Recent developments in plastic forming technology of titanium alloys
Tóm tắt
Từ khóa
Tài liệu tham khảo
Chen F, Chiu K. Stamping formability of pure titanium sheets. J Mater Process Technol, 2005, 170: 181–186
Jiang Z Q, Yang H, Zhan M, et al. Establishment of a 3D FE model for the bending of a titanium alloy tube. Int J Mech Sci, 2010, 52(9): 1115–1124
Jiang Z Q, Yang H, Zhan M, et al. Coupling effects of material properties and the bending angle on the springback angle of a titanium alloy tube during numerically controlled bending. Mater Design, 2010, 31(4): 2001–2010
Toussaint F, Tabourot L, Ducher F. Experimental and numerical analysis of the forming process of a CP titanium scoliotic instrumentation. J Mater Process Technol, 2008, 197(1–3): 10–16
Adamus J, Lacki P. Forming of the titanium elements by bending. Comput Mater Sci, 2010, doi:10.1016/j.commatsci.2010.03.011
Zhang L, Lu Q, Han Z, et al. Shape distortion of TC1M titanium alloy sheet during drawing process (in Chinese). Acta Metall Sin, 2007, 43(8): 875–878
Torng C, Huang C, Chang H M. Springback analysis of Ti-6Al-4V in hydro-forming process for aerospace sheet metal parts. Steel Res Int, 2008, (special issue 1): 288–292
Ou H, Lana J, Armstrong C, et al. An FE simulation and optimisation approach for the forging of aeroengine components. J Mater Process Technol, 2004, 151(1–3): 208–216
Gao T, Yang H, Liu Y. Backward tracing simulation of precision forging process for blade based on 3D FEM. Trans Nonferrous Met Soc China, 2006, 16(2): 639–644
Gao T, Yang H, Liu Y. Influence of dynamic boundary conditions on preform design for deformation uniformity in backward simulation. J Mater Process Technol, 2008, 197(1–3): 255–260
Ou H, Armstrong C. Evaluating the effect of press and die elasticity in forging of aerofoil sections using finite element simulation. Finite Elem Anal Des, 2006, 42(10): 856–867
Ou H, Armstrong C, Price M. Die shape optimisation in forging of aerofoil sections. J Mater Process Technol, 2003, 132(1–3): 21–27
Ou H, Armstrong C. Die shape compensation in hot forging of titanium aerofoil sections. J Mater Process Technol, 2002, 125–126: 347–352
Poorganji B, Yamaguchi M, Itsumi Y, et al. Microstructure evolution during deformation of a near-α titanium alloy with different initial structures in the two-phase region. Scripta Mater, 2009, 61(4): 419–422
Niu Y, Hou H, Li M, et al. High temperature deformation behavior of a near alpha Ti600 titanium alloy. Mater Sci Eng A, 2008, 492(1–2): 24–28
Li A B, Huang L J, Meng Q Y, et al. Hot working of Ti-6Al-3Mo-2Zr-0.3Si alloy with lamellar α+β starting structure using processing map. Mater Design, 2009, 30(5): 1625–1631
Huang L J, Geng L, Li A B, et al. Characteristics of hot compression behavior of Ti-6.5Al-3.5Mo-1.5Zr-0.3Si alloy with an equiaxed microstructure. Mater Sci Eng A, 2009, 505(1–2): 136–143
Huang L J, Geng L, Li A B, et al. Effects of hot compression and heat treatment on the microstructure and tensile property of Ti-6.5Al-3.5Mo-1.5Zr-0.3Si alloy. Mater Sci Eng A, 2008, 489(1–2): 330–336
Ma F, Lu W, Qin J, et al. Microstructure evolution of near-α titanium alloys during thermomechanical processing. Mater Sci Eng A, 2006, 416(1–2): 59–65
Duan Y P, Li P, Xue K M, et al. Flow behavior and microstructure evolution of TB8 alloy during hot deformation process. Trans Nonferrous Met Soc China, 2007, 17(6): 1199–1204
Zong Y Y, Shan D B, Xu M, et al. Flow softening and microstruc tural evolution of TC11 titanium alloy during hot deformation. J Mater Process Technol, 2009, 209(4): 1988–1994
Wanjara P, Jahazi M, Monajati H, et al. Influence of thermomechanical processing on microstructural evolution in near-α alloy IMI834. Mater Sci Eng A, 2006, 416(1–2): 300–311
