Recent developments in environmental mercury bioremediation and its toxicity: A review
Tài liệu tham khảo
Abreu, 2012, Organic matter and barium absorption by plant species grown in an area polluted with scrap metal residue, Appl. Environ. Soil Sci., 2012, 10.1155/2012/476821
Abumaizar, 1999, Heavy metal contaminants removal by soil washing, J. Hazard. Mater., 70, 71, 10.1016/S0304-3894(99)00149-1
Ali, 2013, Phytoremediation of heavy metals—concepts and applications, Chemosphere, 91, 869, 10.1016/j.chemosphere.2013.01.075
Alkorta, 2017, Environmental parameters altered by climate change affect the activity of soil microorganisms involved in bioremediation, FEMS Microbiol. Lett., 364, 10.1093/femsle/fnx200
Amde, 2016, Methods and recent advances in speciation analysis of mercury chemical species in environmental samples: a review, Chem. Speciat. Bioavailab., 28, 51, 10.1080/09542299.2016.1164019
Anaemene, 2012, The use of Candida sp. in the biosorption of heavy metals from industrial effluent, Eur. J. Exp. Biol., 2, 484
Anthony, 2014
Aschner, 1990, Mercury neurotoxicity: mechanisms of blood-brain barrier transport, Neurosci. Biobehav. Rev., 14, 169, 10.1016/S0149-7634(05)80217-9
ATSDR (Agency for Toxic Substances and Disease Registry), 2015
Bahafid, 2017, Yeast biomass: an alternative for bioremediation of heavy metals
Bajgai, 2012, Yeast Trichosporon cutaneum R57, J. Biol., 2, B70
Barkay, 2003, Bacterial mercury resistance from atoms to ecosystems, FEMS Microbiol. Rev., 27, 355, 10.1016/S0168-6445(03)00046-9
Beauvais-Flück, 2016, Role of cellular compartmentalization in the trophic transfer of mercury species in a freshwater plant-crustacean food chain, J. Hazard. Mater., 320, 401, 10.1016/j.jhazmat.2016.08.055
Beckers, 2017, Cycling of mercury in the environment: sources, fate, and human health implications: a review, Crit. Rev. Environ. Sci. Technol., 47, 693, 10.1080/10643389.2017.1326277
Bizily, 2000, Phytodetoxification of hazardous organomercurials by genetically engineered plants, Nat. Biotechnol., 18, 213, 10.1038/72678
Bogdanova, 2001, Class II broad-spectrum mercury resistance transposons in Gram-positive bacteria from natural environments, Res. Microbiol., 152, 503, 10.1016/S0923-2508(01)01224-4
Bonanno, 2013, Comparative performance of trace element bioaccumulation and biomonitoring in the plant species Typha domingensis, Phragmites australis and Arundo donax, Ecotoxicol. Environ. Saf., 97, 124, 10.1016/j.ecoenv.2013.07.017
Bonanno, 2017, Levels of heavy metals in wetland and marine vascular plants and their biomonitoring potential: a comparative assessment, Sci. Total Environ., 576, 796, 10.1016/j.scitotenv.2016.10.171
Boyd, 2012, The mercury resistance operon: from an origin in a geothermal environment to an efficient detoxification machine, Front. Microbiol., 3, 349, 10.3389/fmicb.2012.00349
Brim, 2000, Engineering Deinococcus radiodurans for metal remediation in radioactive mixed waste environments, Nat. Biotechnol., 18, 85, 10.1038/71986
Brim, 2003, Engineering Deinococcus geothermalis for bioremediation of high-temperature radioactive waste environments, Appl. Environ. Microbiol., 69, 4575, 10.1128/AEM.69.8.4575-4582.2003
Brown, 2009, Organic chemistry
Brutesco, 2017, Bacterial host and reporter gene optimization for genetically encoded whole cell biosensors, Environ. Sci. Pollut. Res. - Int., 24, 52, 10.1007/s11356-016-6952-2
