Recent developments in mid-infrared fiber lasers: Status and challenges
Tóm tắt
Từ khóa
Tài liệu tham khảo
Gattass, 2008, Femtosecond laser micromachining in transparent materials, Nat. Photonics, 2, 219, 10.1038/nphoton.2008.47
Mandon, 2009, Fourier transform spectroscopy with a laser frequency comb, Nat. Photonics, 3, 99, 10.1038/nphoton.2008.293
Hudson, 2017, Toward all-fiber supercontinuum spanning the mid-infrared, Optica, 4, 1163, 10.1364/OPTICA.4.001163
Jackson, 2012, Towards high-power mid-infrared emission from a fibre laser, Nat. Photonics, 6, 423, 10.1038/nphoton.2012.149
Ebrahim-Zadeh, 2016, Mid-infrared coherent sources and applications: introduction, J. Opt. Soc. Am. B, 33, MIC1-MIC1, 10.1364/JOSAB.33.00MIC1
Henderson-Sapir, 2017, Recent advances in 3.5μm erbium-doped mid-infrared fiber lasers, IEEE J. Sel. Top. Quantum Electron., 23, 0900509, 10.1109/JSTQE.2016.2615961
Dudley, 2006, Supercontinuum generation in photonic crystal fiber, Rev. Mod. Phys., 78, 1135, 10.1103/RevModPhys.78.1135
Yang, 2014, Thirteen watt all-fiber mid-infrared supercontinuum generation in a single mode ZBLAN fiber pumped by a 2 μm MOPA system, Opt. Lett., 39, 1849, 10.1364/OL.39.001849
Frayssinous, 2018, Resonant polymer ablation using a compact 3.44 μm fiber laser, J. Mater. Process. Technol., 252, 813, 10.1016/j.jmatprotec.2017.10.051
Scholle, 2010
Polder, 2012, Treatment of melasma using a novel 1,927-nm fractional thulium fiber laser: a pilot study, Dermatol. Surg., 38, 199, 10.1111/j.1524-4725.2011.02178.x
Ha, 2020, First assessment of a carbon monoxide laser and a thulium fiber laser for fractional ablation of skin, Lasers Surg. Med., 10.1002/lsm.23215
Walsh, 2016, Mid infrared lasers for remote sensing applications, J. Lumin., 169, 400, 10.1016/j.jlumin.2015.03.004
Mingareev, 2012, Welding of polymers using a 2 μm thulium fiber laser, Opt. Laser Technol., 44, 2095, 10.1016/j.optlastec.2012.03.020
Mingareev, 2016, Principles and applications of trans-wafer processing using a 2-μm thulium fiber laser, Int. J. Adv. Des. Manuf. Technol., 84, 2567, 10.1007/s00170-015-7870-z
Jackson, 2002, Diode-pumped fiber lasers: A new clinical tool?, Lasers Surg. Med., 30, 184, 10.1002/lsm.10023
Serebryakov, 2010, Medical applications of mid-IR lasers. Problems and prospects, J. Opt. Technol., 77, 6, 10.1364/JOT.77.000006
Huang, 2016, Pulsed and CW adjustable 1942 nm single-mode all-fiber Tm-doped fiber laser system for surgical laser soft tissue ablation applications, Opt. Express, 24, 16674, 10.1364/OE.24.016674
Mikhail, 2018, Broadband tunable mid-IR Cr2+:CdSe lasers for medical applications
Ehrenreich, 2010, 1-kW, all-glass Tm: fiber laser, SPIE Phtonics West 2010: LASE, Fibre Lasers VII: Technology, Sysltems and Applications Conference, 7850
Wang, 2014, Pulse bundles and passive harmonic mode-locked pulses in Tm-doped fiber laser based on nonlinear polarization rotation, Opt. Express, 22, 6147, 10.1364/OE.22.006147
Aleshkina, 2016, Impact of dispersion on the output characteristics of an all-fiber Er-doped nanosecond mode-locked figure-eight laser with passive nonlinear optical loop mirror, Laser Phys. Lett., 13, 035104, 10.1088/1612-2011/13/3/035104
Fu, 2013, Generation of 35-nJ nanosecond pulse from a passively mode-locked Tm, Ho-codoped fiber laser with graphene saturable absorber, IEEE Photonics Technol. Lett., 25, 1447, 10.1109/LPT.2013.2264456
Yang, 2019, Passively Q-switched and mode-locked Tm-Ho co-doped fiber laser using a WS2 saturable absorber fabricated by chemical vapor deposition, Opt. Laser Technol., 111, 571, 10.1016/j.optlastec.2018.10.023
Rudy, 2013, Amplified 2-μm thulium-doped all-fiber mode-locked figure-eight laser, J. Lightwave Technol., 31, 1809, 10.1109/JLT.2013.2258891
Li, 2014, All-fiber passively mode-locked Tm-doped NOLM-based oscillator operating at 2-μm in both soliton and noisy-pulse regimes, Opt. Express, 22, 7875, 10.1364/OE.22.007875
Liu, 2016, Noise-like pulse generation from a thulium-doped fiber laser using nonlinear polarization rotation with different net anomalous dispersion, Photonics Res., 4, 318, 10.1364/PRJ.4.000318
Wang, 2009, Mode-locked 2 μm laser with highly thulium-doped silicate fiber, Opt. Lett., 34, 3616, 10.1364/OL.34.003616
Mashiko, 2016, Tunable noise-like pulse generation in mode-locked Tm fiber laser with a SESAM, Opt. Express, 24, 26515, 10.1364/OE.24.026515
Wang, 2013, All-fiber ultrafast thulium-doped fiber ring laser with dissipative soliton and noise-like output in normal dispersion by single-wall carbon nanotubes, Appl. Phys. Lett., 103, 011103, 10.1063/1.4813108
Kieu, 2008, Soliton thulium-doped fiber laser with carbon nanotube saturable absorber, IEEE Photonics Technol. Lett., 21, 128, 10.1109/LPT.2008.2008727
Cho, 2009, Passive mode-locking of a Tm-doped bulk laser near 2 µm using a carbon nanotube saturable absorber, Opt. Express, 17, 11007, 10.1364/OE.17.011007
Zhang, 2012, Tm-doped fiber laser mode-locked by graphene-polymer composite, Opt. Express, 20, 25077, 10.1364/OE.20.025077
Song, 2013, Vector multi-soliton operation and interaction in a graphene mode-locked fiber laser, Opt. Express, 21, 10010, 10.1364/OE.21.010010