Wang K, Lu S, Fu M W, et al. Optimization of β/near-β forging process parameters of Ti-6.5Al-3.5Mo-1.5Zr-0.3Si by using processing maps. Mater Character, 2009, 60(6): 492–498
Luo J, Li M, Yu W, et al. Effect of the strain on processing maps of titanium alloys in isothermal compression. Mater Sci Eng A, 2009, 504(1–2): 90–98
Jones N, Dashwood R, Dye D, et al. Thermomechanical processing of Ti-5Al-5Mo-5V-3Cr. Mater Sci Eng A, 2008, 490(1–2): 369–377
Zong Y Y, Shan D B, Lu Y. Microstructural evolution of a Ti-4.5Al-3Mo-1V alloy during hot working. J Mater Sci, 2006, 41(12): 3753–3760
Vo P, Jahazi M, Yue S. Recrystallization during thermomechanical processing of IMI834. Metall Mater Trans A, 2008, 39(12): 2965–2980
Song H, Zhang S, Cheng M. Dynamic globularization kinetics during hot working of a two phase titanium alloy with a colony alpha microstructure. J Alloy Compd, 2009, 480(2): 922–927
Wang K, Zeng W, Zhao Y, et al. Dynamic globularization kinetics during hot working of Ti-17 alloy with initial lamellar microstructure. Mater Sci Eng A, 2010, 527(10–11): 2559–2566
Li X, Li M. A set of microstructure-based constitutive equations in hot forming of a titanium alloy. J Univ Sci Technol B, 2006, 13(5): 435–441
Luo J, Li M, Li X, et al. Constitutive model for high temperature deformation of titanium alloys using internal state variables. Mech Mater, 2010, 42(2): 157–165
Semiatin S L, Lehner T M, Miller J D, et al. Alpha/beta heat treatment of a titanium alloy with a nonuniform microstructure. Metall Mater Trans A, 2007, 38(4): 910–921
Miller J D, Semiatin S L. Effect of the size distribution of alpha particles on microstructure evolution during heat treatment of an alpha/beta titanium alloy. Metall Mater Trans A, 2005, 36(1): 259–262
Sun Z, Yang H, Han G, et al. A numerical model based on internal-state-variable method for the microstructure evolution during hot-working process of TA15 titanium alloy. Mater Sci Eng A, 2010, 527(15): 3464–3471
Bache M R, Evans W J. Impact of texture on mechanical properties in an advanced titanium alloy. Mater Sci Eng A, 2001, 319–321: 409–414
Bache M R, Evans W J, Suddell B, et al. The effects of texture in titanium alloys for engineering components under fatigue. Int J Fatigue, 2001, 23: S153–S159
Whittaker M T, Evans W J, Lancaster R, et al. The effect of microstructure and texture on mechanical properties of Ti6-4. Int J Fatigue, 2009, 31(11–12): 2022–2030
Evans W J, Jones J P, Whittaker M T. Texture effects under tension and torsion loading conditions in titanium alloys. Int J Fatigue, 2005, 27(10-12): 1244–1250
Hoseini M, Shahryari A, Omanovic S, Szpunar J A. Comparative effect of grain size and texture on the corrosion behaviour of commercially pure titanium processed by equal channel angular pressing. Corros Sci, 2009, 51(12): 3064–3067
Martin E’, Azzi M, Salishchev G A, et al. Influence of microstructure and texture on the corrosion and tribocorrosion behavior of Ti-6Al-4V. Tribol Int, 2010, 43(5–6): 918–924
Bridier F, Villechaise P, Mendez J. Slip and fatigue crack formation processes in an α/β titanium alloy in relation to crystallographic texture on different scales. Acta Mater, 2008, 56(15): 3951–3962
Bantounas I, Lindley T, Rugg D, et al. Effect of microtexture on fatigue cracking in Ti-6Al-4V. Acta Mater, 2007, 55(16): 5655–5665
Germain L, Gey N, Humbert M, et al. Analysis of sharp microtexture heterogeneities in a bimodal IMI 834 billet. Acta Mater, 2005, 53(13): 3535–3543
Germain L, Gey N, Humbert M, et al. Texture heterogeneities induced by subtransus processing of near α titanium alloys. Acta Mater, 2008, 56(16): 4298–4308