Burrus, 2002, Conjugative transposons: the tip of the iceberg, Mol. Microbiol., 46, 601, 10.1046/j.1365-2958.2002.03191.x
Busto, 2011, Potential of thermal treatment for decontamination of mercury containing wastes from chlor-alkali industry, J. Hazard. Mater., 186, 114, 10.1016/j.jhazmat.2010.10.099
Cabrejo, 2010
Carneado, 2015, Mercury (II) and methylmercury determination in water by liquid chromatography hyphenated to cold vapour atomic fluorescence spectrometry after online short-column preconcentration, Anal. Methods, 7, 2699, 10.1039/C4AY02929A
Carrasco-Gil, 2013, Mercury localization and speciation in plants grown hydroponically or in a natural environment, Environ. Sci. Technol., 47, 3082, 10.1021/es303310t
Castagna, 2018, Atmospheric mercury species measurements across the Western Mediterranean region: behaviour and variability during a 2015 research cruise campaign, Atmos. Environ., 173, 108, 10.1016/j.atmosenv.2017.10.045
Castoldi, 2001, Neurotoxicity and molecular effects of methylmercury, Brain Res. Bull., 55, 197, 10.1016/S0361-9230(01)00458-0
Ceccatelli, 2010, Methylmercury-induced neurotoxicity and apoptosis, Chem. Biol. Interact., 188, 301, 10.1016/j.cbi.2010.04.007
Chang, 1977, Neurotoxic effects of mercury—a review, Environ. Res., 14, 329, 10.1016/0013-9351(77)90044-5
Chen, 2018, Application of microbial transformation to remediate Hg-contaminated water: strain isolation and laboratory microcosm study, J. Environ. Eng., 144, 10.1061/(ASCE)EE.1943-7870.0001385
Chernyak, 2013, Role of cytochrome P450-dependent monooxygenases and polymorphic variants of GSTT1 and GSTM1 genes in the formation of brain lesions in individuals chronically exposed to mercury, Bull. Exp. Biol. Med., 156, 15, 10.1007/s10517-013-2266-2
Chien, 2012, Mercury removal and recovery by immobilized Bacillus megaterium MB1, Front. Chem. Sci. Eng., 6, 192, 10.1007/s11705-012-1284-3
Colin, 2018, Biosensor for screening bacterial mercury methylation: example within the Desulfobulbaceae, Res. Microbiol., 169, 44, 10.1016/j.resmic.2017.09.005
Colón-Rodríguez, 2017, Effects of methylmercury on spinal cord afferents and efferents—a review, Neurotoxicology, 60, 308, 10.1016/j.neuro.2016.12.007
Czako, 2006, Transgenic Spartina alterniflora for phytoremediation, Environ. Geochem. Health, 28, 103, 10.1007/s10653-005-9019-8
Dai, 2009, Development of transgenic hybrid sweetgum (Liquidambar styraciflua× L. formosana) expressing γ-glutamylcysteine synthetase or mercuric reductase for phytoremediation of mercury pollution, New For., 38, 35, 10.1007/s11056-008-9130-7
Daly, 1994, In vivo damage and recA-dependent repair of plasmid and chromosomal DNA in the radiation-resistant bacterium Deinococcus radiodurans, J. Bacteriol., 176, 3508, 10.1128/jb.176.12.3508-3517.1994
Dash, 2012, Bioremediation of mercury and the importance of bacterial mer genes, Int. Biodeterior. Biodegrad., 75, 207, 10.1016/j.ibiod.2012.07.023
Dash, 2015, Bioremediation of inorganic mercury through volatilization and biosorption by transgenic Bacillus cereus BW-03 (pPW-05), Int. Biodeterior. Biodegrad., 103, 179, 10.1016/j.ibiod.2015.04.022
Dash, 2017, Functional efficiency of MerA protein among diverse mercury resistant bacteria for efficient use in bioremediation of inorganic mercury, Biochimie, 142, 207, 10.1016/j.biochi.2017.09.016