Yang, 2018, Dual-wavelength mode-locked Tm3+-doped fiber laser at 2 μm region with controllable soliton pulse number by employing graphene on microfiber, Opt. Laser Technol., 105, 76, 10.1016/j.optlastec.2018.02.036
Pawliszewska, 2018, Dispersion-managed Ho-doped fiber laser mode-locked with a graphene saturable absorber, Opt. Lett., 43, 38, 10.1364/OL.43.000038
Boguslawski, 2015, Graphene oxide paper as a saturable absorber for Er-and Tm-doped fiber lasers, Photonics Res., 3, 119, 10.1364/PRJ.3.000119
Song, 2017, Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability, 2D Mater., 4, 045010, 10.1088/2053-1583/aa87c1
Song, 2016, Vector soliton fiber laser passively mode locked by few layer black phosphorus-based optical saturable absorber, Opt. Express, 24, 25933, 10.1364/OE.24.025933
Song, 2019, Lead monoxide: a promising two-dimensional layered material for applications of nonlinear photonics at infrared band, Nanoscale, 11, 12595, 10.1039/C9NR03167G
Ge, 2017, Few-layer selenium-doped black phosphorus: synthesis, nonlinear optical properties and ultrafast photonics applications, J. Mater. Chem. C, 5, 6129, 10.1039/C7TC01267E
Ge, 2018, Broadband nonlinear photoresponse of 2D TiS2 for ultrashort pulse generation and all-optical thresholding devices, Adv. Opt. Mater., 6, 1701166, 10.1002/adom.201701166
Zhang, 2016, Stabilizing a platinum1 single-atom catalyst on supported phosphomolybdic acid without compromising hydrogenation activity, Angew. Chem. Int. Ed., 55, 8319, 10.1002/anie.201602801
Xu, 2017, Stabilization of black phosphorous quantum dots in PMMA nanofiber film and broadband nonlinear optics and ultrafast photonics application, Adv. Funct. Mater., 27, 1702437, 10.1002/adfm.201702437
Xu, 2017, Size-dependent nonlinear optical properties of black phosphorus nanosheets and their applications in ultrafast photonics, J. Mater. Chem. C, 5, 3007, 10.1039/C7TC00071E
Zhang, 2016, Soft, oxidative stripping of alkyl thiolate ligands from hydroxyapatite-supported gold nanoclusters for oxidation reactions, Chem-Asian J., 11, 532, 10.1002/asia.201501074
Lu, 2016, Ultrafast nonlinear absorption and nonlinear refraction in few-layer oxidized black phosphorus, Photonics Res., 4, 286, 10.1364/PRJ.4.000286
Zhang, 2019, Atomically dispersed Pt1-polyoxometalate catalysts: how does metal-support interaction affect stability and hydrogenation activity?, J. Am. Chem. Soc., 141, 8185, 10.1021/jacs.9b00486
Hülsey, 2019, In situ spectroscopy-guided engineering of rhodium single-atom catalysts for CO oxidation, Nat. Commun., 10, 1330, 10.1038/s41467-019-09188-9
Luo, 2014, 1-, 1.5-, and 2-μm fiber lasers Q-switched by a broadband few-layer MoS2 saturable absorber, J. Lightwave Technol., 32, 4077, 10.1109/JLT.2014.2362147
Li, 2014, Thulium-doped all-fiber mode-locked laser based on NPR and 45°-tilted fiber grating, Opt. Express, 22, 31020, 10.1364/OE.22.031020
Li, 2016, Black phosphorus: a two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers, Sci. Rep., 6, 30361, 10.1038/srep30361
Qin, 2018, Black phosphorus Q-switched and mode-locked mid-infrared Er: ZBLAN fiber laser at 3.5 μm wavelength, Opt. Express, 26, 8224, 10.1364/OE.26.008224
Traxer, 2019, Thulium fiber laser: the new player for kidney stone treatment? A comparison with Holmium:YAG laser, World J. Urol., 1–12
Nazif, 2004, Review of laser fibers: a practical guide for urologists, J. Endourology, 18, 818, 10.1089/end.2004.18.818
Scott, 2009, Thulium fiber laser ablation of urinary stones through small-core optical fibers, IEEE J. Sel. Top. Quantum Electron., 15, 435, 10.1109/JSTQE.2008.2012133
Fried, 2018, Recent advances in infrared laser lithotripsy [Invited], Biomed. Opt. Express, 9, 4552, 10.1364/BOE.9.004552
Zhou, 2012, Review on recent progress on mid-infrared fiber lasers, Laser Phys., 22, 1744, 10.1134/S1054660X12110199
Zhu, 2017, Pulsed fluoride fiber lasers at 3 μm, J. Opt. Soc. Am. B, 34, A15, 10.1364/JOSAB.34.000A15
Ma, 2019, Review of mid-infrared mode-locked laser sources in the 2.0 μm-3.5 μm spectral region, Appl. Phys. Rev., 6, 021317, 10.1063/1.5037274
He, 2019, Emerging 2D materials beyond graphene for ultrashort pulse generation in fiber lasers, Nanoscale, 11, 2577, 10.1039/C8NR09368G
Pawliszewska, 2017, Fundamental and harmonic mode-locking at 2.1 μm with black phosphorus saturable absorber, Opt. Express, 25, 16916, 10.1364/OE.25.016916
Liu, 2013, High-energy passively Q-switched 2 μm Tm3+-doped double-clad fiber laser using graphene-oxide-deposited fiber taper, Opt. Express, 21, 204, 10.1364/OE.21.000204
Jackson, 2007, High-power 83 W holmium-doped silica fiber laser operating with high beam quality, Opt. Lett., 32, 241, 10.1364/OL.32.000241
Liu, 2014, 210 W single-frequency, single-polarization, thulium-doped all-fiber MOPA, Opt. Express, 22, 13572, 10.1364/OE.22.013572
Harrington, 2004
Baker, 2017, Nanoparticle doping for high power fiber lasers at eye-safer wavelengths, Opt. Express, 25, 13903, 10.1364/OE.25.013903
