on high temperature deformation behavior of the Ti600 titanium alloy. Mater Sci Eng A, 2009, 513–514: 228–232

Zhao J W, Ding H, Hou H L, et al. Influence of hydrogen content on hot deformation behavior and microstructural evolution of Ti600 alloy. J Alloy Compd, 2010, 491(1–2): 673–678

Zhao J, Ding H, Wang Y, et al. Influence of thermo hydrogen treatment on hot deformation behavior of Ti600 alloy. Trans Nonferrous Met Soc China, 2009, 19(1): 65–71

Zong Y Y, Shan D B, Lv Y, et al. Effect of 0.3 wt%H addition on the high temperature deformation behaviors of Ti-6Al-4V alloy. Int J Hydrogen Energ, 2007, 32(16): 3936–3940

Shan D B, Zong Y Y, Lv Y, et al. The effect of hydrogen on the strengthening and softening of Ti-6Al-4V alloy. Scripta Mater, 2008, 58(6): 449–452

Li M Q, Zhang W F. Effect of hydrogen on processing maps in isothermal compression of Ti-6Al-4V titanium alloy. Mater Sci Eng A, 2009, 502(1–2): 32–37

Li M, Zhang W. Effect of hydrogenation content on high temperature deformation behavior of Ti-6Al-4V alloy in isothermal compression. Int J Hydrogen Energ, 2008, 33(11): 2714–2720

Lu J, Qin J, Lu W, et al. Effect of hydrogen on superplastic deformation of (TiB+TiC)/Ti-6Al-4V composite. Int J Hydrogen Energ, 2009, 34(19): 8308–8314

Lu J, Qin J, Lu W, et al. Hot deformation behavior and microstructure evaluation of hydrogenated Ti-6Al-4V matrix composite. Int J Hydrogen Energ, 2009, 34(22): 9266–9273

He W J, Zhang S H, Song H W, et al. Hydrogen-induced hardening and softening of a β-titanium alloy. Scripta Mater, 2009, 61(1): 16–19

Grong Ø, Shercliff H R. Microstructural modelling in metals processing. Prog Mater Sci, 2002, 47(2): 163–282

Tang Z, Yang H, Sun Z, et al. Microstructure evolution and numerical simulation of TA15 titanium alloy during hot compressive deformation (in Chinese). Chinese J Nonferr Metal, 2008, 18(4): 722–727

Luo J, Li M Q, Hu Y Q, et al. Modeling of constitutive relationships and microstructural variables of Ti-6.62Al-5.14Sn-1.82Zr alloy during high temperature deformation. Mater Charact, 2008, 59(10): 1386–1394

Ding R, Guo Z X. Microstructural evolution of a Ti-6Al-4V alloy during β-phase processing: experimental and simulative investigations. Mater Sci Eng A, 2004, 365(1–2): 172–179

Chun Y B, Semiatin S L, Hwang S K. Monte Carlo modeling of microstructure evolution during the static recrystallization of cold-rolled, commercial-purity titanium. Acta Mater, 2006, 54(14): 3673–3689

Roters F, Eisenlohr P, Hantcherli L, et al. Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: theory, experiments, applications. Acta Mater, 2010, 58(4): 1152–1211

Salem A, Kalidindi S, Semiatin S. Strain hardening due to deformation twinning in α-titanium: constitutive relations and crystal-plasticity modeling. Acta Mater, 2005, 53(12): 3495–3502

Wu X, Kalidindi S, Necker C, et al. Prediction of crystallographic texture evolution and anisotropic stress-strain curves during large plastic strains in high purity α-titanium using a Taylor-type crystal plasticity model. Acta Mater, 2007, 55(2): 423–432

Wu X, Kalidindi S, Necker C, et al. Modeling anisotropic stressstrain response and crystallographic texture evolution in α-titanium during large plastic deformation using Taylor-type models: influence of initial texture and purity. Metall Mater Trans A, 2008, 39(12): 3046–3054

Fromm B, Adams B, Ahmadi S, et al. Grain size and orientation distributions: application to yielding of α-titanium. Acta Mater, 2009, 57(8): 2339–2348

Venkatramani G, Ghosh S, Mills M. A size-dependent crystal plasticity finite-element model for creep and load shedding in polycrystalline titanium alloys. Acta Mater, 2007, 55(11): 3971–3986

Venkataramani G, Kirane K, Ghosh S. Microstructural parameters affecting creep induced load shedding in Ti-6242 by a size dependent crystal plasticity FE model. Int J Plast, 2008, 24(3): 428–454

Kirane K, Ghosh S, Groeber M, et al. Grain level dwell fatigue crack nucleation model for Ti alloys using crystal plasticity finite element analysis. J Eng Mater Technol, 2009, 131(2): 021003–1-14