Davidson, 2004, Mercury exposure and child development outcomes, Pediatrics, 113, 1023, 10.1542/peds.113.S3.1023
Davis, 2001, Mercury vapor and female reproductive toxicity, Toxicol. Sci., 59, 291, 10.1093/toxsci/59.2.291
Deckwer, 2004, Microbial removal of ionic mercury in a three-phase fluidized bed reactor, Environ. Sci. Technol., 38, 1858, 10.1021/es0300517
Dönmez, 2001, Bioaccumulation of copper (II) and nickel (II) by the non-adapted and adapted growing Candida sp, Water Res., 35, 1425, 10.1016/S0043-1354(00)00394-8
Driscoll, 2013, Mercury as a global pollutant: sources, pathways, and effects, Environ. Sci. Technol., 47, 4967, 10.1021/es305071v
Dzantor, 2007, Phytoremediation: the state of rhizosphere ‘engineering’ for accelerated rhizodegradation of xenobiotic contaminants, J. Chem. Technol. Biotechnol.: Int. Res. Process Environ. Clean Technol., 82, 228, 10.1002/jctb.1662
EPA, U, 1997, 2
Essa, 2006, A new approach to the remediation of heavy metal liquid wastes via off‐gases produced by Klebsiella pneumoniae M426, Biotechnol. Bioeng., 95, 574, 10.1002/bit.20877
Fernandes Azevedo, 2012, Toxic effects of mercury on the cardiovascular and central nervous systems, Biomed Res. Int., 2012
Figueiredo, 2018, Evidence of mercury methylation and demethylation by the estuarine microbial communities obtained in stable Hg isotope studies, Int. J. Environ. Res. Public Health, 15, 2141, 10.3390/ijerph15102141
Flora, 2008, Heavy metal induced oxidative stress & its possible reversal by chelation therapy, Indian J. Med. Res., 128, 501
Franchi, 2017, Phytoremediation of a multi contaminated soil: mercury and arsenic phytoextraction assisted by mobilizing agent and plant growth promoting bacteria, J. Soils Sedim., 17, 1224, 10.1007/s11368-015-1346-5
Frustaci, 1998, Marked elevation of myocardial trace elements in idiopathic dilated cardiomyopathy compared to secondary cardiac dysfunction, vol. 98, 507
Furuya, 2006, Antimicrobial-resistant bacteria in the community setting, Nat. Rev. Microbiol., 4, 36, 10.1038/nrmicro1325
Genchi, 2017, Mercury exposure and heart diseases, Int. J. Environ. Res. Public Health, 14, 74, 10.3390/ijerph14010074
Gomes, 2014, Phytoremediation of water contaminated with mercury using Typha domingensis in constructed wetland, Chemosphere, 103, 228, 10.1016/j.chemosphere.2013.11.071
Gong, 2014, Immobilization of mercury by carboxymethyl cellulose stabilized iron sulfide nanoparticles: reaction mechanisms and effects of stabilizer and water chemistry, Environ. Sci. Technol., 48, 3986, 10.1021/es404418a
Gras, 2018, Direct measurement of elemental mercury using multidimensional gas chromatography with microwave-induced helium plasma atomic emission spectroscopy, ACS Earth Space Chem., 2, 471, 10.1021/acsearthspacechem.8b00008
Green, 2010, Mercury contamination in turtles and implications for human health, J. Environ. Health, 72, 14
Gundacker, 2010, Perinatal lead and mercury exposure in Austria, Sci. Total Environ., 408, 5744, 10.1016/j.scitotenv.2010.07.079
Guo, 2011, Evaluation methods for soil heavy metals contamination: a review, Chin. J. Ecol., 30, 889
Gupta, 2016, Microbes as potential tool for remediation of heavy metals: a review, J. Microb. Biochem. Technol., 8, 364, 10.4172/1948-5948.1000310
Guzzi, 2008, Molecular mechanisms triggered by mercury, Toxicology, 244, 1, 10.1016/j.tox.2007.11.002