Zeng Z, Zhang Y, Jonsson S. Microstructure and texture evolution of commercial pure titanium deformed at elevated temperatures. Mater Sci Eng A, 2009, 513–514: 83–90
Raghunathan S L, Dashwood R J, Jackson M, et al. The evolution of microtexture and macrotexture during subtransus forging of Ti-10V-2Fe-3Al. Mater Sci Eng A, 2008, 488(1–2): 8–15
Sander B, Raabe D. Texture inhomogeneity in a Ti-Nb-based β-titanium alloy after warm rolling and recrystallization. Mater Sci Eng A, 2008, 479(1–2): 236–247
Wagner F, Bozzolo N, Landuyt O, et al. Evolution of recrystallisation texture and microstructure in low alloyed titanium sheets. Acta Mater, 2002, 50(5): 1245–1259
Bozzolo N, Dewobroto N, Grosdidier T, et al. Texture evolution during grain growth in recrystallized commercially pure titanium. Mater Sci Eng A, 2005, 397(1–2): 346–355
Bozzolo N, Dewobroto N, Wenk H R, et al. Microstructure and microtexture of highly cold-rolled commercially pure titanium. J Mater Sci, 2007, 42(7): 2405–2416
Chun Y B, Yu S H, Semiatin S L, et al. Effect of deformation twinning on microstructure and texture evolution during cold rolling of CP-titanium. Mater Sci Eng A, 2005, 398(1–2): 209–219
Zhong Y, Yin F X, Nayai K. Role of deformation twin on texture evolution in cold-rolled commercial-purity Ti. J Mater Res, 2008, 23(11): 2954–2966
Gurao N, A A A, Suwas S. Study of texture evolution in metastable β-Ti alloy as a function of strain path and its effect on α transformation texture. Mater Sci Eng A, 2009, 504(1–2): 24–35
Salem A A, Glavicic M G, Semiatin S L. The effect of preheat temperature and inter-pass reheating on microstructure and texture evolution during hot rolling of Ti-6Al-4V. Mater Sci Eng A, 2008, 496(1–2): 169–176
Huang X, Suzuki K, Chino Y. Improvement of stretch formability of pure titanium sheet by differential speed rolling. Scripta Mater, 2010, 63(5): 473–476
Zhu Y T, Langdon T G. The fundamentals of nanostructured materials processed by severe plastic deformation. JOM, 2004, 56(10): 58–63
Semiatin S L, DeLo D P. Equal channel angular extrusion of difficult-to-work alloys. Mater Design, 2000, 21(4): 311–322
Delo D P, Semiatin S L. Hot working of Ti-6Al-4V via equal channel angular extrusion. Metall Mater Trans A, 1999, 30(9): 2473–2481
Edalati K, Matsubara E, Horita Z. Processing pure Ti by high-pressure torsion in wide ranges of pressures and strain. Metall Mater Trans A, 2009, 40(9): 2079–2086
Xu W, Wu X L, Figueiredo R B, et al. Nanocrystalline body-centred cubic beta-titanium alloy processed by high-pressure torsion. Int J Mater Res, 2009, 100(12): 1662–1667
Islamgaliev R K, Kazyhanov V U, Shestakova L O, et al. Microstructure and mechanical properties of titanium (Grade 4) processed by high-pressure torsion. Mater Sci Eng A, 2008, 493(1–2): 190–194
Pachla W, Kulczyk M, Sus-Ryszkowska M, et al. Nanocrystalline titanium produced by hydrostatic extrusion. J Mater Process Technol, 2008, 205(1–3): 173–182
Kurzydlowski K J, Lewandowska M. Fabrication of nanostructured materials by hydrostatic extrusion: advantages and limitations. Mater Sci Forum, 2007, 561–565: 913–916
Raducanu D, Cojocaru V D, Cinca I, et al. Materials development on the nanoscale by accumulative roll bonding procedure. J Optoelectron Adv Mater, 2007, 9(11): 3346–3349
Terada D, Inoue S, Tsuji N. Microstructure and mechanical properties of commercial purity titanium severely deformed by ARB process. J Mater Sci, 2007, 42(5): 1673–1681
Salishchev G A, Galeyev R M, Malysheva S P, et al. Structure and density of submicrocrystalline titanium produced by severe plastic deformation. Nanostruct Mater, 1999, 11(3): 407–414