Kamrádek, 2019, Nanoparticle and solution doping for efficient holmium fiber lasers, IEEE Photonics J., 11, 7103610, 10.1109/JPHOT.2019.2940747
Sacks, 2007, Long wavelength operation of double-clad Tm: silica fiber lasers, 645320
Holmen, 2019, Tunable holmium-doped fiber laser with multiwatt operation from 2025 nm to 2200 nm, Opt. Lett., 44, 4131, 10.1364/OL.44.004131
Zhu, 2010, High-power ZBLAN glass fiber lasers: review and prospect, Adv. OptoElectron., 2010, 501956, 10.1155/2010/501956
Tran, 1984, Heavy metal fluoride glasses and fibers: a review, J. Lightwave Technol., 2, 566, 10.1109/JLT.1984.1073661
Huang, 2019, Broadband mid-infrared nonlinear optical modulator enabled by gold nanorods: towards the mid-infrared regime, Photonics Res., 7, 699, 10.1364/PRJ.7.000699
El-Agmy, 2010, 2.31 μm laser under up-conversion pumping at 1.064 μm in Tm3+: ZBLAN fibre lasers, Electron. Lett., 46, 936, 10.1049/el.2010.1248
Majewski, 2018, Dysprosium-doped ZBLAN fiber laser tunable from 2.8 μm to 3.4 μm, pumped at 1.7 μm, Opt. Lett., 43, 971, 10.1364/OL.43.000971
Paradis, 2018, 10 W-level gain-switched all-fiber laser at 2.8 μm, Opt. Lett., 43, 3196, 10.1364/OL.43.003196
Henderson-Sapir, 2016, Versatile and widely tunable mid-infrared erbium doped ZBLAN fiber laser, Opt. Lett., 41, 1676, 10.1364/OL.41.001676
Sanghera, 2009, Chalcogenide glass-fiber-based mid-IR sources and applications, IEEE J. Sel. Top. Quantum Electron., 15, 114, 10.1109/JSTQE.2008.2010245
Maurugeon, 2010, Telluride glass step index fiber for the far infrared, J. Lightwave Technol., 28, 3358
Slusher, 2004, Large Raman gain and nonlinear phase shifts in high-purity As2Se3 chalcogenide fibers, J. Opt. Soc. Am. B, 21, 1146, 10.1364/JOSAB.21.001146
Nguyen, 2010, Demonstration of nonlinear effects in an ultra-highly nonlinear AsSe suspended-core chalcogenide fiber, IEEE Photonics Technol. Lett., 22, 1844, 10.1109/LPT.2010.2088386
Cheng, 2014, Fabrication and characterization of a hybrid four-hole AsSe2-As2S5 microstructured optical fiber with a large refractive index difference, Opt. Express, 22, 13322, 10.1364/OE.22.013322
Petersen, 2014, Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre, Nat. Photonics, 8, 830, 10.1038/nphoton.2014.213
Cheng, 2016, Mid-infrared supercontinuum generation spanning 2.0 to 15.1 μm in a chalcogenide step-index fiber, Opt. Lett., 41, 2117, 10.1364/OL.41.002117
Robichaud, 2016, Compact 3–8 μm supercontinuum generation in a low-loss As2Se3 step-index fiber, Opt. Lett., 41, 4605, 10.1364/OL.41.004605
Yu, 2014, A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide, Laser Photonics Rev., 8, 792, 10.1002/lpor.201400034
Xue, 2019, Mid-infrared supercontinuum in well-structured AsSe fibers based on peeled-extrusion, Opt. Mater., 89, 402, 10.1016/j.optmat.2019.01.036
Wang, 2018, Broadband mid-infrared supercontinuum generation in novel As2Se3-As2Se2S step-index fibers, Opt. Commun., 410, 410, 10.1016/j.optcom.2017.10.056
Karim, 2018, Mid-infrared supercontinuum generation using As2Se3 photonic crystal fiber and the impact of higher-order dispersion parameters on its supercontinuum bandwidth, Opt. Fiber Technol., 45, 255, 10.1016/j.yofte.2018.07.024
Pureza, 2006, Nonlinear properties of chalcogenide glass fibers, J. Optoelectron. Adv. Mater., 8, 2148
Seddon, 2010, Progress in rare-earth-doped mid-infrared fiber lasers, Opt. Express, 18, 26704, 10.1364/OE.18.026704
Sojka, 2019, Ultra-broadband mid-infrared emission from a Pr3+/Dy3+ co-doped selenide-chalcogenide glass fiber spectrally shaped by varying the pumping arrangement, Opt. Mater. Express, 9, 2291, 10.1364/OME.9.002291
Tang, 2015, Mid-infrared photoluminescence in small-core fiber of praseodymium-ion doped selenide-based chalcogenide glass, Opt. Mater. Express, 5, 870, 10.1364/OME.5.000870
Sujecki, 2019, Experimental and numerical investigation to rationalize both near-infrared and mid-infrared spontaneous emission in Pr3+ doped selenide-chalcogenide fiber, J. Lumin., 209, 14, 10.1016/j.jlumin.2019.01.023
Rudy, 2014, Advances in 2-μm Tm-doped mode-locked fiber lasers, Opt. Fiber Technol., 20, 642, 10.1016/j.yofte.2014.06.005
Hemming, 2014, A review of recent progress in holmium-doped silica fibre sources, Opt. Fiber Technol., 20, 621, 10.1016/j.yofte.2014.08.010
Schäfer, 2017, Towards a 20W-level industrial-grade Er: ZBLAN fiber laser at 2.8 μm
Tang, 2015, Watt-level passively mode-locked Er3+-doped ZBLAN fiber laser at 2.8 μm, Opt. Lett., 40, 4855, 10.1364/OL.40.004855
Woodward, 2018, High-efficiency watt-level mid-infrared fiber lasers beyond 3 µm using Dy: ZBLAN
Saini, 2015, Broadband mid-infrared supercontinuum spectra spanning 2–15 μm using As2Se3 chalcogenide glass triangular-core graded-index photonic crystal fiber, J. Lightwave Technol., 33, 3914, 10.1109/JLT.2015.2418993
Fortin, 2017, 67
Bernier, 2013, Mid-infrared chalcogenide glass Raman fiber laser, Opt. Lett., 38, 127, 10.1364/OL.38.000127
Richardson, 2010, High power fiber lasers: current status and future perspectives, J. Opt. Soc. Am. B, 27, B63, 10.1364/JOSAB.27.000B63
Clarkson, 2002, High-power cladding-pumped Tm-doped silica fiber laser with wavelength tuning from 1860 to 2090 nm, Opt. Lett., 27, 1989, 10.1364/OL.27.001989