Hadavifar, 2014, Adsorption of mercury ions from synthetic and real wastewater aqueous solution by functionalized multi-walled carbon nanotube with both amino and thiolated groups, Chem. Eng. J., 237, 217, 10.1016/j.cej.2013.10.014
Harding, 2018, Bioaccumulation of methylmercury within the marine food web of the outer Bay of Fundy, Gulf of Maine, PLoS One, 13, 10.1371/journal.pone.0197220
Harris, 2003, The chemical form of mercury in fish, Science, 301, 1203, 10.1126/science.1085941
He, 2015, In situ remediation technologies for mercury-contaminated soil, Environ. Sci. Pollut. Res. - Int., 22, 8124, 10.1007/s11356-015-4316-y
Heaton, 2003, Toward detoxifying mercury‐polluted aquatic sediments with rice genetically engineered for mercury resistance, Environ. Toxicol. Chem.: Int. J., 22, 2940, 10.1897/02-442
Hong, 2012, Methylmercury exposure and health effects, J. Prev. Med. Public Health, 45, 353, 10.3961/jpmph.2012.45.6.353
Hsu-Kim, 2018, Challenges and opportunities for managing aquatic mercury pollution in altered landscapes, Ambio, 47, 141, 10.1007/s13280-017-1006-7
Iavicoli, 2009, The effects of metals as endocrine disruptors, J. Toxicol. Environ. Health Part B, 12, 206, 10.1080/10937400902902062
Ijaz, 2016, Phytoremediation: recent advances in plant-endophytic synergistic interactions, Plant Soil, 405, 179, 10.1007/s11104-015-2606-2
Infante, 2014, Removal of lead, mercury and nickel using the yeast Saccharomyces cerevisiae, Rev. Mvz Córdoba, 19, 4141, 10.21897/rmvz.107
Ivask, 2007, Fibre-optic bacterial biosensors and their application for the analysis of bioavailable Hg and As in soils and sediments from Aznalcollar mining area in Spain, Biosens. Bioelectron., 22, 1396, 10.1016/j.bios.2006.06.019
Ivask, 2002, Construction and use of specific luminescent recombinant bacterial sensors for the assessment of bioavailable fraction of cadmium, zinc, mercury and chromium in the soil, Soil Biol. Biochem., 34, 1439, 10.1016/S0038-0717(02)00088-3
Iwahori, 2000, Ferrous iron-dependent volatilization of mercury by the plasma membrane of Thiobacillus ferrooxidans, Appl. Environ. Microbiol., 66, 3823, 10.1128/AEM.66.9.3823-3827.2000
Jafari, 2015, Employing response surface methodology for optimization of mercury bioremediation by Vibrio parahaemolyticus PG02 in coastal sediments of Bushehr, Iran, CLEAN–Soil Air Water, 43, 118, 10.1002/clen.201300616
Jaishankar, 2014, Toxicity, mechanism and health effects of some heavy metals, Interdiscip. Toxicol., 7, 60, 10.2478/intox-2014-0009
Kazantzis, 2002, Mercury exposure and early effects: an overview, G. Ital. Med. Lav. Ergon., 93, 139
Kim, 2001, The soil–air exchange characteristics of total gaseous mercury from a large-scale municipal landfill area, Atmos. Environ., 35, 3475, 10.1016/S1352-2310(01)00095-4
Kordialik-Bogacka, 2011, Surface properties of yeast cells during heavy metal biosorption, Open Chem., 9, 348, 10.2478/s11532-011-0008-8
Kostal, 2003, A temperature responsive biopolymer for mercury remediation, Environ. Sci. Technol., 37, 4457, 10.1021/es034210y
Kumar, 2017, Plant mediated detoxification of mercury and lead, Arab. J. Chem., 10, S2335, 10.1016/j.arabjc.2013.08.010
Le, 2016, How does the metallothionein induction in bivalves meet the criteria for biomarkers of metal exposure?, Environ. Pollut., 212, 257, 10.1016/j.envpol.2016.01.070
