Recent developments in mid-infrared fiber lasers: Status and challenges

Optics & Laser Technology - Tập 132 - Trang 106497 - 2020
Zhenhong Wang1, Bin Zhang1, Jun Liu1, Yufeng Song1, Han Zhang1
1College of Physics and Optoelectronic Engineering, Institute of Translational Medicine, Department of Otolaryngology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Health Science Center, Shenzhen University, Shenzhen 518060, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Gattass, 2008, Femtosecond laser micromachining in transparent materials, Nat. Photonics, 2, 219, 10.1038/nphoton.2008.47

Mandon, 2009, Fourier transform spectroscopy with a laser frequency comb, Nat. Photonics, 3, 99, 10.1038/nphoton.2008.293

Hudson, 2017, Toward all-fiber supercontinuum spanning the mid-infrared, Optica, 4, 1163, 10.1364/OPTICA.4.001163

Jackson, 2012, Towards high-power mid-infrared emission from a fibre laser, Nat. Photonics, 6, 423, 10.1038/nphoton.2012.149

Ebrahim-Zadeh, 2016, Mid-infrared coherent sources and applications: introduction, J. Opt. Soc. Am. B, 33, MIC1-MIC1, 10.1364/JOSAB.33.00MIC1

Henderson-Sapir, 2017, Recent advances in 3.5μm erbium-doped mid-infrared fiber lasers, IEEE J. Sel. Top. Quantum Electron., 23, 0900509, 10.1109/JSTQE.2016.2615961

Dudley, 2006, Supercontinuum generation in photonic crystal fiber, Rev. Mod. Phys., 78, 1135, 10.1103/RevModPhys.78.1135

Yang, 2014, Thirteen watt all-fiber mid-infrared supercontinuum generation in a single mode ZBLAN fiber pumped by a 2 μm MOPA system, Opt. Lett., 39, 1849, 10.1364/OL.39.001849

Frayssinous, 2018, Resonant polymer ablation using a compact 3.44 μm fiber laser, J. Mater. Process. Technol., 252, 813, 10.1016/j.jmatprotec.2017.10.051

Scholle, 2010

Polder, 2012, Treatment of melasma using a novel 1,927-nm fractional thulium fiber laser: a pilot study, Dermatol. Surg., 38, 199, 10.1111/j.1524-4725.2011.02178.x

Ha, 2020, First assessment of a carbon monoxide laser and a thulium fiber laser for fractional ablation of skin, Lasers Surg. Med., 10.1002/lsm.23215

Walsh, 2016, Mid infrared lasers for remote sensing applications, J. Lumin., 169, 400, 10.1016/j.jlumin.2015.03.004

Mingareev, 2012, Welding of polymers using a 2 μm thulium fiber laser, Opt. Laser Technol., 44, 2095, 10.1016/j.optlastec.2012.03.020

Mingareev, 2016, Principles and applications of trans-wafer processing using a 2-μm thulium fiber laser, Int. J. Adv. Des. Manuf. Technol., 84, 2567, 10.1007/s00170-015-7870-z

Jackson, 2002, Diode-pumped fiber lasers: A new clinical tool?, Lasers Surg. Med., 30, 184, 10.1002/lsm.10023

Serebryakov, 2010, Medical applications of mid-IR lasers. Problems and prospects, J. Opt. Technol., 77, 6, 10.1364/JOT.77.000006

Huang, 2016, Pulsed and CW adjustable 1942 nm single-mode all-fiber Tm-doped fiber laser system for surgical laser soft tissue ablation applications, Opt. Express, 24, 16674, 10.1364/OE.24.016674

Mikhail, 2018, Broadband tunable mid-IR Cr2+:CdSe lasers for medical applications

Moskalev, 2016, 140 W Cr: ZnSe laser system, Opt. Express, 24, 21090, 10.1364/OE.24.021090

Ehrenreich, 2010, 1-kW, all-glass Tm: fiber laser, SPIE Phtonics West 2010: LASE, Fibre Lasers VII: Technology, Sysltems and Applications Conference, 7850

Wang, 2014, Pulse bundles and passive harmonic mode-locked pulses in Tm-doped fiber laser based on nonlinear polarization rotation, Opt. Express, 22, 6147, 10.1364/OE.22.006147

Aleshkina, 2016, Impact of dispersion on the output characteristics of an all-fiber Er-doped nanosecond mode-locked figure-eight laser with passive nonlinear optical loop mirror, Laser Phys. Lett., 13, 035104, 10.1088/1612-2011/13/3/035104

Fu, 2013, Generation of 35-nJ nanosecond pulse from a passively mode-locked Tm, Ho-codoped fiber laser with graphene saturable absorber, IEEE Photonics Technol. Lett., 25, 1447, 10.1109/LPT.2013.2264456

Yang, 2019, Passively Q-switched and mode-locked Tm-Ho co-doped fiber laser using a WS2 saturable absorber fabricated by chemical vapor deposition, Opt. Laser Technol., 111, 571, 10.1016/j.optlastec.2018.10.023

Rudy, 2013, Amplified 2-μm thulium-doped all-fiber mode-locked figure-eight laser, J. Lightwave Technol., 31, 1809, 10.1109/JLT.2013.2258891

Li, 2014, All-fiber passively mode-locked Tm-doped NOLM-based oscillator operating at 2-μm in both soliton and noisy-pulse regimes, Opt. Express, 22, 7875, 10.1364/OE.22.007875

Liu, 2016, Noise-like pulse generation from a thulium-doped fiber laser using nonlinear polarization rotation with different net anomalous dispersion, Photonics Res., 4, 318, 10.1364/PRJ.4.000318

Wang, 2009, Mode-locked 2 μm laser with highly thulium-doped silicate fiber, Opt. Lett., 34, 3616, 10.1364/OL.34.003616

Mashiko, 2016, Tunable noise-like pulse generation in mode-locked Tm fiber laser with a SESAM, Opt. Express, 24, 26515, 10.1364/OE.24.026515

Wang, 2013, All-fiber ultrafast thulium-doped fiber ring laser with dissipative soliton and noise-like output in normal dispersion by single-wall carbon nanotubes, Appl. Phys. Lett., 103, 011103, 10.1063/1.4813108

Kieu, 2008, Soliton thulium-doped fiber laser with carbon nanotube saturable absorber, IEEE Photonics Technol. Lett., 21, 128, 10.1109/LPT.2008.2008727

Cho, 2009, Passive mode-locking of a Tm-doped bulk laser near 2 µm using a carbon nanotube saturable absorber, Opt. Express, 17, 11007, 10.1364/OE.17.011007