Mayeur J, McDowell D. A three-dimensional crystal plasticity model for duplex Ti-6Al-4V. Int J Plast, 2007, 23(9): 1457–1485

Zhang M, Zhang J, McDowell D. Microstructure based crystal plasticity modeling of cyclic deformation of Ti-6Al-4V. Int J Plast, 2007, 23(8): 1328–1348

Zhang M, Bridier F, Villechaise P, et al. Simulation of slip band evolution in duplex Ti-6Al-4V. Acta Mater, 2010, 58(3): 1087–1096

Bridier F, McDowell D, Villechaise P, et al. Crystal plasticity modeling of slip activity in Ti-6Al-4V under high cycle fatigue loading. Int J Plast, 2009, 25(6): 1066–1082

Yang H, Sun Z, Zhan M, et al. Advances in control of unequal deformation by locally loading and theories related to precision plastic forming (in Chinese). J Plast Eng, 2008, 15(2): 6–14

Zhang D W, Yang H, Sun Z C. Analysis of local loading forming for titanium-alloy T-shaped components using slab method. J Mater Process Technol, 2010, 210(2): 258–266

Sun Z, Yang H. Mechanism of unequal deformation during large-scale complex integral component isothermal local loading forming. Steel Res Int, 2008, (special issue 1): 601–608

Sun Z, Yang H. Analysis on process and forming defects of large-scale complex integral component isothermal local loading. Mater Sci Forum, 2009, 614: 117–122

Sun Z, Yang H. Forming quality of titanium alloy large-scale integral components isothermal local loading. Arab J Sci Eng, 2009, 34(1): C 35–45

Sun N, Yang H, Sun Z. Optimization on the process of large titanium bulkhead isothermal closed die forging (in Chinese). Rare Metal Mater Eng, 2009, 38(7): 1296–1300

Sun Z, Yang H. Microstructure and mechanical properties of TA15 titanium alloy under multi-step local loading forming. Mater Sci Eng A, 2009, 523(1–2): 184–92

Li Z, Yang H, Sun Z. Research on macro-microcosmic deforming in isothermal local loading transition region for large-scale complex integral components of TA15 titanium alloy (in Chinese). Rare Metal Mater Eng, 2008, 37(9): 1516–1521

Han G, Yang H, Sun Z, et al. Numerical simulation of microstructure evolution of TA1 5 alloy large-scale rib-web parts during isothermal local loading process (in Chinese). J Plast Eng, 2009, 16(5): 112–117

Peng F, Yang H, Sun Z, et al. Simulation on billet preforming process of large scale complex part of titanium alloy (in Chinese). J Plast Eng, 2008, 15(5): 47–52

Fan X G, Yang H, Sun Z C, et al. Effect of deformation inhomogeneity on the microstructure and mechanical properties of large-scale rib-web component of titanium alloy under local loading forming. Mater Sci Eng A, 2010, 527(21–22): 5391–5399

Yeom J T, Kim J H, Park N K, et al. Ring-rolling design for a large-scale ring product of Ti-6Al-4V alloy. J Mater Process Technol, 2007, 187-188: 747–751

Wang Z W, Zeng S Q, Yang X H. The key technology and realization of virtual ring rolling. J Mater Process Technol, 2007, 182(1–3): 374–381

Yang H, Wang M, Guo L G, et al. 3D coupled thermo-mechanical FE modeling of blank size effects on the uniformity of strain and temperature distributions during hot rolling of titanium alloy large ring. Comp Mater Sci, 2008, 44(2): 611–621

Wang M, Yang H, Sun Z C, et al. Analysis of mechanical and thermal behaviors in hot rolling of large rings of titanium alloy using 3D dynamic explicit FEM. J Mater Process Technol, 2009, 209(7): 3384–3395

Wang M, Yang H, Sun Z C, et al. Effects and optimization of roll sizes in hot rolling of large rings of titanium alloy. Rare Metal Mater Eng, 2009, 38(3): 393–397

Wang M, Yang H, Sun Z C, et al. Dynamic explicit FE modeling of hot ring rolling process. Trans Nonferrous Met Soc China, 2006, 16(6): 1274–1280

Wang M, Yang H, Guo L G, et al. Numerical study on motions of rolls in hot rolling of large rings. In: Proceedings of the 8th International Conference on Frontiers of Design and Manufacturing, Tianjin, China, 2008

Wang M, Yang H, Guo L G, et al. Simulation of microstructure evolution during hot rolling of large rings of titanium alloy based on 3D-FEM (in Chinese). J Plast Eng, 2008, 15(6): 76–80