Jackson, 1998, High-power diode-cladding-pumped Tm-doped silica fiber laser, Opt. Lett., 23, 1462, 10.1364/OL.23.001462
Engelbrecht, 2008, Ultrafast thulium-doped fiber-oscillator with pulse energy of 4.3 nJ, Opt. Lett., 33, 690, 10.1364/OL.33.000690
Wienke, 2012, Ultrafast, stretched-pulse thulium-doped fiber laser with a fiber-based dispersion management, Opt. Lett., 37, 2466, 10.1364/OL.37.002466
Solodyankin, 2008, Mode-locked 1.93 μm thulium fiber laser with a carbon nanotube absorber, Opt. Lett., 33, 1336, 10.1364/OL.33.001336
Haxsen, 2012, Monotonically chirped pulse evolution in an ultrashort pulse thulium-doped fiber laser, Opt. Lett., 37, 1014, 10.1364/OL.37.001014
Moulton, 2009, Tm-doped fiber lasers: fundamentals and power scaling, IEEE J. Sel. Top. Quantum Electron., 15, 85, 10.1109/JSTQE.2008.2010719
Sincore, 2017, High average power thulium-doped silica fiber lasers: review of systems and concepts, IEEE J. Sel. Top. Quantum Electron., 24, 1, 10.1109/JSTQE.2017.2775964
Gaida, 2018, Ultrafast thulium fiber laser system emitting more than 1 kW of average power, Opt. Lett., 43, 5853, 10.1364/OL.43.005853
Yin, 2014, High-power all-fiber wavelength-tunable thulium doped fiber laser at 2 μm, Opt. Express, 22, 19947, 10.1364/OE.22.019947
Meleshkevich, 2007, 415W single-mode CW thulium fiber laser in all-fiber format
Wang, 2015, High power tandem-pumped thulium-doped fiber laser, Opt. Express, 23, 2991, 10.1364/OE.23.002991
Geng, 2009, Single-frequency narrow-linewidth Tm-doped fiber laser using silicate glass fiber, Opt. Lett., 34, 3493, 10.1364/OL.34.003493
Goodno, 2009, Low-phase-noise, single-frequency, single-mode 608 W thulium fiber amplifier, Opt. Lett., 34, 1204, 10.1364/OL.34.001204
Wang, 2015, 310-W single frequency Tm-doped all-fiber MOPA, IEEE Photonics Technol. Lett., 27, 677, 10.1109/LPT.2015.2390253
Antipov, 2013, Holmium fibre laser emitting at 2.21 μm, Quantum Electron., 43, 603, 10.1070/QE2013v043n07ABEH015076
Kurkov, 2009, Holmium fiber laser based on the heavily doped active fiber, Laser Phys. Lett., 6, 661, 10.1002/lapl.200910056
Aubrecht, 2017, Self-swept holmium fiber laser near 2100 nm, Opt. Express, 25, 4120, 10.1364/OE.25.004120
Jackson, 2007, High-power and highly efficient diode-cladding-pumped Ho3+-doped silica fiber lasers, Opt. Lett., 32, 3349, 10.1364/OL.32.003349
Jackson, 2006, Midinfrared holmium fiber lasers, IEEE J. Quantum Electron., 42, 187, 10.1109/JQE.2005.861824
Hemming, 2013, High power operation of cladding pumped holmium-doped silica fibre lasers, Opt. Express, 21, 4560, 10.1364/OE.21.004560
Hemming, 2013, A monolithic cladding pumped holmium-doped fibre laser
Oh, 1994, Continuous-wave oscillation of thulium-sensitized holmium-doped silica fiber laser, Opt. Lett., 19, 278, 10.1364/OL.19.000278
Taniguchi, 2002, 1212 nm pumping of 2 μm Tm–Ho-codoped silica fiber laser, Appl. Phys. Lett., 81, 3723, 10.1063/1.1521242
Jung, 2013, Mode-locked pulse generation from an all-fiberized, Tm-Ho-codoped fiber laser incorporating a graphene oxide-deposited side-polished fiber, Opt. Express, 21, 20062, 10.1364/OE.21.020062
Xue, 2014, Ultra-wideband all-fiber tunable Tm/Ho-co-doped laser at 2 μm, Opt. Express, 22, 25976, 10.1364/OE.22.025976
Allain, 1989, Erbium-doped fluorozirconate single-mode fibre lasing at 2.71 μm, Electron. Lett., 25, 28, 10.1049/el:19890020
Bedö, 1995, Saturation of the 2.71 μm laser output in erbium-doped ZBLAN fibers, Opt. Commun., 116, 81, 10.1016/0030-4018(95)00040-F
Jackson, 1999, Diode-pumped 1.7-W erbium 3-µm fiber laser, Opt. Lett., 24, 1133, 10.1364/OL.24.001133
Zhu, 2007, 10-W-level diode-pumped compact 2.78 μm ZBLAN fiber laser, Opt. Lett., 32, 26, 10.1364/OL.32.000026
Tokita, 2009, Liquid-cooled 24 W mid-infrared Er: ZBLAN fiber laser, Opt. Lett., 34, 3062, 10.1364/OL.34.003062
Qin, 2017, Mid-infrared Er: ZBLAN fiber laser reaching 3.68 μm wavelength, Chin. Opt. Lett., 15, 111402, 10.3788/COL201715.111402
Goya, 2019, Stable 35-W Er: ZBLAN fiber laser with CaF2 end caps, Appl. Phys. Express, 12, 102007, 10.7567/1882-0786/ab3f44
Aydin, 2018, Towards power scaling of 2.8 μm fiber lasers, Opt. Lett., 43, 4542, 10.1364/OL.43.004542
Bernier, 2009, Highly stable and efficient erbium-doped 2.8 μm all fiber laser, Opt. Express, 17, 16941, 10.1364/OE.17.016941
Faucher, 2011, 20 W passively cooled single-mode all-fiber laser at 2.8 μm, Opt. Lett., 36, 1104, 10.1364/OL.36.001104
Fortin, 2015, 30 W fluoride glass all-fiber laser at 2.94 μm, Opt. Lett., 40, 2882, 10.1364/OL.40.002882
Sumiyoshi, 1999, High-power continuous-wave 3-and 2-μm cascade Ho3+: ZBLAN fiber laser and its medical applications, IEEE J. Sel. Top. Quantum Electron., 5, 936, 10.1109/2944.796314
Li, 2011, High-power diode-pumped fiber laser operating at 3 μm, Opt. Lett., 36, 3642, 10.1364/OL.36.003642
Jackson, 2004, Single-transverse-mode 2.5-W holmium-doped fluoride fiber laser operating at 2.86 µm, Opt. Lett., 29, 334, 10.1364/OL.29.000334
Crawford, 2014, 3.4 W Ho3+, Pr3+ co-doped fluoride fibre laser, 1