Liebert, 1999, Transposon Tn21, flagship of the floating genome, Microbiol. Mol. Biol. Rev., 63, 507, 10.1128/MMBR.63.3.507-522.1999
Liu, 2017, Hg tolerance and biouptake of an isolated pigmentation yeast Rhodotorula mucilaginosa, PLoS One, 12
Liu, 2014, A plant species (Trifolium repens) with strong enrichment ability for mercury, Ecol. Eng., 70, 349, 10.1016/j.ecoleng.2014.06.029
Liu, 2018, Enhancer assisted-phytoremediation of mercury-contaminated soils by Oxalis corniculata L., and rhizosphere microorganism distribution of Oxalis corniculata L, Ecotoxicol. Environ. Saf., 160, 171, 10.1016/j.ecoenv.2018.05.041
Lohren, 2016, Effects on and transfer across the blood-brain barrier in vitro—comparison of organic and inorganic mercury species, BMC Pharmacol. Toxicol., 17, 63, 10.1186/s40360-016-0106-5
López, 2015, Mercury leaching from hazardous industrial wastes stabilized by sulfur polymer encapsulation, Waste Manag., 35, 301, 10.1016/j.wasman.2014.10.009
Lyyra, 2007, Coupling two mercury resistance genes in Eastern cottonwood enhances the processing of organomercury, Plant Biotechnol. J., 5, 254, 10.1111/j.1467-7652.2006.00236.x
Ma, 2016, Magnetic solid phase extraction coupled with inductively coupled plasma mass spectrometry for the speciation of mercury in environmental water and human hair samples, Talanta, 146, 93, 10.1016/j.talanta.2015.08.036
Mahbub, 2017, Bioremediation of mercury: not properly exploited in contaminated soils!, Appl. Microbiol. Biotechnol., 101, 963, 10.1007/s00253-016-8079-2
Mahbub, 2016, Mercury inhibits soil enzyme activity in a lower concentration than the guideline value, Bull. Environ. Contam. Toxicol., 96, 76, 10.1007/s00128-015-1664-8
Marrugo-Negrete, 2015, Phytoremediation of mercury-contaminated soils by Jatropha curcas, Chemosphere, 127, 58, 10.1016/j.chemosphere.2014.12.073
Matsui, 2018, Mercury bioremediation by mercury resistance transposon-mediated in situ molecular breeding, Appl. Microbiol. Biotechnol., 102, 3037, 10.1007/s00253-018-8847-2
Mattigod, 2007, A thiol-functionalized nanoporous silica sorbent for removal of mercury from actual industrial waste
Matulik, 2017, Bioaccumulation and biomagnification of mercury and methylmercury in four sympatric coastal sharks in a protected subtropical lagoon, Mar. Pollut. Bull., 116, 357, 10.1016/j.marpolbul.2017.01.033
Meacham, 2005, Accumulation of methylmercury or polychlorinated biphenyls in in vitro models of rat neuronal tissue, Toxicol. Appl. Pharmacol., 205, 177, 10.1016/j.taap.2004.08.024
Meagher, 2000, Phytoremediation of toxic elemental and organic pollutants, Curr. Opin. Plant Biol., 3, 153, 10.1016/S1369-5266(99)00054-0
Michalak, 2013, State of the art for the biosorption process—a review, Appl. Biochem. Biotechnol., 170, 1389, 10.1007/s12010-013-0269-0
Minoia, 2009, Effects of mercury on the endocrine system, Crit. Rev. Toxicol., 39
Minu, 2015, Role of gymnemic acid-chitosan nanoparticles in mercury removal from water, J. Chitin Chitosan Sci., 3, 68, 10.1166/jcc.2015.1092
Mosa, 2016, Potential biotechnological strategies for the cleanup of heavy metals and metalloids, Front. Plant Sci., 7, 303, 10.3389/fpls.2016.00303
Munthe, 1992, Some aqueous reactions of potential importance in the atmospheric chemistry of mercury, Atmos. Environ. Part A: Gen. Top., 26, 553, 10.1016/0960-1686(92)90168-K