Valiev R Z, Langdon T G. Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog Mater Sci, 2006, 51(7): 881–981
Semiatin S L, Delo D P, Shell E B. The effect of material properties and tooling design on deformation and fracture during equal channel angular extrusion. Acta Mater, 2000, 48(8): 1841–1851
Son I, Lee J H, Im Y T. Finite element investigation of equal channel angular extrusion with back pressure. J Mater Process Technol, 2006, 171(3): 480–487
Zhang Z J, Son I H, Im Y T, et al. Finite element analysis of plastic deformation of CP-Ti by multi-pass equal channel angular extrusion at medium hot-working temperature. Mater Sci Eng A, 2007, 447(1–2): 134–141
Lee J H. Design guideline of multi-pass equal channel angular extrusion for uniform strain distribution. J Mater Process Technol, 2007, 191(1–3): 39–43
Chen Y J, Li Y J, Walmsley J C, et al. Microstructure evolution of commercial pure titanium during equal channel angular pressing. Mater Sci Eng A, 2010, 527(3): 789–796
Chen Y J, Li Y J, Walmsley J C, et al. Deformation structures of pure titanium during shear deformation. Metall Mater Trans A, 2010, 41(4): 787–794
Semenova I P, Raab G I, Saitova L R, et al. The effect of equal channel angular pressing on the structure and mechanical behavior of Ti6Al4V alloy. Mater Sci Eng A, 2004, 387-389: 805–808
Raab G I, Soshnikova E P, Valiev R E. Influence of temperature and hydrostatic pressure during equal channel angular pressing on the microstructure of commercial purity Ti. Mater Sci Eng A, 2004, 387–389: 674–677
Kim I, Kim J, Shin D H, et al. Effects of equal channel angular pressing temperature on deformation structures of pure Ti. Mater Sci Eng A, 2003, 342(1–2): 302–310
Purcek G, Saray O, Kul O, et al. Mechanical and wear properties of ultrafine-grained pure Ti produced by multi-pass equal-channel angular extrusion. Mater Sci Eng A, 2009, 517(1–2): 97–104
Shin D H, Kim I, Kim J, et al. Microstructure development during equal-channel angular pressing of titanium. Acta Mater, 2003, 51(4): 983–996
Stolyarov V V, Zeipper L, Mingler B, et al. Influence of post- deformation on CP-Ti processed by equal channel angular pressing. Mater Sci Eng A, 2008, 476(1–2): 98–105
Semenova I P, Valiev R Z, Yakushina E B, et al. Strength and fatigue properties enhancement in ultrafine-grained Ti produced by severe plastic deformation. J Mater Sci, 2008, 43(23–24): 7354–7359
Hou H L, Li Z Q, Wang Y J, et al. Technology of hydrogen treatment for titanium alloy and its application prospect (in Chinese). Chinese J Nonferr Metal, 2003, 13(3): 533–549
Froes F H, Senkov O N, Qazi J I. Hydrogen as a temporary alloying element in titanium alloys: thermohydrogen processing. Int Mater Rev, 2004, 49(3–4): 227–245
Niu Y, Li M. Application of thermohydrogen processing for formation of ultrafine equiaxed grains in near α Ti600 alloy. Metall Mater Trans A, 2009, 40(12): 3009–3015
Niu Y, Li M. Effect of 0.16 wt% hydrogen addition on high temperature deformation behavior of the Ti600 titanium alloy. Mater Sci Eng A, 2009, 513–514: 228–232
Zhao J W, Ding H, Hou H L, et al. Influence of hydrogen content on hot deformation behavior and microstructural evolution of Ti600 alloy. J Alloy Compd, 2010, 491(1–2): 673–678
Zhao J, Ding H, Wang Y, et al. Influence of thermo hydrogen treatment on hot deformation behavior of Ti600 alloy. Trans Nonferrous Met Soc China, 2009, 19(1): 65–71
Zong Y Y, Shan D B, Lv Y, et al. Effect of 0.3 wt%H addition on the high temperature deformation behaviors of Ti-6Al-4V alloy. Int J Hydrogen Energ, 2007, 32(16): 3936–3940
Shan D B, Zong Y Y, Lv Y, et al. The effect of hydrogen on the strengthening and softening of Ti-6Al-4V alloy. Scripta Mater, 2008, 58(6): 449–452