Li, 2018, Miniaturized Mid-infrared all-fiber laser at 2.9 μm, 1
Guo, 2018, 2D noncarbon materials-based nonlinear optical devices for ultrafast photonics, Chin. Opt. Lett., 16, 020004, 10.3788/COL201816.020004
Matsas, 1992, Selfstarting passively mode-locked fibre ring soliton laser exploiting nonlinear polarisation rotation, Electron. Lett., 28, 1391, 10.1049/el:19920885
Chong, 2006, All-normal-dispersion femtosecond fiber laser, Opt. Express, 14, 10095, 10.1364/OE.14.010095
Haxsen, 2008, Stretched-pulse operation of a thulium-doped fiber laser, Opt. Express, 16, 20471, 10.1364/OE.16.020471
Kadel, 2012, All-fiber passively mode-locked thulium/holmium laser with two center wavelengths, Appl. Opt., 51, 6465, 10.1364/AO.51.006465
He, 2014, A stable 2 μm passively Q-switched fiber laser based on nonlinear polarization evolution, Laser Phys., 24, 085102, 10.1088/1054-660X/24/8/085102
Wang, 2016, Q-switched-like soliton bunches and noise-like pulses generation in a partially mode-locked fiber laser, Opt. Express, 24, 14709, 10.1364/OE.24.014709
Duval, 2015, Femtosecond fiber lasers reach the mid-infrared, Optica, 2, 623, 10.1364/OPTICA.2.000623
Hu, 2015, Ultrafast pulses from a mid-infrared fiber laser, Opt. Lett., 40, 4226, 10.1364/OL.40.004226
Wang, 2019, Ultrafast Dy3+: fluoride fiber laser beyond 3 μm, Opt. Lett., 44, 395, 10.1364/OL.44.000395
Richardson, 1991, Selfstarting, passively modelocked erbium fibre ring laser based on the amplifying Sagnac switch, Electron. Lett., 27, 542, 10.1049/el:19910341
Nicholson, 2007, A passively-modelocked, Yb-doped, figure-eight, fiber laser utilizing anomalous-dispersion higher-order-mode fiber, Opt. Express, 15, 6623, 10.1364/OE.15.006623
Song, 2005, All-fiber passively Q-switched laser by a symmetrical nonlinear optical loop mirror with nonlinear polarization rotation, 629
Ahmad, 2014, All-fiber dual wavelength passive Q-switched fiber laser using a dispersion-decreasing taper fiber in a nonlinear loop mirror, Opt. Express, 22, 22794, 10.1364/OE.22.022794
Fedotov, 2014, High average power mode-locked figure-eight Yb fibre master oscillator, Opt. Express, 22, 31379, 10.1364/OE.22.031379
Gomes, 2004, Picosecond SESAM-based ytterbium mode-locked fiber lasers, IEEE J. Sel. Top. Quantum Electron., 10, 129, 10.1109/JSTQE.2003.822918
Paschotta, 1999, Passively Q-switched 0.1-mJ fiber laser system at 1.53 μm, Opt. Lett., 24, 388, 10.1364/OL.24.000388
Zhang, 2009, Multi-wavelength dissipative soliton operation of an erbium-doped fiber laser, Opt. Express, 17, 12692, 10.1364/OE.17.012692
Zhang, 2009, Dissipative vector solitons in a dispersion-managed cavity fiber laser with net positive cavity dispersion, Opt. Express, 17, 455, 10.1364/OE.17.000455
Gumenyuk, 2011, Dissipative dispersion-managed soliton 2 μm thulium/holmium fiber laser, Opt. Lett., 36, 609, 10.1364/OL.36.000609
Shen, 2017, Wavelength-tunable passively mode-locked mid-infrared Er3+-doped ZBLAN fiber laser, Sci. Rep., 7, 14913, 10.1038/s41598-017-13089-6
Li, 2014, Semiconductor saturable absorber mirror passively Q-switched 2.97 μm fluoride fiber laser, Laser Phys. Lett., 11, 065102, 10.1088/1612-2011/11/6/065102
Wei, 2017, 34 nm-wavelength-tunable picosecond Ho3+/Pr3+-codoped ZBLAN fiber laser, Opt. Express, 25, 19170, 10.1364/OE.25.019170
Martinez, 2013, Nanotube and graphene saturable absorbers for fibre lasers, Nat. Photonics, 7, 842, 10.1038/nphoton.2013.304
Kataura, 1999, Optical properties of single-wall carbon nanotubes, Synth. Met., 103, 2555, 10.1016/S0379-6779(98)00278-1
Chen, 1999, Electronic structure and optical limiting behavior of carbon nanotubes, Phys. Rev. Lett., 82, 2548, 10.1103/PhysRevLett.82.2548
Wang, 2005, The optical resonances in carbon nanotubes arise from excitons, Science, 308, 838, 10.1126/science.1110265
Nair, 2008, Fine structure constant defines visual transparency of graphene, Science, 320, 1308, 10.1126/science.1156965
Bao, 2009, Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers, Adv. Funct. Mater., 19, 3077, 10.1002/adfm.200901007
Wang, 2009, Broadband nonlinear optical response of graphene dispersions, Adv. Mater., 21, 2430, 10.1002/adma.200803616
Sun, 2008, L-band ultrafast fiber laser mode locked by carbon nanotubes, Appl. Phys. Lett., 93, 061114, 10.1063/1.2968661
Wang, 2017, Compact CNT mode-locked Ho3+-doped fluoride fiber laser at 1.2 μm, IEEE J. Sel. Top. Quantum Electron., 24, 1
Set, 2004, Ultrafast fiber pulsed lasers incorporating carbon nanotubes, IEEE J. Sel. Top. Quantum Electron., 10, 137, 10.1109/JSTQE.2003.822912
Kivistö, 2009, Carbon nanotube films for ultrafast broadband technology, Opt. Express, 17, 2358, 10.1364/OE.17.002358
Chamorovskiy, 2012, Tunable Ho-doped soliton fiber laser mode-locked by carbon nanotube saturable absorber, Laser Phys. Lett., 9, 602, 10.7452/lapl.201210094
Tolstik, 2014, Femtosecond Cr: ZnS laser at 2.35 µm mode-locked by carbon nanotubes, 89591A
Wei, 2019, Mid-infrared Q-switched and mode-locked fiber lasers at 2.87 μm based on carbon nanotube, IEEE J. Sel. Top. Quantum Electron., 25, 1, 10.1109/JSTQE.2019.2899015