Naguib, 2018, Microbial diversity of mer operon genes and their potential rules in mercury bioremediation and resistance, Open Biotechnol. J., 12, 10.2174/1874070701812010056
Narita, 2004, Dissemination of Tn MERI1-like mercury resistance transposons among Bacillus isolated from worldwide environmental samples, FEMS Microbiol. Ecol., 48, 47, 10.1016/j.femsec.2003.12.011
Nascimento, 2003, Operon mer: bacterial resistance to mercury and potential for bioremediation of contaminated environments, Genet. Med. Res., 2, 92
Nigam, 2015, Enzyme based biosensors for detection of environmental pollutants-a review, J. Microbiol. Biotechnol., 25, 1773, 10.4014/jmb.1504.04010
Norambuena, 2018, Low-molecular-weight thiols and thioredoxins are important players in Hg (II) resistance in Thermus thermophilus HB27, Appl. Environ. Microbiol., 84, e01931, 10.1128/AEM.01931-17
Oehmen, 2014, Mercury removal from water streams through the ion exchange membrane bioreactor concept, J. Hazard. Mater., 264, 65, 10.1016/j.jhazmat.2013.10.067
Ojea-Jiménez, 2012, Citrate-coated gold nanoparticles as smart scavengers for mercury (II) removal from polluted waters, ACS Nano, 6, 2253, 10.1021/nn204313a
Ojuederie, 2017, Microbial and plant-assisted bioremediation of heavy metal polluted environments: a review, Int. J. Environ. Res. Public Health, 14, 1504, 10.3390/ijerph14121504
Orr, 2017, Chronic kidney disease and exposure to nephrotoxic metals, Int. J. Mol. Sci., 18, 1039, 10.3390/ijms18051039
Parks, 2013, The genetic basis for bacterial mercury methylation, Science, 339, 1332, 10.1126/science.1230667
Peng, 2016, Human exposure to methylmercury from crayfish (Procambarus clarkii) in China, Environ. Geochem. Health, 38, 169, 10.1007/s10653-015-9701-4
Pepi, 2011, Mercury-resistant bacterial strains Pseudomonas and Psychrobacter spp. isolated from sediments of Orbetello Lagoon (Italy) and their possible use in bioremediation processes, Int. Biodeterior. Biodegrad., 65, 85, 10.1016/j.ibiod.2010.09.006
Pollack, 2011, Cadmium, lead, and mercury in relation to reproductive hormones and anovulation in premenopausal women, Environ. Health Perspect., 119, 1156, 10.1289/ehp.1003284
Priyadarshi, 2012, A GFP-based bacterial biosensor with chromosomally integrated sensing cassette for quantitative detection of Hg (II) in environment, J. Environ. Sci., 24, 963, 10.1016/S1001-0742(11)60820-6
Qian, 2018, Total mercury and methylmercury accumulation in wild plants grown at wastelands composed of mine tailings: insights into potential candidates for phytoremediation, Environ. Pollut., 239, 757, 10.1016/j.envpol.2018.04.105
Rabbani, 2016, Application of nanotechnology to remediate contaminated soils, 219
Ramnani, 2016, Carbon nanomaterial-based electrochemical biosensors for label-free sensing of environmental pollutants, Chemosphere, 143, 85, 10.1016/j.chemosphere.2015.04.063
Rasmussen, 1997, Cell-density-dependent sensitivity of a mer-lux bioassay, Appl. Environ. Microbiol., 63, 3291, 10.1128/aem.63.8.3291-3293.1997
Rehman, 2018, Prevalence of exposure of heavy metals and their impact on health consequences, J. Cell. Biochem., 119, 157, 10.1002/jcb.26234
Rice, 2014, Environmental mercury and its toxic effects, J. Prev. Med. Public Health, 47, 74, 10.3961/jpmph.2014.47.2.74
Robinson, 1984, Mechanisms of microbial resistance and detoxification of mercury and organomercury compounds: physiological, biochemical, and genetic analyses, Microbiol. Rev., 48, 95, 10.1128/mr.48.2.95-124.1984