Zhang, 2012, Tm-doped fiber laser mode-locked by graphene-polymer composite, Opt. Express, 20, 25077, 10.1364/OE.20.025077

Song, 2013, Vector multi-soliton operation and interaction in a graphene mode-locked fiber laser, Opt. Express, 21, 10010, 10.1364/OE.21.010010

Yang, 2018, Dual-wavelength mode-locked Tm3+-doped fiber laser at 2 μm region with controllable soliton pulse number by employing graphene on microfiber, Opt. Laser Technol., 105, 76, 10.1016/j.optlastec.2018.02.036

Pawliszewska, 2018, Dispersion-managed Ho-doped fiber laser mode-locked with a graphene saturable absorber, Opt. Lett., 43, 38, 10.1364/OL.43.000038

Boguslawski, 2015, Graphene oxide paper as a saturable absorber for Er-and Tm-doped fiber lasers, Photonics Res., 3, 119, 10.1364/PRJ.3.000119

Song, 2017, Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability, 2D Mater., 4, 045010, 10.1088/2053-1583/aa87c1

Song, 2016, Vector soliton fiber laser passively mode locked by few layer black phosphorus-based optical saturable absorber, Opt. Express, 24, 25933, 10.1364/OE.24.025933

Song, 2019, Lead monoxide: a promising two-dimensional layered material for applications of nonlinear photonics at infrared band, Nanoscale, 11, 12595, 10.1039/C9NR03167G

Ge, 2017, Few-layer selenium-doped black phosphorus: synthesis, nonlinear optical properties and ultrafast photonics applications, J. Mater. Chem. C, 5, 6129, 10.1039/C7TC01267E

Ge, 2018, Broadband nonlinear photoresponse of 2D TiS2 for ultrashort pulse generation and all-optical thresholding devices, Adv. Opt. Mater., 6, 1701166, 10.1002/adom.201701166

Zhang, 2016, Stabilizing a platinum1 single-atom catalyst on supported phosphomolybdic acid without compromising hydrogenation activity, Angew. Chem. Int. Ed., 55, 8319, 10.1002/anie.201602801

Xu, 2017, Stabilization of black phosphorous quantum dots in PMMA nanofiber film and broadband nonlinear optics and ultrafast photonics application, Adv. Funct. Mater., 27, 1702437, 10.1002/adfm.201702437

Xu, 2017, Size-dependent nonlinear optical properties of black phosphorus nanosheets and their applications in ultrafast photonics, J. Mater. Chem. C, 5, 3007, 10.1039/C7TC00071E

Zhang, 2016, Soft, oxidative stripping of alkyl thiolate ligands from hydroxyapatite-supported gold nanoclusters for oxidation reactions, Chem-Asian J., 11, 532, 10.1002/asia.201501074

Lu, 2016, Ultrafast nonlinear absorption and nonlinear refraction in few-layer oxidized black phosphorus, Photonics Res., 4, 286, 10.1364/PRJ.4.000286

Zhang, 2019, Atomically dispersed Pt1-polyoxometalate catalysts: how does metal-support interaction affect stability and hydrogenation activity?, J. Am. Chem. Soc., 141, 8185, 10.1021/jacs.9b00486

Hülsey, 2019, In situ spectroscopy-guided engineering of rhodium single-atom catalysts for CO oxidation, Nat. Commun., 10, 1330, 10.1038/s41467-019-09188-9

Luo, 2014, 1-, 1.5-, and 2-μm fiber lasers Q-switched by a broadband few-layer MoS2 saturable absorber, J. Lightwave Technol., 32, 4077, 10.1109/JLT.2014.2362147

Li, 2014, Thulium-doped all-fiber mode-locked laser based on NPR and 45°-tilted fiber grating, Opt. Express, 22, 31020, 10.1364/OE.22.031020

Li, 2016, Black phosphorus: a two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers, Sci. Rep., 6, 30361, 10.1038/srep30361

Qin, 2018, Black phosphorus Q-switched and mode-locked mid-infrared Er: ZBLAN fiber laser at 3.5 μm wavelength, Opt. Express, 26, 8224, 10.1364/OE.26.008224

Traxer, 2019, Thulium fiber laser: the new player for kidney stone treatment? A comparison with Holmium:YAG laser, World J. Urol., 1–12

Nazif, 2004, Review of laser fibers: a practical guide for urologists, J. Endourology, 18, 818, 10.1089/end.2004.18.818

Scott, 2009, Thulium fiber laser ablation of urinary stones through small-core optical fibers, IEEE J. Sel. Top. Quantum Electron., 15, 435, 10.1109/JSTQE.2008.2012133

Fried, 2018, Recent advances in infrared laser lithotripsy [Invited], Biomed. Opt. Express, 9, 4552, 10.1364/BOE.9.004552

Zhou, 2012, Review on recent progress on mid-infrared fiber lasers, Laser Phys., 22, 1744, 10.1134/S1054660X12110199

Zhu, 2017, Pulsed fluoride fiber lasers at 3 μm, J. Opt. Soc. Am. B, 34, A15, 10.1364/JOSAB.34.000A15

Ma, 2019, Review of mid-infrared mode-locked laser sources in the 2.0 μm-3.5 μm spectral region, Appl. Phys. Rev., 6, 021317, 10.1063/1.5037274

He, 2019, Emerging 2D materials beyond graphene for ultrashort pulse generation in fiber lasers, Nanoscale, 11, 2577, 10.1039/C8NR09368G

Maes, 2018, Room-temperature fiber laser at 3.92 μm, Optica, 5, 761, 10.1364/OPTICA.5.000761

Pawliszewska, 2017, Fundamental and harmonic mode-locking at 2.1 μm with black phosphorus saturable absorber, Opt. Express, 25, 16916, 10.1364/OE.25.016916

Liu, 2013, High-energy passively Q-switched 2 μm Tm3+-doped double-clad fiber laser using graphene-oxide-deposited fiber taper, Opt. Express, 21, 204, 10.1364/OE.21.000204

Jackson, 2007, High-power 83 W holmium-doped silica fiber laser operating with high beam quality, Opt. Lett., 32, 241, 10.1364/OL.32.000241

Liu, 2014, 210 W single-frequency, single-polarization, thulium-doped all-fiber MOPA, Opt. Express, 22, 13572, 10.1364/OE.22.013572

Harrington, 2004

Baker, 2017, Nanoparticle doping for high power fiber lasers at eye-safer wavelengths, Opt. Express, 25, 13903, 10.1364/OE.25.013903

Kamrádek, 2019, Nanoparticle and solution doping for efficient holmium fiber lasers, IEEE Photonics J., 11, 7103610, 10.1109/JPHOT.2019.2940747