Lü, 2019, Wideband tunable passively Q-switched fiber laser at 2.8 μm using a broadband carbon nanotube saturable absorber, Photonics Res., 7, 14, 10.1364/PRJ.7.000014
Novoselov, 2004, Electric field effect in atomically thin carbon films, Science, 306, 666, 10.1126/science.1102896
Novoselov, 2005, Two-dimensional gas of massless Dirac fermions in graphene, Nature, 438, 197, 10.1038/nature04233
Zhang, 2019, Versatile applications of metal single-atom @ 2D material nanoplatforms, Adv. Sci., 6, 1901787, 10.1002/advs.201901787
Song, 2013, Quasi-periodicity of vector solitons in a graphene mode-locked fiber laser, Laser Phys. Lett., 10, 125103, 10.1088/1612-2011/10/12/125103
Song, 2017, Period-doubling and quadrupling bifurcation of vector soliton bunches in a graphene mode locked fiber laser, IEEE Photonics J., 9, 1, 10.1109/JPHOT.2017.2734163
Zhang, 2010, Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser, Appl. Phys. Lett., 96, 111112, 10.1063/1.3367743
Zhao, 2010, Dissipative soliton operation of an ytterbium-doped fiber laser mode locked with atomic multilayer graphene, Opt. Lett., 35, 3622, 10.1364/OL.35.003622
Wang, 2013, All-fiber passively mode-locked thulium-doped fiber ring laser using optically deposited graphene saturable absorbers, Appl. Phys. Lett., 102, 131117, 10.1063/1.4800036
Zhu, 2015, Graphene mode-locked fiber laser at 2.8 μm, IEEE Photonics Technol. Lett., 28, 7, 10.1109/LPT.2015.2478836
Wei, 2013, Graphene Q-switched 2.78 μm Er3+-doped fluoride fiber laser, Opt. Lett., 38, 3233, 10.1364/OL.38.003233
Tokita, 2013, Graphene Q-switching of a 3 μm Er: ZBLAN fiber laser
Zhang, 2009, Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface, Nat. Phys., 5, 438, 10.1038/nphys1270
Hasan, 2010, Colloquium: topological insulators, Rev. Mod. Phys., 82, 3045, 10.1103/RevModPhys.82.3045
Qi, 2011, Topological insulators and superconductors, Rev. Mod. Phys., 83, 1057, 10.1103/RevModPhys.83.1057
Hajlaoui, 2012, Ultrafast surface carrier dynamics in the topological insulator Bi2Te3, Nano Lett., 12, 3532, 10.1021/nl301035x
Lu, 2013, Third order nonlinear optical property of Bi2Se3, Opt. Express, 21, 2072, 10.1364/OE.21.002072
Zhao, 2012, Ultra-short pulse generation by a topological insulator based saturable absorber, Appl. Phys. Lett., 101, 211106, 10.1063/1.4767919
Chen, 2014, Broadband optical and microwave nonlinear response in topological insulator, Opt. Mater. Express, 4, 587, 10.1364/OME.4.000587
Bernard, 2012, Towards mode-locked fiber laser using topological insulators
Zhao, 2012, Wavelength-tunable picosecond soliton fiber laser with topological insulator: Bi2Se3 as a mode locker, Opt. Express, 20, 27888, 10.1364/OE.20.027888
Luo, 2013, 1.06 μm Q-switched ytterbium-doped fiber laser using few-layer topological insulator Bi2Se3 as a saturable absorber, Opt. Express, 21, 29516, 10.1364/OE.21.029516
Chen, 2013, Self-assembled topological insulator: Bi2Se3 membrane as a passive Q-switcher in an Erbium-doped fiber laser, J. Lightwave Technol., 31, 2857, 10.1109/JLT.2013.2273493
Dou, 2014, Mode-locked ytterbium-doped fiber laser based on topological insulator: Bi2Se3, Opt. Express, 22, 24055, 10.1364/OE.22.024055
Wang, 2019, Generation of harmonic mode-locking of bound solitons in the ultrafast fiber laser with Sb2Te3 saturable absorber on microfiber, Laser Phys. Lett., 16, 025103, 10.1088/1612-202X/aaf790
Tarka, 2016, 2 µm ultrafast fiber laser modelocked by mechanically exfoliated Sb2Te3, 972820
Luo, 2014, Topological-insulator passively Q-switched double-clad Fiber laser at 2 μm wavelength, IEEE J. Sel. Top. Quantum Electron., 20, 0902708
Tang, 2016, 2.8-μm pulsed Er3+: ZBLAN fiber laser modulated by topological insulator, IEEE Photonics Technol. Lett., 28, 1573, 10.1109/LPT.2016.2555989
Li, 2015, 3-μm mid-infrared pulse generation using topological insulator as the saturable absorber, Opt. Lett., 40, 3659, 10.1364/OL.40.003659
Wilson, 1969, The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties, Adv. Phys., 18, 193, 10.1080/00018736900101307
Wang, 2012, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nat. Nanotechnol., 7, 699, 10.1038/nnano.2012.193
Mak, 2016, Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides, Nat. Photonics, 10, 216, 10.1038/nphoton.2015.282
Wang, 2014, Broadband few-layer MoS2 saturable absorbers, Adv. Mater., 26, 3538, 10.1002/adma.201306322
Kuc, 2011, Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2, Phys. Rev. B, 83, 245213, 10.1103/PhysRevB.83.245213
Mak, 2010, Atomically thin MoS2: a new direct-gap semiconductor, Phys. Rev. Lett., 105, 136805, 10.1103/PhysRevLett.105.136805
Wang, 2013, Ultrafast saturable absorption of two-dimensional MoS2 nanosheets, ACS Nano, 7, 9260, 10.1021/nn403886t
Woodward, 2015, Wideband saturable absorption in few-layer molybdenum diselenide (MoSe2) for Q-switching Yb-, Er-and Tm-doped fiber lasers, Opt. Express, 23, 20051, 10.1364/OE.23.020051
Niu, 2018, Passively mode-locked Er-doped fiber laser based on SnS2 nanosheets as a saturable absorber, Photonics Res., 6, 72, 10.1364/PRJ.6.000072