Rojas, 2011, Characterization of the metabolically modified heavy metal-resistant Cupriavidus metallidurans strain MSR33 generated for mercury bioremediation, PLoS One, 6, 10.1371/journal.pone.0017555
Rubino, 2015, Toxicity of glutathione-binding metals: a review of targets and mechanisms, Toxics, 3, 20, 10.3390/toxics3010020
Rugh, 1996, Mercuric ion reduction and resistance in transgenic Arabidopsis thaliana plants expressing a modified bacterial merA gene, Proc. Natl. Acad. Sci. U. S. A., 93, 3182, 10.1073/pnas.93.8.3182
Ruiz, 2011, Characterization of mercury bioremediation by transgenic bacteria expressing metallothionein and polyphosphate kinase, BMC Biotechnol., 11, 82, 10.1186/1472-6750-11-82
Ruiz, 2009, Genetic engineering to enhance mercury phytoremediation, Curr. Opin. Biotechnol., 20, 213, 10.1016/j.copbio.2009.02.010
Sasmaz, 2016, Mercury uptake and phytotoxicity in terrestrial plants grown naturally in the Gumuskoy (Kutahya) mining area, Turkey, Int. J. Phytoremediation, 18, 69, 10.1080/15226514.2015.1058334
Sas-Nowosielska, 2008, Remediation aspect of microbial changes of plant rhizosphere in mercury contaminated soil, Environ. Monit. Assess., 137, 101, 10.1007/s10661-007-9732-0
Saturday, 2018
Schottel, 1978, The mercuric and organomercurial detoxifying enzymes from a plasmid-bearing strain of Escherichia coli, J. Biol. Chem., 253, 4341, 10.1016/S0021-9258(17)34725-7
Schrag, 1985, Occupational exposures associated with male reproductive dysfunction, Annu. Rev. Pharmacol. Toxicol., 25, 567, 10.1146/annurev.pa.25.040185.003031
Selifonova, 1993, Bioluminescent sensors for detection of bioavailable Hg (II) in the environment, Appl. Environ. Microbiol., 59, 3083, 10.1128/aem.59.9.3083-3090.1993
Selin, 2009, Global biogeochemical cycling of mercury: a review, Annu. Rev. Environ. Resour., 34, 10.1146/annurev.environ.051308.084314
Shahi, 2017, Assessment of the horizontal transfer of functional genes as a suitable approach for evaluation of the bioremediation potential of petroleum-contaminated sites: a mini-review, Appl. Microbiol. Biotechnol., 101, 4341, 10.1007/s00253-017-8306-5
Sinha, 2011, Mercury bioaccumulation and simultaneous nanoparticle synthesis by Enterobacter sp. cells, Bioresour. Technol., 102, 4281, 10.1016/j.biortech.2010.12.040
Sinha, 2012, Mercury bioremediation by mercury accumulating Enterobacter sp. cells and its alginate immobilized application, Biodegradation, 23, 25, 10.1007/s10532-011-9483-z
Siudek, 2011, Temporal variability of particulate mercury in the air over the urbanized zone of the southern Baltic, Atmos. Pollut. Res., 2, 484, 10.5094/APR.2011.055
Solt, 2010, Childhood vaccines and autism--much ado about nothing?, Harefuah, 149, 251
Sone, 2017, Cysteine and histidine residues are involved in Escherichia coli Tn21 MerE methylmercury transport, FEBS Open Bio, 7, 1994, 10.1002/2211-5463.12341
Tak, 2013, Advances in the application of plant growth-promoting rhizobacteria in phytoremediation of heavy metals, vol. 223, 33
Tangahu, 2011, A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation, Int. J. Chem. Eng., 2011, 10.1155/2011/939161
Tariq, 2014, Bioremediation of mercury compounds by using immobilized nitrogen-fixing bacteria, Int. J. Agric. Biol., 16