Sacks, 2007, Long wavelength operation of double-clad Tm: silica fiber lasers, 645320

Holmen, 2019, Tunable holmium-doped fiber laser with multiwatt operation from 2025 nm to 2200 nm, Opt. Lett., 44, 4131, 10.1364/OL.44.004131

Zhu, 2010, High-power ZBLAN glass fiber lasers: review and prospect, Adv. OptoElectron., 2010, 501956, 10.1155/2010/501956

Tran, 1984, Heavy metal fluoride glasses and fibers: a review, J. Lightwave Technol., 2, 566, 10.1109/JLT.1984.1073661

Huang, 2019, Broadband mid-infrared nonlinear optical modulator enabled by gold nanorods: towards the mid-infrared regime, Photonics Res., 7, 699, 10.1364/PRJ.7.000699

El-Agmy, 2010, 2.31 μm laser under up-conversion pumping at 1.064 μm in Tm3+: ZBLAN fibre lasers, Electron. Lett., 46, 936, 10.1049/el.2010.1248

Majewski, 2018, Dysprosium-doped ZBLAN fiber laser tunable from 2.8 μm to 3.4 μm, pumped at 1.7 μm, Opt. Lett., 43, 971, 10.1364/OL.43.000971

Paradis, 2018, 10 W-level gain-switched all-fiber laser at 2.8 μm, Opt. Lett., 43, 3196, 10.1364/OL.43.003196

Henderson-Sapir, 2016, Versatile and widely tunable mid-infrared erbium doped ZBLAN fiber laser, Opt. Lett., 41, 1676, 10.1364/OL.41.001676

Eggleton, 2011, Chalcogenide photonics, Nat. Photonics, 5, 141, 10.1038/nphoton.2011.309

Sanghera, 2009, Chalcogenide glass-fiber-based mid-IR sources and applications, IEEE J. Sel. Top. Quantum Electron., 15, 114, 10.1109/JSTQE.2008.2010245

Maurugeon, 2010, Telluride glass step index fiber for the far infrared, J. Lightwave Technol., 28, 3358

Slusher, 2004, Large Raman gain and nonlinear phase shifts in high-purity As2Se3 chalcogenide fibers, J. Opt. Soc. Am. B, 21, 1146, 10.1364/JOSAB.21.001146

Nguyen, 2010, Demonstration of nonlinear effects in an ultra-highly nonlinear AsSe suspended-core chalcogenide fiber, IEEE Photonics Technol. Lett., 22, 1844, 10.1109/LPT.2010.2088386

Cheng, 2014, Fabrication and characterization of a hybrid four-hole AsSe2-As2S5 microstructured optical fiber with a large refractive index difference, Opt. Express, 22, 13322, 10.1364/OE.22.013322

Petersen, 2014, Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre, Nat. Photonics, 8, 830, 10.1038/nphoton.2014.213

Cheng, 2016, Mid-infrared supercontinuum generation spanning 2.0 to 15.1 μm in a chalcogenide step-index fiber, Opt. Lett., 41, 2117, 10.1364/OL.41.002117

Robichaud, 2016, Compact 3–8 μm supercontinuum generation in a low-loss As2Se3 step-index fiber, Opt. Lett., 41, 4605, 10.1364/OL.41.004605

Yu, 2014, A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide, Laser Photonics Rev., 8, 792, 10.1002/lpor.201400034

Xue, 2019, Mid-infrared supercontinuum in well-structured AsSe fibers based on peeled-extrusion, Opt. Mater., 89, 402, 10.1016/j.optmat.2019.01.036

Wang, 2018, Broadband mid-infrared supercontinuum generation in novel As2Se3-As2Se2S step-index fibers, Opt. Commun., 410, 410, 10.1016/j.optcom.2017.10.056

Karim, 2018, Mid-infrared supercontinuum generation using As2Se3 photonic crystal fiber and the impact of higher-order dispersion parameters on its supercontinuum bandwidth, Opt. Fiber Technol., 45, 255, 10.1016/j.yofte.2018.07.024

Pureza, 2006, Nonlinear properties of chalcogenide glass fibers, J. Optoelectron. Adv. Mater., 8, 2148

Seddon, 2010, Progress in rare-earth-doped mid-infrared fiber lasers, Opt. Express, 18, 26704, 10.1364/OE.18.026704

Sojka, 2019, Ultra-broadband mid-infrared emission from a Pr3+/Dy3+ co-doped selenide-chalcogenide glass fiber spectrally shaped by varying the pumping arrangement, Opt. Mater. Express, 9, 2291, 10.1364/OME.9.002291

Tang, 2015, Mid-infrared photoluminescence in small-core fiber of praseodymium-ion doped selenide-based chalcogenide glass, Opt. Mater. Express, 5, 870, 10.1364/OME.5.000870

Sujecki, 2019, Experimental and numerical investigation to rationalize both near-infrared and mid-infrared spontaneous emission in Pr3+ doped selenide-chalcogenide fiber, J. Lumin., 209, 14, 10.1016/j.jlumin.2019.01.023

Rudy, 2014, Advances in 2-μm Tm-doped mode-locked fiber lasers, Opt. Fiber Technol., 20, 642, 10.1016/j.yofte.2014.06.005

Hemming, 2014, A review of recent progress in holmium-doped silica fibre sources, Opt. Fiber Technol., 20, 621, 10.1016/j.yofte.2014.08.010

Schäfer, 2017, Towards a 20W-level industrial-grade Er: ZBLAN fiber laser at 2.8 μm

Tang, 2015, Watt-level passively mode-locked Er3+-doped ZBLAN fiber laser at 2.8 μm, Opt. Lett., 40, 4855, 10.1364/OL.40.004855

Woodward, 2018, High-efficiency watt-level mid-infrared fiber lasers beyond 3 µm using Dy: ZBLAN

Saini, 2015, Broadband mid-infrared supercontinuum spectra spanning 2–15 μm using As2Se3 chalcogenide glass triangular-core graded-index photonic crystal fiber, J. Lightwave Technol., 33, 3914, 10.1109/JLT.2015.2418993

Fortin, 2017, 67

Bernier, 2013, Mid-infrared chalcogenide glass Raman fiber laser, Opt. Lett., 38, 127, 10.1364/OL.38.000127

Richardson, 2010, High power fiber lasers: current status and future perspectives, J. Opt. Soc. Am. B, 27, B63, 10.1364/JOSAB.27.000B63

Clarkson, 2002, High-power cladding-pumped Tm-doped silica fiber laser with wavelength tuning from 1860 to 2090 nm, Opt. Lett., 27, 1989, 10.1364/OL.27.001989

