Recent developments in environmental mercury bioremediation and its toxicity: A review

Shivani Kumari1, Amit1, Rahul Jamwal1, Neha Mishra1, Dileep Kumar Singh1
1Soil Microbial Ecology and Environmental Toxicology Laboratory, Department of Zoology, University of Delhi, New Delhi, Delhi 110007, India

Tài liệu tham khảo

Abreu, 2012, Organic matter and barium absorption by plant species grown in an area polluted with scrap metal residue, Appl. Environ. Soil Sci., 2012, 10.1155/2012/476821 Abumaizar, 1999, Heavy metal contaminants removal by soil washing, J. Hazard. Mater., 70, 71, 10.1016/S0304-3894(99)00149-1 Ali, 2013, Phytoremediation of heavy metals—concepts and applications, Chemosphere, 91, 869, 10.1016/j.chemosphere.2013.01.075 Alkorta, 2017, Environmental parameters altered by climate change affect the activity of soil microorganisms involved in bioremediation, FEMS Microbiol. Lett., 364, 10.1093/femsle/fnx200 Amde, 2016, Methods and recent advances in speciation analysis of mercury chemical species in environmental samples: a review, Chem. Speciat. Bioavailab., 28, 51, 10.1080/09542299.2016.1164019 Anaemene, 2012, The use of Candida sp. in the biosorption of heavy metals from industrial effluent, Eur. J. Exp. Biol., 2, 484 Anthony, 2014 Aschner, 1990, Mercury neurotoxicity: mechanisms of blood-brain barrier transport, Neurosci. Biobehav. Rev., 14, 169, 10.1016/S0149-7634(05)80217-9 ATSDR (Agency for Toxic Substances and Disease Registry), 2015 Bahafid, 2017, Yeast biomass: an alternative for bioremediation of heavy metals Bajgai, 2012, Yeast Trichosporon cutaneum R57, J. Biol., 2, B70 Barkay, 2003, Bacterial mercury resistance from atoms to ecosystems, FEMS Microbiol. Rev., 27, 355, 10.1016/S0168-6445(03)00046-9 Beauvais-Flück, 2016, Role of cellular compartmentalization in the trophic transfer of mercury species in a freshwater plant-crustacean food chain, J. Hazard. Mater., 320, 401, 10.1016/j.jhazmat.2016.08.055 Beckers, 2017, Cycling of mercury in the environment: sources, fate, and human health implications: a review, Crit. Rev. Environ. Sci. Technol., 47, 693, 10.1080/10643389.2017.1326277 Bizily, 2000, Phytodetoxification of hazardous organomercurials by genetically engineered plants, Nat. Biotechnol., 18, 213, 10.1038/72678 Bogdanova, 2001, Class II broad-spectrum mercury resistance transposons in Gram-positive bacteria from natural environments, Res. Microbiol., 152, 503, 10.1016/S0923-2508(01)01224-4 Bonanno, 2013, Comparative performance of trace element bioaccumulation and biomonitoring in the plant species Typha domingensis, Phragmites australis and Arundo donax, Ecotoxicol. Environ. Saf., 97, 124, 10.1016/j.ecoenv.2013.07.017 Bonanno, 2017, Levels of heavy metals in wetland and marine vascular plants and their biomonitoring potential: a comparative assessment, Sci. Total Environ., 576, 796, 10.1016/j.scitotenv.2016.10.171 Boyd, 2012, The mercury resistance operon: from an origin in a geothermal environment to an efficient detoxification machine, Front. Microbiol., 3, 349, 10.3389/fmicb.2012.00349 Brim, 2000, Engineering Deinococcus radiodurans for metal remediation in radioactive mixed waste environments, Nat. Biotechnol., 18, 85, 10.1038/71986 Brim, 2003, Engineering Deinococcus geothermalis for bioremediation of high-temperature radioactive waste environments, Appl. Environ. Microbiol., 69, 4575, 10.1128/AEM.69.8.4575-4582.2003 Brown, 2009, Organic chemistry Brutesco, 2017, Bacterial host and reporter gene optimization for genetically encoded whole cell biosensors, Environ. Sci. Pollut. Res. - Int., 24, 52, 10.1007/s11356-016-6952-2 Burrus, 2002, Conjugative transposons: the tip of the iceberg, Mol. Microbiol., 46, 601, 10.1046/j.1365-2958.2002.03191.x Busto, 2011, Potential of thermal