Mao, 2017, Passively Q-switched and mode-locked fiber laser based on an ReS2 saturable absorber, IEEE J. Sel. Top. Quantum Electron., 24, 1, 10.1109/JSTQE.2017.2713641
Wang, 2018, Noise-like pulses generated from a passively mode-locked fiber laser with a WS2 saturable absorber on microfiber, Laser Phys. Lett., 15, 085103, 10.1088/1612-202X/aac551
Mao, 2016, Erbium-doped fiber laser passively mode locked with few-layer WSe2/MoSe2 nanosheets, Sci. Rep., 6, 23583, 10.1038/srep23583
Mao, 2015, WS2 saturable absorber for dissipative soliton mode locking at 1.06 and 1.55 µm, Opt. Express, 23, 27509, 10.1364/OE.23.027509
Wei, 2016, Passively Q-switched mid-infrared fluoride fiber laser around 3 µm using a tungsten disulfide (WS2) saturable absorber, Laser Phys. Lett., 13, 105108, 10.1088/1612-2011/13/10/105108
Jung, 2015, Mode-locked, 1.94-μm, all-fiberized laser using WS2-based evanescent field interaction, Opt. Express, 23, 19996, 10.1364/OE.23.019996
Wang, 2018, Mode-locked thulium-doped fiber laser with chemical vapor deposited molybdenum ditelluride, Opt. Lett., 43, 1998, 10.1364/OL.43.001998
Wang, 2015, Tunable nonlinear refractive index of two-dimensional MoS2, WS2, and MoSe2 nanosheet dispersions, Photonics Res., 3, A51, 10.1364/PRJ.3.000A51
Yu, 2018, Atomically thin noble metal dichalcogenide: a broadband mid-infrared semiconductor, Nat. Commun., 9, 1545, 10.1038/s41467-018-03935-0
Wang, 2015, Monolayer PtSe2, a new semiconducting transition-metal-dichalcogenide, epitaxially grown by direct selenization of Pt, Nano Lett., 15, 4013, 10.1021/acs.nanolett.5b00964
Li, 2014, Black phosphorus field-effect transistors, Nat. Nanotechnol., 9, 372, 10.1038/nnano.2014.35
Xia, 2014, Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics, Nat. Commun., 5, 4458, 10.1038/ncomms5458
Liu, 2014, Phosphorene: an unexplored 2D semiconductor with a high hole mobility, ACS Nano, 8, 4033, 10.1021/nn501226z
Liu, 2015, Semiconducting black phosphorus: synthesis, transport properties and electronic applications, Chem. Soc. Rev., 44, 2732, 10.1039/C4CS00257A
Zheng, 2017, Black phosphorus based all-optical-signal-processing: Toward high performances and enhanced stability, ACS Photonics, 4, 1466, 10.1021/acsphotonics.7b00231
Lu, 2015, Broadband nonlinear optical response in multi-layer black phosphorus: an emerging infrared and mid-infrared optical material, Opt. Express, 23, 11183, 10.1364/OE.23.011183
Li, 2017, Direct observation of the layer-dependent electronic structure in phosphorene, Nat. Nanotechnol., 12, 21, 10.1038/nnano.2016.171
Wang, 2016, Optical properties of black phosphorus, Adv. Opt. Photonics, 8, 618, 10.1364/AOP.8.000618
Wang, 2015, Ultrafast recovery time and broadband saturable absorption properties of black phosphorus suspension, Appl. Phys. Lett., 107, 091905, 10.1063/1.4930077
Hisyam, 2016, Generation of Mode-locked Ytterbium doped fiber ring laser using few-layer black phosphorus as a saturable absorber, IEEE J. Sel. Top. Quantum Electron., 23, 39, 10.1109/JSTQE.2016.2532270
Luo, 2015, Microfiber-based few-layer black phosphorus saturable absorber for ultra-fast fiber laser, Opt. Express, 23, 20030, 10.1364/OE.23.020030
Chen, 2015, Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and mode-locking laser operation, Opt. Express, 23, 12823, 10.1364/OE.23.012823
Sotor, 2015, Ultrafast thulium-doped fiber laser mode locked with black phosphorus, Opt. Lett., 40, 3885, 10.1364/OL.40.003885
Qin, 2016, Mid-infrared mode-locked pulse generation with multilayer black phosphorus as saturable absorber, Opt. Lett., 41, 56, 10.1364/OL.41.000056
Kim, 2015, Toward air-stable multilayer phosphorene thin-films and transistors, Sci. Rep., 5, 8989, 10.1038/srep08989
Island, 2015, Environmental instability of few-layer black phosphorus, 2D Mater., 2, 011002, 10.1088/2053-1583/2/1/011002
Chen, 2017, Interfacial thermal conductance in graphene/black phosphorus heterogeneous structures, Carbon, 117, 399, 10.1016/j.carbon.2017.03.011
Yang, 2012, Semiconductor saturable absorber mirror passively Q-switched fiber laser near 2 μm, Appl. Opt., 51, 5664, 10.1364/AO.51.005664
Yu, 2016, Nanosecond passively Q-switched thulium/holmium-doped fiber laser based on black phosphorus nanoplatelets, Opt. Mater. Express, 6, 603, 10.1364/OME.6.000603
Liu, 2012, Graphene-based passively Q-switched 2 μm thulium-doped fiber laser, Opt. Commun., 285, 5319, 10.1016/j.optcom.2012.07.063
Ahmad, 2018, Graphene-PVA saturable absorber for generation of a wavelength-tunable passively Q-switched thulium-doped fiber laser in 2.0 µm, Laser Phys., 28, 055105, 10.1088/1555-6611/aab2cc
Wang, 2016, Q-switched Tm3+-doped fiber laser with a micro-fiber based black phosphorus saturable absorber, Laser Phys., 26, 065104, 10.1088/1054-660X/26/6/065104
Ren, 2018, Black Phosphorus Q-Switched Large-Mode-Area Tm-Doped Fiber Laser, Int. J. Opt., 2018, 8060415, 10.1155/2018/8060415
Liu, 2016, Volume Bragg grating based tunable continuous-wave and Bi2Te3 Q-switched Er3+: ZBLAN fiber laser
Qin, 2015, Black phosphorus as saturable absorber for the Q-switched Er: ZBLAN fiber laser at 2.8 μm, Opt. Express, 23, 24713, 10.1364/OE.23.024713