Jackson, 1998, High-power diode-cladding-pumped Tm-doped silica fiber laser, Opt. Lett., 23, 1462, 10.1364/OL.23.001462

Engelbrecht, 2008, Ultrafast thulium-doped fiber-oscillator with pulse energy of 4.3 nJ, Opt. Lett., 33, 690, 10.1364/OL.33.000690

Wienke, 2012, Ultrafast, stretched-pulse thulium-doped fiber laser with a fiber-based dispersion management, Opt. Lett., 37, 2466, 10.1364/OL.37.002466

Solodyankin, 2008, Mode-locked 1.93 μm thulium fiber laser with a carbon nanotube absorber, Opt. Lett., 33, 1336, 10.1364/OL.33.001336

Haxsen, 2012, Monotonically chirped pulse evolution in an ultrashort pulse thulium-doped fiber laser, Opt. Lett., 37, 1014, 10.1364/OL.37.001014

Moulton, 2009, Tm-doped fiber lasers: fundamentals and power scaling, IEEE J. Sel. Top. Quantum Electron., 15, 85, 10.1109/JSTQE.2008.2010719

Sincore, 2017, High average power thulium-doped silica fiber lasers: review of systems and concepts, IEEE J. Sel. Top. Quantum Electron., 24, 1, 10.1109/JSTQE.2017.2775964

Gaida, 2018, Ultrafast thulium fiber laser system emitting more than 1 kW of average power, Opt. Lett., 43, 5853, 10.1364/OL.43.005853

Yin, 2014, High-power all-fiber wavelength-tunable thulium doped fiber laser at 2 μm, Opt. Express, 22, 19947, 10.1364/OE.22.019947

Meleshkevich, 2007, 415W single-mode CW thulium fiber laser in all-fiber format

Wang, 2015, High power tandem-pumped thulium-doped fiber laser, Opt. Express, 23, 2991, 10.1364/OE.23.002991

Geng, 2009, Single-frequency narrow-linewidth Tm-doped fiber laser using silicate glass fiber, Opt. Lett., 34, 3493, 10.1364/OL.34.003493

Goodno, 2009, Low-phase-noise, single-frequency, single-mode 608 W thulium fiber amplifier, Opt. Lett., 34, 1204, 10.1364/OL.34.001204

Wang, 2015, 310-W single frequency Tm-doped all-fiber MOPA, IEEE Photonics Technol. Lett., 27, 677, 10.1109/LPT.2015.2390253

Antipov, 2013, Holmium fibre laser emitting at 2.21 μm, Quantum Electron., 43, 603, 10.1070/QE2013v043n07ABEH015076

Kurkov, 2009, Holmium fiber laser based on the heavily doped active fiber, Laser Phys. Lett., 6, 661, 10.1002/lapl.200910056

Aubrecht, 2017, Self-swept holmium fiber laser near 2100 nm, Opt. Express, 25, 4120, 10.1364/OE.25.004120

Jackson, 2007, High-power and highly efficient diode-cladding-pumped Ho3+-doped silica fiber lasers, Opt. Lett., 32, 3349, 10.1364/OL.32.003349

Jackson, 2006, Midinfrared holmium fiber lasers, IEEE J. Quantum Electron., 42, 187, 10.1109/JQE.2005.861824

Hemming, 2013, High power operation of cladding pumped holmium-doped silica fibre lasers, Opt. Express, 21, 4560, 10.1364/OE.21.004560

Hemming, 2013, A monolithic cladding pumped holmium-doped fibre laser

Oh, 1994, Continuous-wave oscillation of thulium-sensitized holmium-doped silica fiber laser, Opt. Lett., 19, 278, 10.1364/OL.19.000278

Taniguchi, 2002, 1212 nm pumping of 2 μm Tm–Ho-codoped silica fiber laser, Appl. Phys. Lett., 81, 3723, 10.1063/1.1521242

Jung, 2013, Mode-locked pulse generation from an all-fiberized, Tm-Ho-codoped fiber laser incorporating a graphene oxide-deposited side-polished fiber, Opt. Express, 21, 20062, 10.1364/OE.21.020062

Xue, 2014, Ultra-wideband all-fiber tunable Tm/Ho-co-doped laser at 2 μm, Opt. Express, 22, 25976, 10.1364/OE.22.025976

Allain, 1989, Erbium-doped fluorozirconate single-mode fibre lasing at 2.71 μm, Electron. Lett., 25, 28, 10.1049/el:19890020

Bedö, 1995, Saturation of the 2.71 μm laser output in erbium-doped ZBLAN fibers, Opt. Commun., 116, 81, 10.1016/0030-4018(95)00040-F

Jackson, 1999, Diode-pumped 1.7-W erbium 3-µm fiber laser, Opt. Lett., 24, 1133, 10.1364/OL.24.001133

Zhu, 2007, 10-W-level diode-pumped compact 2.78 μm ZBLAN fiber laser, Opt. Lett., 32, 26, 10.1364/OL.32.000026

Tokita, 2009, Liquid-cooled 24 W mid-infrared Er: ZBLAN fiber laser, Opt. Lett., 34, 3062, 10.1364/OL.34.003062

Qin, 2017, Mid-infrared Er: ZBLAN fiber laser reaching 3.68 μm wavelength, Chin. Opt. Lett., 15, 111402, 10.3788/COL201715.111402

Goya, 2019, Stable 35-W Er: ZBLAN fiber laser with CaF2 end caps, Appl. Phys. Express, 12, 102007, 10.7567/1882-0786/ab3f44

Aydin, 2018, Towards power scaling of 2.8 μm fiber lasers, Opt. Lett., 43, 4542, 10.1364/OL.43.004542

Bernier, 2009, Highly stable and efficient erbium-doped 2.8 μm all fiber laser, Opt. Express, 17, 16941, 10.1364/OE.17.016941

Faucher, 2009, Erbium-doped all-fiber laser at 2.94 μm, Opt. Lett., 34, 3313, 10.1364/OL.34.003313

Faucher, 2011, 20 W passively cooled single-mode all-fiber laser at 2.8 μm, Opt. Lett., 36, 1104, 10.1364/OL.36.001104

Fortin, 2015, 30 W fluoride glass all-fiber laser at 2.94 μm, Opt. Lett., 40, 2882, 10.1364/OL.40.002882

Sumiyoshi, 1999, High-power continuous-wave 3-and 2-μm cascade Ho3+: ZBLAN fiber laser and its medical applications, IEEE J. Sel. Top. Quantum Electron., 5, 936, 10.1109/2944.796314

Li, 2011, High-power diode-pumped fiber laser operating at 3 μm, Opt. Lett., 36, 3642, 10.1364/OL.36.003642