treatment for decontamination of mercury containing wastes from chlor-alkali industry, J. Hazard. Mater., 186, 114, 10.1016/j.jhazmat.2010.10.099 Cabrejo, 2010 Carneado, 2015, Mercury (II) and methylmercury determination in water by liquid chromatography hyphenated to cold vapour atomic fluorescence spectrometry after online short-column preconcentration, Anal. Methods, 7, 2699, 10.1039/C4AY02929A Carrasco-Gil, 2013, Mercury localization and speciation in plants grown hydroponically or in a natural environment, Environ. Sci. Technol., 47, 3082, 10.1021/es303310t Castagna, 2018, Atmospheric mercury species measurements across the Western Mediterranean region: behaviour and variability during a 2015 research cruise campaign, Atmos. Environ., 173, 108, 10.1016/j.atmosenv.2017.10.045 Castoldi, 2001, Neurotoxicity and molecular effects of methylmercury, Brain Res. Bull., 55, 197, 10.1016/S0361-9230(01)00458-0 Ceccatelli, 2010, Methylmercury-induced neurotoxicity and apoptosis, Chem. Biol. Interact., 188, 301, 10.1016/j.cbi.2010.04.007 Chang, 1977, Neurotoxic effects of mercury—a review, Environ. Res., 14, 329, 10.1016/0013-9351(77)90044-5 Chen, 2018, Application of microbial transformation to remediate Hg-contaminated water: strain isolation and laboratory microcosm study, J. Environ. Eng., 144, 10.1061/(ASCE)EE.1943-7870.0001385 Chernyak, 2013, Role of cytochrome P450-dependent monooxygenases and polymorphic variants of GSTT1 and GSTM1 genes in the formation of brain lesions in individuals chronically exposed to mercury, Bull. Exp. Biol. Med., 156, 15, 10.1007/s10517-013-2266-2 Chien, 2012, Mercury removal and recovery by immobilized Bacillus megaterium MB1, Front. Chem. Sci. Eng., 6, 192, 10.1007/s11705-012-1284-3 Colin, 2018, Biosensor for screening bacterial mercury methylation: example within the Desulfobulbaceae, Res. Microbiol., 169, 44, 10.1016/j.resmic.2017.09.005 Colón-Rodríguez, 2017, Effects of methylmercury on spinal cord afferents and efferents—a review, Neurotoxicology, 60, 308, 10.1016/j.neuro.2016.12.007 Czako, 2006, Transgenic Spartina alterniflora for phytoremediation, Environ. Geochem. Health, 28, 103, 10.1007/s10653-005-9019-8 Dai, 2009, Development of transgenic hybrid sweetgum (Liquidambar styraciflua× L. formosana) expressing γ-glutamylcysteine synthetase or mercuric reductase for phytoremediation of mercury pollution, New For., 38, 35, 10.1007/s11056-008-9130-7 Daly, 1994, In vivo damage and recA-dependent repair of plasmid and chromosomal DNA in the radiation-resistant bacterium Deinococcus radiodurans, J. Bacteriol., 176, 3508, 10.1128/jb.176.12.3508-3517.1994 Dash, 2012, Bioremediation of mercury and the importance of bacterial mer genes, Int. Biodeterior. Biodegrad., 75, 207, 10.1016/j.ibiod.2012.07.023 Dash, 2015, Bioremediation of inorganic mercury through volatilization and biosorption by transgenic Bacillus cereus BW-03 (pPW-05), Int. Biodeterior. Biodegrad., 103, 179, 10.1016/j.ibiod.2015.04.022 Dash, 2017, Functional efficiency of MerA protein among diverse mercury resistant bacteria for efficient use in bioremediation of inorganic mercury, Biochimie, 142, 207, 10.1016/j.biochi.2017.09.016 Davidson, 2004, Mercury exposure and child development outcomes, Pediatrics, 113, 1023, 10.1542/peds.113.S3.1023 Davis, 2001, Mercury vapor and female reproductive toxicity, Toxicol. Sci., 59, 291, 10.1093/toxsci/59.2.291 Deckwer, 2004, Microbial removal of ionic mercury in a three-phase fluidized bed reactor, Environ. Sci. Technol., 38, 1858, 10.1021/es0300517 Dönmez, 2001, Bioaccumulation of copper (II) and nickel (II) by the non-adapted and adapted growing Candida sp, Water Res., 35, 1425, 10.1016/S0043-1354(00)00394-8 Driscoll, 2013, Mercury as a global pollutant: sources, pathways, and