Li H, Zhan M, Yang H, et al. Coupled thermal-mechanical FEM analysis of power spinning of titanium alloy thin-walled shell (in Chinese). Chinese J Mech Eng, 2008, 44(6): 187–193

Lv H J, Yu W Y, Wang Q, et al. FEM numerical simulation of spinning processing for TC4 alloy (in Chinese). J Tianjin Polytechnic Univ, 2007, 26(6): 59–65

Li Q J, Lv H J, Wang Q, et al. FEM numerical simulation of spinning processing for thin TC4 alloy workpiece with curvilinear shape (in Chinese). J Tianjin Polytechnic Univ, 2008, 27(2): 61–65

Chen Y, Kang D C. FEM coupled thermal simulation of warm power spinning of cylindrical workpiece of titanium alloy (in Chinese). J Harbin Inst Technol, 2006, 38(1): 191–193

Yang G P, Xu W C, Chen Y, et al. Research on material flow rule of backward tube spinning process (in Chinese). J Plast Eng, 2008, 15(6): 48–52

Shan D, Yang G, Xu W. Deformation history and the resultant microstructure and texture in backward tube spinning of Ti-6Al-2Zr-1Mo-1V. J Mater Process Technol, 2009, 209(17): 5713–5719

Yang G P, Xu W C, Chen Y, et al. Tube-spinning microstructure and preferential orientation of BT20 alloy (in Chinese). Mater Sci Technol, 2009, 17(4): 467–473

Xu W, Shan D, Wang Z, et al. Effect of spinning deformation on microstructure evolution and mechanical property of TA15 titanium alloy. Trans Nonferrous Met Soc China, 2007, 17(6): 1205–1211

Chumachenko E N, Portnoi V, Paris L, et al. Analysis of the SPF of a titanium alloy at lower temperatures. J Mater Process Technol, 2005, 170(1–2): 448–456

Wang J N, Wang Y. An investigation of the origin of the superplasticity of cast TiAl alloys. Int J Plast, 2006, 22(8): 1530–1548

Hefti L. Advances in fabricating superplastically formed and diffusion bonded components for aerospace structures. J Mater Eng Perform, 2004, 13(6): 678–682

Hefti L. Innovations in the superplastic forming and diffusion bonded process. J Mater Eng Perform, 2008, 17(2): 178–182

Sanders D G, Ramulu M. Examination of superplastic forming combined with diffusion bonding for titanium: perspective from experience. J Mater Eng Perform, 2004, 13(6): 744–752

Xun Y W, Tan M J. Applications of superplastic forming and diffusion bonding to hollow engine blades. J Mater Process Technol, 2000, 99(1–3): 80–85

Zhao Z, Guo H, Chen L, et al. Superplastic behaviour and microstructure evolution of a fine-grained TA15 titanium alloy. Rare Metals, 2009, 28(5): 523–527

Wang G C, Fu M W, Cao C X, et al. Study on the maximum m superplasticity deformation of Ti-6.5Al-3.5Mo-1.5Zr-0.3Si alloy. Mater Sci Eng A, 2009, 513-514: 32–41

Wang G C, Fu M W. Maximum m superplasticity deformation for Ti-6Al-4V titanium alloy. J Mater Process Technol, 2007, 192–193: 555–560

Salishchev G A, Galeyev R M, Valiakhmetov O R, et al. Development of Ti-6Al-4V sheet with low temperature superplastic properties. J Mater Process Technol, 2001, 116(2–3): 265–268

Comley P. Multi-rate superplastic forming of fine grain Ti-6Al-4V titanium alloy. J Mater Eng Perform, 2007, 16(2): 150–154

Kaibyshev O A, Safiullin R V, Lutfullin R Y, et al. Advanced superplastic forming and diffusion bonding of titanium alloy. Mater Sci Technol, 2006, 22(3): 343–348

Lee H S, Yoon J H, Park C H, et al. A study on diffusion bonding of superplastic Ti-6Al-4V ELI grade. J Mater Process Technol, 2007, 187–188: 526–529

Tan M J, Zhu X J, Thiruvarudchelvan S. Cavitation phenomenon of commercially pure titanium. J Mater Process Technol, 2007, 191: 202–205

Kroehn M A, Leen S B, Hyde T H. A superplastic forming limit diagram concept for Ti-6Al-4V. J Mater Design Appl, 2007, 221(L4) 251-264

Yoon J H, Lee H S, Yi Y M, et al. Prediction of blow forming profile of spherical titanium tank. J Mater Process Technol, 2007, 187-188: 463–466

Chumachenko E N. Development of computer simulation of industrial superplastic sheet forming. Mater Sci Eng A, 2009, 499(1–2): 342–346