Taube, 2008, Soil remediation–mercury speciation in soil and vapor phase during thermal treatment, Water Air Soil Pollut., 193, 155, 10.1007/s11270-008-9679-y
Thompson, 2019, Environmental chemical contaminants in food: review of a global problem, J. Toxicol., 2019, 10.1155/2019/2345283
Turdean, 2011, Design and development of biosensors for the detection of heavy metal toxicity, Int. J. Electrochem., 2011, 10.4061/2011/343125
US Environmental Protection Agency (USEPA), 2007
Usman, 2018
Varjani, 2018
Velásquez-Riaño, 2016, Bioremediation techniques applied to aqueous media contaminated with mercury, Crit. Rev. Biotechnol., 36, 1124, 10.3109/07388551.2015.1100156
Wagner-Döbler, 2003, Pilot plant for bioremediation of mercury-containing industrial wastewater, Appl. Microbiol. Biotechnol., 62, 124, 10.1007/s00253-003-1322-7
Wagner-Dobler, 2013
Wang, 2006, Biosorption of heavy metals by Saccharomyces cerevisiae: a review, Biotechnol. Adv., 24, 427, 10.1016/j.biotechadv.2006.03.001
Wang, 2011, Ammonium thiosulphate enhanced phytoextraction from mercury contaminated soil–Results from a greenhouse study, J. Hazard. Mater., 186, 119, 10.1016/j.jhazmat.2010.10.097
Wang, 2012, Remediation of mercury contaminated sites–a review, J. Hazard. Mater., 221, 1
Wang, 2017, Screening of chelating ligands to enhance mercury accumulation from historically mercury-contaminated soils for phytoextraction, J. Environ. Manage., 186, 233, 10.1016/j.jenvman.2016.05.031
Wang, 2004, Sources and remediation for mercury contamination in aquatic systems—a literature review, Environ. Pollut., 131, 323, 10.1016/j.envpol.2004.01.010
Wei, 2018, Cell surface display of MerR on Saccharomyces cerevisiae for biosorption of mercury, Mol. Biotechnol., 60, 12, 10.1007/s12033-017-0039-2
Wiatrowski, 2006, Novel reduction of mercury (II) by mercury-sensitive dissimilatory metal reducing bacteria, Environ. Sci. Technol., 40, 6690, 10.1021/es061046g
Wireman, 1997, Association of mercury resistance with antibiotic resistance in the gram-negative fecal bacteria of primates, Appl. Environ. Microbiol., 63, 4494, 10.1128/aem.63.11.4494-4503.1997
Wongkarnka, 2005
Xiong, 2009, Immobilization of mercury in sediment using stabilized iron sulfide nanoparticles, Water Res., 43, 5171, 10.1016/j.watres.2009.08.018
Xun, 2017, Mercury accumulation plant Cyrtomium macrophyllum and its potential for phytoremediation of mercury polluted sites, Chemosphere, 189, 161, 10.1016/j.chemosphere.2017.09.055
Yadav, 2017, A review of nanobioremediation technologies for environmental cleanup: a novel biological approach, J. Mater. Environ. Sci., 8, 740
Yoshida, 2002, Placental to fetal transfer of mercury and fetotoxicity, Tohoku J. Exp. Med., 196, 79, 10.1620/tjem.196.79
Zeng, 2010, Isolation, characterization and extraction of mer gene of Hg2+ resisting strain D2, Trans. Nonferrous Met. Soc. China, 20, 507, 10.1016/S1003-6326(09)60170-9
Zhang, 2010, Photolytic degradation of methylmercury enhanced by binding to natural organic ligands, Nat. Geosci., 3, 473, 10.1038/ngeo892
Zhang, 2012, Methylation of mercury by bacteria exposed to dissolved, nanoparticulate, and microparticulate mercuric sulfides, Environ. Sci. Technol., 46, 6950, 10.1021/es203181m
Zhang, 2015, Electrochemical sensor based on electrodeposited graphene-Au modified electrode and nanoAu carrier amplified signal strategy for attomolar mercury detection, Anal. Chem., 87, 989, 10.1021/ac503472p