Li M Q, Zhang W F. Effect of hydrogen on processing maps in isothermal compression of Ti-6Al-4V titanium alloy. Mater Sci Eng A, 2009, 502(1–2): 32–37
Li M, Zhang W. Effect of hydrogenation content on high temperature deformation behavior of Ti-6Al-4V alloy in isothermal compression. Int J Hydrogen Energ, 2008, 33(11): 2714–2720
Lu J, Qin J, Lu W, et al. Effect of hydrogen on superplastic deformation of (TiB+TiC)/Ti-6Al-4V composite. Int J Hydrogen Energ, 2009, 34(19): 8308–8314
Lu J, Qin J, Lu W, et al. Hot deformation behavior and microstructure evaluation of hydrogenated Ti-6Al-4V matrix composite. Int J Hydrogen Energ, 2009, 34(22): 9266–9273
He W J, Zhang S H, Song H W, et al. Hydrogen-induced hardening and softening of a β-titanium alloy. Scripta Mater, 2009, 61(1): 16–19
Grong Ø, Shercliff H R. Microstructural modelling in metals processing. Prog Mater Sci, 2002, 47(2): 163–282
Tang Z, Yang H, Sun Z, et al. Microstructure evolution and numerical simulation of TA15 titanium alloy during hot compressive deformation (in Chinese). Chinese J Nonferr Metal, 2008, 18(4): 722–727
Luo J, Li M Q, Hu Y Q, et al. Modeling of constitutive relationships and microstructural variables of Ti-6.62Al-5.14Sn-1.82Zr alloy during high temperature deformation. Mater Charact, 2008, 59(10): 1386–1394
Ding R, Guo Z X. Microstructural evolution of a Ti-6Al-4V alloy during β-phase processing: experimental and simulative investigations. Mater Sci Eng A, 2004, 365(1–2): 172–179
Chun Y B, Semiatin S L, Hwang S K. Monte Carlo modeling of microstructure evolution during the static recrystallization of cold-rolled, commercial-purity titanium. Acta Mater, 2006, 54(14): 3673–3689
Roters F, Eisenlohr P, Hantcherli L, et al. Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: theory, experiments, applications. Acta Mater, 2010, 58(4): 1152–1211
Salem A, Kalidindi S, Semiatin S. Strain hardening due to deformation twinning in α-titanium: constitutive relations and crystal-plasticity modeling. Acta Mater, 2005, 53(12): 3495–3502
Wu X, Kalidindi S, Necker C, et al. Prediction of crystallographic texture evolution and anisotropic stress-strain curves during large plastic strains in high purity α-titanium using a Taylor-type crystal plasticity model. Acta Mater, 2007, 55(2): 423–432
Wu X, Kalidindi S, Necker C, et al. Modeling anisotropic stressstrain response and crystallographic texture evolution in α-titanium during large plastic deformation using Taylor-type models: influence of initial texture and purity. Metall Mater Trans A, 2008, 39(12): 3046–3054
Fromm B, Adams B, Ahmadi S, et al. Grain size and orientation distributions: application to yielding of α-titanium. Acta Mater, 2009, 57(8): 2339–2348
Venkatramani G, Ghosh S, Mills M. A size-dependent crystal plasticity finite-element model for creep and load shedding in polycrystalline titanium alloys. Acta Mater, 2007, 55(11): 3971–3986
Venkataramani G, Kirane K, Ghosh S. Microstructural parameters affecting creep induced load shedding in Ti-6242 by a size dependent crystal plasticity FE model. Int J Plast, 2008, 24(3): 428–454
Kirane K, Ghosh S, Groeber M, et al. Grain level dwell fatigue crack nucleation model for Ti alloys using crystal plasticity finite element analysis. J Eng Mater Technol, 2009, 131(2): 021003–1-14
Mayeur J, McDowell D. A three-dimensional crystal plasticity model for duplex Ti-6Al-4V. Int J Plast, 2007, 23(9): 1457–1485
Zhang M, Zhang J, McDowell D. Microstructure based crystal plasticity modeling of cyclic deformation of Ti-6Al-4V. Int J Plast, 2007, 23(8): 1328–1348
Zhang M, Bridier F, Villechaise P, et al. Simulation of slip band evolution in duplex Ti-6Al-4V. Acta Mater, 2010, 58(3): 1087–1096