Li, 2012, Tuned cascade laser, IEEE Photonics Technol. Lett., 24, 1215, 10.1109/LPT.2012.2197743

Jackson, 2004, Single-transverse-mode 2.5-W holmium-doped fluoride fiber laser operating at 2.86 µm, Opt. Lett., 29, 334, 10.1364/OL.29.000334

Crawford, 2014, 3.4 W Ho3+, Pr3+ co-doped fluoride fibre laser, 1

Li, 2018, Miniaturized Mid-infrared all-fiber laser at 2.9 μm, 1

Guo, 2018, 2D noncarbon materials-based nonlinear optical devices for ultrafast photonics, Chin. Opt. Lett., 16, 020004, 10.3788/COL201816.020004

Matsas, 1992, Selfstarting passively mode-locked fibre ring soliton laser exploiting nonlinear polarisation rotation, Electron. Lett., 28, 1391, 10.1049/el:19920885

Chong, 2006, All-normal-dispersion femtosecond fiber laser, Opt. Express, 14, 10095, 10.1364/OE.14.010095

Haxsen, 2008, Stretched-pulse operation of a thulium-doped fiber laser, Opt. Express, 16, 20471, 10.1364/OE.16.020471

Kadel, 2012, All-fiber passively mode-locked thulium/holmium laser with two center wavelengths, Appl. Opt., 51, 6465, 10.1364/AO.51.006465

He, 2014, A stable 2 μm passively Q-switched fiber laser based on nonlinear polarization evolution, Laser Phys., 24, 085102, 10.1088/1054-660X/24/8/085102

Wang, 2016, Q-switched-like soliton bunches and noise-like pulses generation in a partially mode-locked fiber laser, Opt. Express, 24, 14709, 10.1364/OE.24.014709

Duval, 2015, Femtosecond fiber lasers reach the mid-infrared, Optica, 2, 623, 10.1364/OPTICA.2.000623

Hu, 2015, Ultrafast pulses from a mid-infrared fiber laser, Opt. Lett., 40, 4226, 10.1364/OL.40.004226

Wang, 2019, Ultrafast Dy3+: fluoride fiber laser beyond 3 μm, Opt. Lett., 44, 395, 10.1364/OL.44.000395

Richardson, 1991, Selfstarting, passively modelocked erbium fibre ring laser based on the amplifying Sagnac switch, Electron. Lett., 27, 542, 10.1049/el:19910341

Nicholson, 2007, A passively-modelocked, Yb-doped, figure-eight, fiber laser utilizing anomalous-dispersion higher-order-mode fiber, Opt. Express, 15, 6623, 10.1364/OE.15.006623

Song, 2005, All-fiber passively Q-switched laser by a symmetrical nonlinear optical loop mirror with nonlinear polarization rotation, 629

Ahmad, 2014, All-fiber dual wavelength passive Q-switched fiber laser using a dispersion-decreasing taper fiber in a nonlinear loop mirror, Opt. Express, 22, 22794, 10.1364/OE.22.022794

Fedotov, 2014, High average power mode-locked figure-eight Yb fibre master oscillator, Opt. Express, 22, 31379, 10.1364/OE.22.031379

Gomes, 2004, Picosecond SESAM-based ytterbium mode-locked fiber lasers, IEEE J. Sel. Top. Quantum Electron., 10, 129, 10.1109/JSTQE.2003.822918

Paschotta, 1999, Passively Q-switched 0.1-mJ fiber laser system at 1.53 μm, Opt. Lett., 24, 388, 10.1364/OL.24.000388

Zhang, 2009, Multi-wavelength dissipative soliton operation of an erbium-doped fiber laser, Opt. Express, 17, 12692, 10.1364/OE.17.012692

Zhang, 2009, Dissipative vector solitons in a dispersion-managed cavity fiber laser with net positive cavity dispersion, Opt. Express, 17, 455, 10.1364/OE.17.000455

Gumenyuk, 2011, Dissipative dispersion-managed soliton 2 μm thulium/holmium fiber laser, Opt. Lett., 36, 609, 10.1364/OL.36.000609

Shen, 2017, Wavelength-tunable passively mode-locked mid-infrared Er3+-doped ZBLAN fiber laser, Sci. Rep., 7, 14913, 10.1038/s41598-017-13089-6

Li, 2014, Semiconductor saturable absorber mirror passively Q-switched 2.97 μm fluoride fiber laser, Laser Phys. Lett., 11, 065102, 10.1088/1612-2011/11/6/065102

Wei, 2017, 34 nm-wavelength-tunable picosecond Ho3+/Pr3+-codoped ZBLAN fiber laser, Opt. Express, 25, 19170, 10.1364/OE.25.019170

Martinez, 2013, Nanotube and graphene saturable absorbers for fibre lasers, Nat. Photonics, 7, 842, 10.1038/nphoton.2013.304

Kataura, 1999, Optical properties of single-wall carbon nanotubes, Synth. Met., 103, 2555, 10.1016/S0379-6779(98)00278-1

Chen, 1999, Electronic structure and optical limiting behavior of carbon nanotubes, Phys. Rev. Lett., 82, 2548, 10.1103/PhysRevLett.82.2548

Wang, 2005, The optical resonances in carbon nanotubes arise from excitons, Science, 308, 838, 10.1126/science.1110265

Nair, 2008, Fine structure constant defines visual transparency of graphene, Science, 320, 1308, 10.1126/science.1156965

Bao, 2009, Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers, Adv. Funct. Mater., 19, 3077, 10.1002/adfm.200901007

Wang, 2009, Broadband nonlinear optical response of graphene dispersions, Adv. Mater., 21, 2430, 10.1002/adma.200803616

Grigorenko, 2012, Graphene plasmonics, Nat. Photonics, 6, 749, 10.1038/nphoton.2012.262

Iijima, 1991, Synthesis of carbon nanotubes, Nature, 354, 56, 10.1038/354056a0

Sun, 2008, L-band ultrafast fiber laser mode locked by carbon nanotubes, Appl. Phys. Lett., 93, 061114, 10.1063/1.2968661

Wang, 2017, Compact CNT mode-locked Ho3+-doped fluoride fiber laser at 1.2 μm, IEEE J. Sel. Top. Quantum Electron., 24, 1

Set, 2004, Ultrafast fiber pulsed lasers incorporating carbon nanotubes, IEEE J. Sel. Top. Quantum Electron., 10, 137, 10.1109/JSTQE.2003.822912

Kivistö, 2009, Carbon nanotube films for ultrafast broadband technology, Opt. Express, 17, 2358, 10.1364/OE.17.002358