Wang, 2019, MoS2 Q-switched 2.8 µm Er: ZBLAN fiber laser, Laser Phys., 29, 025101, 10.1088/1555-6611/aaf642
Shen, 2016, Watt-level passively Q-switched heavily Er3+-doped ZBLAN fiber laser with a semiconductor saturable absorber mirror, Sci. Rep., 6, 26659, 10.1038/srep26659
Lai, 2018, High power passively Q-switched Er3+-doped ZBLAN fiber laser at 2.8 µm based on a semiconductor saturable absorber mirror, Laser Phys. Lett., 15, 085109, 10.1088/1612-202X/aac549
Zhu, 2013, Fe2+: ZnSe and graphene Q-switched singly Ho3+-doped ZBLAN fiber lasers at 3 μm, Opt. Mater. Express, 3, 1365, 10.1364/OME.3.001365
Shi, 2019, Passively Q-switched 3-μm Ho3+-doped fiber laser based on nonlinear polarization rotation, IEEE Photonics Technol. Lett., 31, 1437, 10.1109/LPT.2019.2930615
Nelson, 1995, Broadly tunable sub-500 fs pulses from an additive-pulse mode-locked thulium-doped fiber ring laser, Appl. Phys. Lett., 67, 19, 10.1063/1.115477
Li, 2014, Sub-100 fs passively mode-locked holmium-doped fiber oscillator operating at 2.06 μm, Opt. Lett., 39, 6859, 10.1364/OL.39.006859
Sun, 2017, 1867–2010 nm tunable femtosecond thulium-doped all-fiber laser, Opt. Express, 25, 8997, 10.1364/OE.25.008997
Sun, 2017, 65-fs Pulses at 2 μm in a Compact Tm-Doped All-Fiber Laser by Dispersion and Nonliearity Management, IEEE Photonics Technol. Lett., 30, 303, 10.1109/LPT.2017.2780284
Jiang, 2012, 500 MHz, 58fs highly coherent Tm fiber soliton laser
Michalska, 2019, All-fiber thulium-doped mode-locked fiber laser and amplifier based on nonlinear fiber loop mirror, Opt. Laser Technol., 118, 121, 10.1016/j.optlastec.2019.05.016
Wang, 2011, Mode-locked Tm–Ho-codoped fiber laser at 2.06 μm, IEEE Photonics Technol. Lett., 23, 682, 10.1109/LPT.2011.2123880
Wang, 2018, High-power mode-locked 2 µm multimode fiber laser, Laser Phys. Lett., 15, 085101, 10.1088/1612-202X/aac429
Jung, 2014, A femtosecond pulse fiber laser at 1935 nm using a bulk-structured Bi2Te3 topological insulator, Opt. Express, 22, 7865, 10.1364/OE.22.007865
Xia, 2014, Nanosecond pulse generation in a graphene mode-locked erbium-doped fiber laser, Opt. Commun., 330, 147, 10.1016/j.optcom.2014.05.048
Kelleher, 2009, Nanosecond-pulse fiber lasers mode-locked with nanotubes, Appl. Phys. Lett., 95, 111108, 10.1063/1.3207828
Rudy, 2012, Thulium-doped germanosilicate mode-locked fiber lasers
Wang, 2016, 152 fs nanotube-mode-locked thulium-doped all-fiber laser, Sci. Rep., 6, 28885, 10.1038/srep28885
Watanabe, 2019, Dispersion managed, high power Tm-doped ultrashort pulse fiber laser at 1.9 um using single wall carbon nanotube polyimide film
Yin, 2015, Soliton mode-locked fiber laser based on topological insulator Bi2Te3 nanosheets at 2 μm, Photonics Res., 3, 72, 10.1364/PRJ.3.000072
Wang, 2017, Ultrafast thulium-doped fiber laser mode locked by monolayer WSe2, IEEE J. Sel. Top. Quantum Electron., 24, 1
Tian, 2015, Mode-locked thulium fiber laser with MoS2, Laser Phys. Lett., 12, 065104, 10.1088/1612-2011/12/6/065104
Meng, 2017, Carbon nanotube mode-locked thulium fiber laser with 200 nm tuning range, Sci. Rep., 7, 45109, 10.1038/srep45109
Lee, 2018, Femtosecond Tm–Ho co-doped fiber laser using a bulk-structured Bi2Se3 topological insulator, Chin. Phys. B, 27, 094219, 10.1088/1674-1056/27/9/094219
Lee, 2017, All-fiberized, femtosecond laser at 1912 nm using a bulk-like MoSe2 saturable absorber, Opt. Mater. Express, 7, 2968, 10.1364/OME.7.002968
Yu, 2015, Thulium/holmium-doped fiber laser passively mode locked by black phosphorus nanoplatelets-based saturable absorber, Appl. Opt., 54, 10290, 10.1364/AO.54.010290
Gu, 2020, Generation of 131 fs mode-locked pulses from 2.8 μm Er:ZBLAN fiber laser, Chin. Opt. Lett., 18, 031402, 10.3788/COL202018.031402
Haboucha, 2014, Fiber Bragg grating stabilization of a passively mode-locked 2.8 μm Er3+: fluoride glass fiber laser, Opt. Lett., 39, 3294, 10.1364/OL.39.003294
Li, 2012, Efficient 2.87 μm fiber laser passively switched using a semiconductor saturable absorber mirror, Opt. Lett., 37, 3747, 10.1364/OL.37.003747
K. Yin, T. Jiang, X. Zheng, H. Yu, X. Cheng, J. Hou, Mid-infrared ultra-short mode-locked fiber laser utilizing topological insulator Bi2Te3 nano-sheets as the saturable absorber, arXiv preprint arXiv:1505.06322 (2015).
Wang, 2015, Atomically thin group V elemental films: theoretical investigations of antimonene allotropes, ACS Appl. Mater. Interfaces, 7, 11490, 10.1021/acsami.5b02441
Mu, 2015, Graphene–Bi2Te3 heterostructure as saturable absorber for short pulse generation, Acs Photonics, 2, 832, 10.1021/acsphotonics.5b00193
Qiao, 2015, Broadband photodetectors based on graphene–Bi2Te3 heterostructure, ACS Nano, 9, 1886, 10.1021/nn506920z
Jhon, 2017, Metallic MXene saturable absorber for femtosecond mode-locked lasers, Adv. Mater., 29, 1702496, 10.1002/adma.201702496
Jiang, 2018, Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T= F, O, or OH), Laser Photonics Rev., 12, 1700229, 10.1002/lpor.201700229
Naguib, 2014, 25th anniversary article: MXenes: a new family of two-dimensional materials, Adv. Mater., 26, 992, 10.1002/adma.201304138