Bridier F, McDowell D, Villechaise P, et al. Crystal plasticity modeling of slip activity in Ti-6Al-4V under high cycle fatigue loading. Int J Plast, 2009, 25(6): 1066–1082
Yang H, Sun Z, Zhan M, et al. Advances in control of unequal deformation by locally loading and theories related to precision plastic forming (in Chinese). J Plast Eng, 2008, 15(2): 6–14
Zhang D W, Yang H, Sun Z C. Analysis of local loading forming for titanium-alloy T-shaped components using slab method. J Mater Process Technol, 2010, 210(2): 258–266
Sun Z, Yang H. Mechanism of unequal deformation during large-scale complex integral component isothermal local loading forming. Steel Res Int, 2008, (special issue 1): 601–608
Sun Z, Yang H. Analysis on process and forming defects of large-scale complex integral component isothermal local loading. Mater Sci Forum, 2009, 614: 117–122
Sun Z, Yang H. Forming quality of titanium alloy large-scale integral components isothermal local loading. Arab J Sci Eng, 2009, 34(1): C 35–45
Sun N, Yang H, Sun Z. Optimization on the process of large titanium bulkhead isothermal closed die forging (in Chinese). Rare Metal Mater Eng, 2009, 38(7): 1296–1300
Sun Z, Yang H. Microstructure and mechanical properties of TA15 titanium alloy under multi-step local loading forming. Mater Sci Eng A, 2009, 523(1–2): 184–92
Li Z, Yang H, Sun Z. Research on macro-microcosmic deforming in isothermal local loading transition region for large-scale complex integral components of TA15 titanium alloy (in Chinese). Rare Metal Mater Eng, 2008, 37(9): 1516–1521
Han G, Yang H, Sun Z, et al. Numerical simulation of microstructure evolution of TA1 5 alloy large-scale rib-web parts during isothermal local loading process (in Chinese). J Plast Eng, 2009, 16(5): 112–117
Peng F, Yang H, Sun Z, et al. Simulation on billet preforming process of large scale complex part of titanium alloy (in Chinese). J Plast Eng, 2008, 15(5): 47–52
Fan X G, Yang H, Sun Z C, et al. Effect of deformation inhomogeneity on the microstructure and mechanical properties of large-scale rib-web component of titanium alloy under local loading forming. Mater Sci Eng A, 2010, 527(21–22): 5391–5399
Yeom J T, Kim J H, Park N K, et al. Ring-rolling design for a large-scale ring product of Ti-6Al-4V alloy. J Mater Process Technol, 2007, 187-188: 747–751
Wang Z W, Zeng S Q, Yang X H. The key technology and realization of virtual ring rolling. J Mater Process Technol, 2007, 182(1–3): 374–381
Yang H, Wang M, Guo L G, et al. 3D coupled thermo-mechanical FE modeling of blank size effects on the uniformity of strain and temperature distributions during hot rolling of titanium alloy large ring. Comp Mater Sci, 2008, 44(2): 611–621
Wang M, Yang H, Sun Z C, et al. Analysis of mechanical and thermal behaviors in hot rolling of large rings of titanium alloy using 3D dynamic explicit FEM. J Mater Process Technol, 2009, 209(7): 3384–3395
Wang M, Yang H, Sun Z C, et al. Effects and optimization of roll sizes in hot rolling of large rings of titanium alloy. Rare Metal Mater Eng, 2009, 38(3): 393–397
Wang M, Yang H, Sun Z C, et al. Dynamic explicit FE modeling of hot ring rolling process. Trans Nonferrous Met Soc China, 2006, 16(6): 1274–1280
Wang M, Yang H, Guo L G, et al. Numerical study on motions of rolls in hot rolling of large rings. In: Proceedings of the 8th International Conference on Frontiers of Design and Manufacturing, Tianjin, China, 2008
Wang M, Yang H, Guo L G, et al. Simulation of microstructure evolution during hot rolling of large rings of titanium alloy based on 3D-FEM (in Chinese). J Plast Eng, 2008, 15(6): 76–80