Chamorovskiy, 2012, Tunable Ho-doped soliton fiber laser mode-locked by carbon nanotube saturable absorber, Laser Phys. Lett., 9, 602, 10.7452/lapl.201210094

Tolstik, 2014, Femtosecond Cr: ZnS laser at 2.35 µm mode-locked by carbon nanotubes, 89591A

Wei, 2019, Mid-infrared Q-switched and mode-locked fiber lasers at 2.87 μm based on carbon nanotube, IEEE J. Sel. Top. Quantum Electron., 25, 1, 10.1109/JSTQE.2019.2899015

Lü, 2019, Wideband tunable passively Q-switched fiber laser at 2.8 μm using a broadband carbon nanotube saturable absorber, Photonics Res., 7, 14, 10.1364/PRJ.7.000014

Novoselov, 2004, Electric field effect in atomically thin carbon films, Science, 306, 666, 10.1126/science.1102896

Novoselov, 2005, Two-dimensional gas of massless Dirac fermions in graphene, Nature, 438, 197, 10.1038/nature04233

Zhang, 2019, Versatile applications of metal single-atom @ 2D material nanoplatforms, Adv. Sci., 6, 1901787, 10.1002/advs.201901787

Song, 2013, Quasi-periodicity of vector solitons in a graphene mode-locked fiber laser, Laser Phys. Lett., 10, 125103, 10.1088/1612-2011/10/12/125103

Song, 2017, Period-doubling and quadrupling bifurcation of vector soliton bunches in a graphene mode locked fiber laser, IEEE Photonics J., 9, 1, 10.1109/JPHOT.2017.2734163

Zhang, 2010, Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser, Appl. Phys. Lett., 96, 111112, 10.1063/1.3367743

Zhao, 2010, Dissipative soliton operation of an ytterbium-doped fiber laser mode locked with atomic multilayer graphene, Opt. Lett., 35, 3622, 10.1364/OL.35.003622

Wang, 2013, All-fiber passively mode-locked thulium-doped fiber ring laser using optically deposited graphene saturable absorbers, Appl. Phys. Lett., 102, 131117, 10.1063/1.4800036

Zhu, 2015, Graphene mode-locked fiber laser at 2.8 μm, IEEE Photonics Technol. Lett., 28, 7, 10.1109/LPT.2015.2478836

Wei, 2013, Graphene Q-switched 2.78 μm Er3+-doped fluoride fiber laser, Opt. Lett., 38, 3233, 10.1364/OL.38.003233

Tokita, 2013, Graphene Q-switching of a 3 μm Er: ZBLAN fiber laser

Zhang, 2009, Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface, Nat. Phys., 5, 438, 10.1038/nphys1270

Hasan, 2010, Colloquium: topological insulators, Rev. Mod. Phys., 82, 3045, 10.1103/RevModPhys.82.3045

Qi, 2011, Topological insulators and superconductors, Rev. Mod. Phys., 83, 1057, 10.1103/RevModPhys.83.1057

Hajlaoui, 2012, Ultrafast surface carrier dynamics in the topological insulator Bi2Te3, Nano Lett., 12, 3532, 10.1021/nl301035x

Lu, 2013, Third order nonlinear optical property of Bi2Se3, Opt. Express, 21, 2072, 10.1364/OE.21.002072

Zhao, 2012, Ultra-short pulse generation by a topological insulator based saturable absorber, Appl. Phys. Lett., 101, 211106, 10.1063/1.4767919

Chen, 2014, Broadband optical and microwave nonlinear response in topological insulator, Opt. Mater. Express, 4, 587, 10.1364/OME.4.000587

Bernard, 2012, Towards mode-locked fiber laser using topological insulators

Zhao, 2012, Wavelength-tunable picosecond soliton fiber laser with topological insulator: Bi2Se3 as a mode locker, Opt. Express, 20, 27888, 10.1364/OE.20.027888

Luo, 2013, 1.06 μm Q-switched ytterbium-doped fiber laser using few-layer topological insulator Bi2Se3 as a saturable absorber, Opt. Express, 21, 29516, 10.1364/OE.21.029516

Chen, 2013, Self-assembled topological insulator: Bi2Se3 membrane as a passive Q-switcher in an Erbium-doped fiber laser, J. Lightwave Technol., 31, 2857, 10.1109/JLT.2013.2273493

Dou, 2014, Mode-locked ytterbium-doped fiber laser based on topological insulator: Bi2Se3, Opt. Express, 22, 24055, 10.1364/OE.22.024055

Wang, 2019, Generation of harmonic mode-locking of bound solitons in the ultrafast fiber laser with Sb2Te3 saturable absorber on microfiber, Laser Phys. Lett., 16, 025103, 10.1088/1612-202X/aaf790

Tarka, 2016, 2 µm ultrafast fiber laser modelocked by mechanically exfoliated Sb2Te3, 972820

Luo, 2014, Topological-insulator passively Q-switched double-clad Fiber laser at 2 μm wavelength, IEEE J. Sel. Top. Quantum Electron., 20, 0902708

Tang, 2016, 2.8-μm pulsed Er3+: ZBLAN fiber laser modulated by topological insulator, IEEE Photonics Technol. Lett., 28, 1573, 10.1109/LPT.2016.2555989

Li, 2015, 3-μm mid-infrared pulse generation using topological insulator as the saturable absorber, Opt. Lett., 40, 3659, 10.1364/OL.40.003659

Wilson, 1969, The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties, Adv. Phys., 18, 193, 10.1080/00018736900101307

Wang, 2012, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nat. Nanotechnol., 7, 699, 10.1038/nnano.2012.193

Mak, 2016, Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides, Nat. Photonics, 10, 216, 10.1038/nphoton.2015.282

Wang, 2014, Broadband few-layer MoS2 saturable absorbers, Adv. Mater., 26, 3538, 10.1002/adma.201306322

Kuc, 2011, Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2, Phys. Rev. B, 83, 245213, 10.1103/PhysRevB.83.245213

Mak, 2010, Atomically thin MoS2: a new direct-gap semiconductor, Phys. Rev. Lett., 105, 136805, 10.1103/PhysRevLett.105.136805

Wang, 2013, Ultrafast saturable absorption of two-dimensional MoS2 nanosheets, ACS Nano, 7, 9260, 10.1021/nn403886t

Woodward, 2015, Wideband saturable absorption in few-layer molybdenum diselenide (MoSe2) for Q-switching Yb-, Er-and Tm-doped fiber lasers, Opt. Express, 23, 20051, 10.1364/OE.23.020051

Niu, 2018, Passively mode-locked Er-doped fiber laser based on SnS2 nanosheets as a saturable absorber, Photonics Res., 6, 72, 10.1364/PRJ.6.000072

Mao, 2017, Passively Q-switched and mode-locked fiber laser based on an ReS2 saturable absorber, IEEE J. Sel. Top. Quantum Electron., 24, 1, 10.1109/JSTQE.2017.2713641

Wang, 2018, Noise-like pulses generated from a passively mode-locked fiber laser with a WS2 saturable absorber on microfiber, Laser Phys. Lett., 15, 085103, 10.1088/1612-202X/aac551

Mao, 2016, Erbium-doped fiber laser passively mode locked with few-layer WSe2/MoSe2 nanosheets, Sci. Rep., 6, 23583, 10.1038/srep23583

Mao, 2015, WS2 saturable absorber for dissipative soliton mode locking at 1.06 and 1.55 µm, Opt. Express, 23, 27509, 10.1364/OE.23.027509

Wei, 2016, Passively Q-switched mid-infrared fluoride fiber laser around 3 µm using a tungsten disulfide (WS2) saturable absorber, Laser Phys. Lett., 13, 105108, 10.1088/1612-2011/13/10/105108

Jung, 2015, Mode-locked, 1.94-μm, all-fiberized laser using WS2-based evanescent field interaction, Opt. Express, 23, 19996, 10.1364/OE.23.019996

Wang, 2018, Mode-locked thulium-doped fiber laser with chemical vapor deposited molybdenum ditelluride, Opt. Lett., 43, 1998, 10.1364/OL.43.001998

Mao, 2015, WS2 mode-locked ultrafast fiber laser, Sci. Rep., 5, 7965, 10.1038/srep07965

Wang, 2015, Tunable nonlinear refractive index of two-dimensional MoS2, WS2, and MoSe2 nanosheet dispersions, Photonics Res., 3, A51, 10.1364/PRJ.3.000A51

Yu, 2018, Atomically thin noble metal dichalcogenide: a broadband mid-infrared semiconductor, Nat. Commun., 9, 1545, 10.1038/s41467-018-03935-0

Wang, 2015, Monolayer PtSe2, a new semiconducting transition-metal-dichalcogenide, epitaxially grown by direct selenization of Pt, Nano Lett., 15, 4013, 10.1021/acs.nanolett.5b00964

Li, 2014, Black phosphorus field-effect transistors, Nat. Nanotechnol., 9, 372, 10.1038/nnano.2014.35

Xia, 2014, Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics, Nat. Commun., 5, 4458, 10.1038/ncomms5458

Liu, 2014, Phosphorene: an unexplored 2D semiconductor with a high hole mobility, ACS Nano, 8, 4033, 10.1021/nn501226z

Liu, 2015, Semiconducting black phosphorus: synthesis, transport properties and electronic applications, Chem. Soc. Rev., 44, 2732, 10.1039/C4CS00257A

Zheng, 2017, Black phosphorus based all-optical-signal-processing: Toward high performances and enhanced stability, ACS Photonics, 4, 1466, 10.1021/acsphotonics.7b00231

Lu, 2015, Broadband nonlinear optical response in multi-layer black phosphorus: an emerging infrared and mid-infrared optical material, Opt. Express, 23, 11183, 10.1364/OE.23.011183

Li, 2017, Direct observation of the layer-dependent electronic structure in phosphorene, Nat. Nanotechnol., 12, 21, 10.1038/nnano.2016.171

Wang, 2016, Optical properties of black phosphorus, Adv. Opt. Photonics, 8, 618, 10.1364/AOP.8.000618

Wang, 2015, Ultrafast recovery time and broadband saturable absorption properties of black phosphorus suspension, Appl. Phys. Lett., 107, 091905, 10.1063/1.4930077

Hisyam, 2016, Generation of Mode-locked Ytterbium doped fiber ring laser using few-layer black phosphorus as a saturable absorber, IEEE J. Sel. Top. Quantum Electron., 23, 39, 10.1109/JSTQE.2016.2532270

Luo, 2015, Microfiber-based few-layer black phosphorus saturable absorber for ultra-fast fiber laser, Opt. Express, 23, 20030, 10.1364/OE.23.020030

Chen, 2015, Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and mode-locking laser operation, Opt. Express, 23, 12823, 10.1364/OE.23.012823

Sotor, 2015, Ultrafast thulium-doped fiber laser mode locked with black phosphorus, Opt. Lett., 40, 3885, 10.1364/OL.40.003885

Qin, 2016, Mid-infrared mode-locked pulse generation with multilayer black phosphorus as saturable absorber, Opt. Lett., 41, 56, 10.1364/OL.41.000056

Kim, 2015, Toward air-stable multilayer phosphorene thin-films and transistors, Sci. Rep., 5, 8989, 10.1038/srep08989

Island, 2015, Environmental instability of few-layer black phosphorus, 2D Mater., 2, 011002, 10.1088/2053-1583/2/1/011002

Chen, 2017, Interfacial thermal conductance in graphene/black phosphorus heterogeneous structures, Carbon, 117, 399, 10.1016/j.carbon.2017.03.011

Yang, 2012, Semiconductor saturable absorber mirror passively Q-switched fiber laser near 2 μm, Appl. Opt., 51, 5664, 10.1364/AO.51.005664

Yu, 2016, Nanosecond passively Q-switched thulium/holmium-doped fiber laser based on black phosphorus nanoplatelets, Opt. Mater. Express, 6, 603, 10.1364/OME.6.000603

Liu, 2012, Graphene-based passively Q-switched 2 μm thulium-doped fiber laser, Opt. Commun., 285, 5319, 10.1016/j.optcom.2012.07.063

Ahmad, 2018, Graphene-PVA saturable absorber for generation of a wavelength-tunable passively Q-switched thulium-doped fiber laser in 2.0 µm, Laser Phys., 28, 055105, 10.1088/1555-6611/aab2cc

Wang, 2016, Q-switched Tm3+-doped fiber laser with a micro-fiber based black phosphorus saturable absorber, Laser Phys., 26, 065104, 10.1088/1054-660X/26/6/065104

Ren, 2018, Black Phosphorus Q-Switched Large-Mode-Area Tm-Doped Fiber Laser, Int. J. Opt., 2018, 8060415, 10.1155/2018/8060415

Liu, 2016, Volume Bragg grating based tunable continuous-wave and Bi2Te3 Q-switched Er3+: ZBLAN fiber laser

Qin, 2015, Black phosphorus as saturable absorber for the Q-switched Er: ZBLAN fiber laser at 2.8 μm, Opt. Express, 23, 24713, 10.1364/OE.23.024713

Wang, 2019, MoS2 Q-switched 2.8 µm Er: ZBLAN fiber laser, Laser Phys., 29, 025101, 10.1088/1555-6611/aaf642