Li H, Zhan M, Yang H, et al. Coupled thermal-mechanical FEM analysis of power spinning of titanium alloy thin-walled shell (in Chinese). Chinese J Mech Eng, 2008, 44(6): 187–193
Lv H J, Yu W Y, Wang Q, et al. FEM numerical simulation of spinning processing for TC4 alloy (in Chinese). J Tianjin Polytechnic Univ, 2007, 26(6): 59–65
Li Q J, Lv H J, Wang Q, et al. FEM numerical simulation of spinning processing for thin TC4 alloy workpiece with curvilinear shape (in Chinese). J Tianjin Polytechnic Univ, 2008, 27(2): 61–65
Chen Y, Kang D C. FEM coupled thermal simulation of warm power spinning of cylindrical workpiece of titanium alloy (in Chinese). J Harbin Inst Technol, 2006, 38(1): 191–193
Yang G P, Xu W C, Chen Y, et al. Research on material flow rule of backward tube spinning process (in Chinese). J Plast Eng, 2008, 15(6): 48–52
Shan D, Yang G, Xu W. Deformation history and the resultant microstructure and texture in backward tube spinning of Ti-6Al-2Zr-1Mo-1V. J Mater Process Technol, 2009, 209(17): 5713–5719
Yang G P, Xu W C, Chen Y, et al. Tube-spinning microstructure and preferential orientation of BT20 alloy (in Chinese). Mater Sci Technol, 2009, 17(4): 467–473
Xu W, Shan D, Wang Z, et al. Effect of spinning deformation on microstructure evolution and mechanical property of TA15 titanium alloy. Trans Nonferrous Met Soc China, 2007, 17(6): 1205–1211
Chumachenko E N, Portnoi V, Paris L, et al. Analysis of the SPF of a titanium alloy at lower temperatures. J Mater Process Technol, 2005, 170(1–2): 448–456
Wang J N, Wang Y. An investigation of the origin of the superplasticity of cast TiAl alloys. Int J Plast, 2006, 22(8): 1530–1548
Hefti L. Advances in fabricating superplastically formed and diffusion bonded components for aerospace structures. J Mater Eng Perform, 2004, 13(6): 678–682
Hefti L. Innovations in the superplastic forming and diffusion bonded process. J Mater Eng Perform, 2008, 17(2): 178–182
Sanders D G, Ramulu M. Examination of superplastic forming combined with diffusion bonding for titanium: perspective from experience. J Mater Eng Perform, 2004, 13(6): 744–752
Xun Y W, Tan M J. Applications of superplastic forming and diffusion bonding to hollow engine blades. J Mater Process Technol, 2000, 99(1–3): 80–85
Zhao Z, Guo H, Chen L, et al. Superplastic behaviour and microstructure evolution of a fine-grained TA15 titanium alloy. Rare Metals, 2009, 28(5): 523–527
Wang G C, Fu M W, Cao C X, et al. Study on the maximum m superplasticity deformation of Ti-6.5Al-3.5Mo-1.5Zr-0.3Si alloy. Mater Sci Eng A, 2009, 513-514: 32–41
Wang G C, Fu M W. Maximum m superplasticity deformation for Ti-6Al-4V titanium alloy. J Mater Process Technol, 2007, 192–193: 555–560
Salishchev G A, Galeyev R M, Valiakhmetov O R, et al. Development of Ti-6Al-4V sheet with low temperature superplastic properties. J Mater Process Technol, 2001, 116(2–3): 265–268
Comley P. Multi-rate superplastic forming of fine grain Ti-6Al-4V titanium alloy. J Mater Eng Perform, 2007, 16(2): 150–154
Kaibyshev O A, Safiullin R V, Lutfullin R Y, et al. Advanced superplastic forming and diffusion bonding of titanium alloy. Mater Sci Technol, 2006, 22(3): 343–348
Lee H S, Yoon J H, Park C H, et al. A study on diffusion bonding of superplastic Ti-6Al-4V ELI grade. J Mater Process Technol, 2007, 187–188: 526–529
Tan M J, Zhu X J, Thiruvarudchelvan S. Cavitation phenomenon of commercially pure titanium. J Mater Process Technol, 2007, 191: 202–205
Kroehn M A, Leen S B, Hyde T H. A superplastic forming limit diagram concept for Ti-6Al-4V. J Mater Design Appl, 2007, 221(L4) 251-264
Yoon J H, Lee H S, Yi Y M, et al. Prediction of blow forming profile of spherical titanium tank. J Mater Process Technol, 2007, 187-188: 463–466