Shen, 2016, Watt-level passively Q-switched heavily Er3+-doped ZBLAN fiber laser with a semiconductor saturable absorber mirror, Sci. Rep., 6, 26659, 10.1038/srep26659

Lai, 2018, High power passively Q-switched Er3+-doped ZBLAN fiber laser at 2.8 µm based on a semiconductor saturable absorber mirror, Laser Phys. Lett., 15, 085109, 10.1088/1612-202X/aac549

Zhu, 2013, Fe2+: ZnSe and graphene Q-switched singly Ho3+-doped ZBLAN fiber lasers at 3 μm, Opt. Mater. Express, 3, 1365, 10.1364/OME.3.001365

Shi, 2019, Passively Q-switched 3-μm Ho3+-doped fiber laser based on nonlinear polarization rotation, IEEE Photonics Technol. Lett., 31, 1437, 10.1109/LPT.2019.2930615

Nelson, 1995, Broadly tunable sub-500 fs pulses from an additive-pulse mode-locked thulium-doped fiber ring laser, Appl. Phys. Lett., 67, 19, 10.1063/1.115477

Li, 2014, Sub-100 fs passively mode-locked holmium-doped fiber oscillator operating at 2.06 μm, Opt. Lett., 39, 6859, 10.1364/OL.39.006859

Sun, 2017, 1867–2010 nm tunable femtosecond thulium-doped all-fiber laser, Opt. Express, 25, 8997, 10.1364/OE.25.008997

Sun, 2017, 65-fs Pulses at 2 μm in a Compact Tm-Doped All-Fiber Laser by Dispersion and Nonliearity Management, IEEE Photonics Technol. Lett., 30, 303, 10.1109/LPT.2017.2780284

Jiang, 2012, 500 MHz, 58fs highly coherent Tm fiber soliton laser

Michalska, 2019, All-fiber thulium-doped mode-locked fiber laser and amplifier based on nonlinear fiber loop mirror, Opt. Laser Technol., 118, 121, 10.1016/j.optlastec.2019.05.016

Wang, 2011, Mode-locked Tm–Ho-codoped fiber laser at 2.06 μm, IEEE Photonics Technol. Lett., 23, 682, 10.1109/LPT.2011.2123880

Wang, 2018, High-power mode-locked 2 µm multimode fiber laser, Laser Phys. Lett., 15, 085101, 10.1088/1612-202X/aac429

Jung, 2014, A femtosecond pulse fiber laser at 1935 nm using a bulk-structured Bi2Te3 topological insulator, Opt. Express, 22, 7865, 10.1364/OE.22.007865

Xia, 2014, Nanosecond pulse generation in a graphene mode-locked erbium-doped fiber laser, Opt. Commun., 330, 147, 10.1016/j.optcom.2014.05.048

Kelleher, 2009, Nanosecond-pulse fiber lasers mode-locked with nanotubes, Appl. Phys. Lett., 95, 111108, 10.1063/1.3207828

Rudy, 2012, Thulium-doped germanosilicate mode-locked fiber lasers

Wang, 2016, 152 fs nanotube-mode-locked thulium-doped all-fiber laser, Sci. Rep., 6, 28885, 10.1038/srep28885

Watanabe, 2019, Dispersion managed, high power Tm-doped ultrashort pulse fiber laser at 1.9 um using single wall carbon nanotube polyimide film

Yin, 2015, Soliton mode-locked fiber laser based on topological insulator Bi2Te3 nanosheets at 2 μm, Photonics Res., 3, 72, 10.1364/PRJ.3.000072

Wang, 2017, Ultrafast thulium-doped fiber laser mode locked by monolayer WSe2, IEEE J. Sel. Top. Quantum Electron., 24, 1

Tian, 2015, Mode-locked thulium fiber laser with MoS2, Laser Phys. Lett., 12, 065104, 10.1088/1612-2011/12/6/065104

Meng, 2017, Carbon nanotube mode-locked thulium fiber laser with 200 nm tuning range, Sci. Rep., 7, 45109, 10.1038/srep45109

Lee, 2018, Femtosecond Tm–Ho co-doped fiber laser using a bulk-structured Bi2Se3 topological insulator, Chin. Phys. B, 27, 094219, 10.1088/1674-1056/27/9/094219

Lee, 2017, All-fiberized, femtosecond laser at 1912 nm using a bulk-like MoSe2 saturable absorber, Opt. Mater. Express, 7, 2968, 10.1364/OME.7.002968

Yu, 2015, Thulium/holmium-doped fiber laser passively mode locked by black phosphorus nanoplatelets-based saturable absorber, Appl. Opt., 54, 10290, 10.1364/AO.54.010290

Gu, 2020, Generation of 131 fs mode-locked pulses from 2.8 μm Er:ZBLAN fiber laser, Chin. Opt. Lett., 18, 031402, 10.3788/COL202018.031402

Haboucha, 2014, Fiber Bragg grating stabilization of a passively mode-locked 2.8 μm Er3+: fluoride glass fiber laser, Opt. Lett., 39, 3294, 10.1364/OL.39.003294

Li, 2012, Efficient 2.87 μm fiber laser passively switched using a semiconductor saturable absorber mirror, Opt. Lett., 37, 3747, 10.1364/OL.37.003747

K. Yin, T. Jiang, X. Zheng, H. Yu, X. Cheng, J. Hou, Mid-infrared ultra-short mode-locked fiber laser utilizing topological insulator Bi2Te3 nano-sheets as the saturable absorber, arXiv preprint arXiv:1505.06322 (2015).

Wang, 2015, Atomically thin group V elemental films: theoretical investigations of antimonene allotropes, ACS Appl. Mater. Interfaces, 7, 11490, 10.1021/acsami.5b02441

Mu, 2015, Graphene–Bi2Te3 heterostructure as saturable absorber for short pulse generation, Acs Photonics, 2, 832, 10.1021/acsphotonics.5b00193

Qiao, 2015, Broadband photodetectors based on graphene–Bi2Te3 heterostructure, ACS Nano, 9, 1886, 10.1021/nn506920z

Jhon, 2017, Metallic MXene saturable absorber for femtosecond mode-locked lasers, Adv. Mater., 29, 1702496, 10.1002/adma.201702496

Jiang, 2018, Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T= F, O, or OH), Laser Photonics Rev., 12, 1700229, 10.1002/lpor.201700229

Naguib, 2014, 25th anniversary article: MXenes: a new family of two-dimensional materials, Adv. Mater., 26, 992, 10.1002/adma.201304138

Pu, 2019, Intelligent programmable mode-locked fiber laser with a human-like algorithm, Optica, 6, 362, 10.1364/OPTICA.6.000362