effects, Environ. Sci. Technol., 47, 4967, 10.1021/es305071v Dzantor, 2007, Phytoremediation: the state of rhizosphere ‘engineering’ for accelerated rhizodegradation of xenobiotic contaminants, J. Chem. Technol. Biotechnol.: Int. Res. Process Environ. Clean Technol., 82, 228, 10.1002/jctb.1662 EPA, U, 1997, 2 Essa, 2006, A new approach to the remediation of heavy metal liquid wastes via off‐gases produced by Klebsiella pneumoniae M426, Biotechnol. Bioeng., 95, 574, 10.1002/bit.20877 Fernandes Azevedo, 2012, Toxic effects of mercury on the cardiovascular and central nervous systems, Biomed Res. Int., 2012 Figueiredo, 2018, Evidence of mercury methylation and demethylation by the estuarine microbial communities obtained in stable Hg isotope studies, Int. J. Environ. Res. Public Health, 15, 2141, 10.3390/ijerph15102141 Flora, 2008, Heavy metal induced oxidative stress & its possible reversal by chelation therapy, Indian J. Med. Res., 128, 501 Franchi, 2017, Phytoremediation of a multi contaminated soil: mercury and arsenic phytoextraction assisted by mobilizing agent and plant growth promoting bacteria, J. Soils Sedim., 17, 1224, 10.1007/s11368-015-1346-5 Frustaci, 1998, Marked elevation of myocardial trace elements in idiopathic dilated cardiomyopathy compared to secondary cardiac dysfunction, vol. 98, 507 Furuya, 2006, Antimicrobial-resistant bacteria in the community setting, Nat. Rev. Microbiol., 4, 36, 10.1038/nrmicro1325 Genchi, 2017, Mercury exposure and heart diseases, Int. J. Environ. Res. Public Health, 14, 74, 10.3390/ijerph14010074 Gomes, 2014, Phytoremediation of water contaminated with mercury using Typha domingensis in constructed wetland, Chemosphere, 103, 228, 10.1016/j.chemosphere.2013.11.071 Gong, 2014, Immobilization of mercury by carboxymethyl cellulose stabilized iron sulfide nanoparticles: reaction mechanisms and effects of stabilizer and water chemistry, Environ. Sci. Technol., 48, 3986, 10.1021/es404418a Gras, 2018, Direct measurement of elemental mercury using multidimensional gas chromatography with microwave-induced helium plasma atomic emission spectroscopy, ACS Earth Space Chem., 2, 471, 10.1021/acsearthspacechem.8b00008 Green, 2010, Mercury contamination in turtles and implications for human health, J. Environ. Health, 72, 14 Gundacker, 2010, Perinatal lead and mercury exposure in Austria, Sci. Total Environ., 408, 5744, 10.1016/j.scitotenv.2010.07.079 Guo, 2011, Evaluation methods for soil heavy metals contamination: a review, Chin. J. Ecol., 30, 889 Gupta, 2016, Microbes as potential tool for remediation of heavy metals: a review, J. Microb. Biochem. Technol., 8, 364, 10.4172/1948-5948.1000310 Guzzi, 2008, Molecular mechanisms triggered by mercury, Toxicology, 244, 1, 10.1016/j.tox.2007.11.002 Hadavifar, 2014, Adsorption of mercury ions from synthetic and real wastewater aqueous solution by functionalized multi-walled carbon nanotube with both amino and thiolated groups, Chem. Eng. J., 237, 217, 10.1016/j.cej.2013.10.014 Harding, 2018, Bioaccumulation of methylmercury within the marine food web of the outer Bay of Fundy, Gulf of Maine, PLoS One, 13, 10.1371/journal.pone.0197220 Harris, 2003, The chemical form of mercury in fish, Science, 301, 1203, 10.1126/science.1085941 He, 2015, In situ remediation technologies for mercury-contaminated soil, Environ. Sci. Pollut. Res. - Int., 22, 8124, 10.1007/s11356-015-4316-y Heaton, 2003, Toward detoxifying mercury‐polluted aquatic sediments with rice genetically engineered for mercury resistance, Environ. Toxicol. Chem.: Int. J., 22, 2940, 10.1897/02-442 Hong, 2012, Methylmercury exposure and health effects, J. Prev. Med. Public Health, 45, 353, 10.3961/jpmph.2012.45.6.353 Hsu-Kim, 2018, Challenges and opportunities for managing aquatic mercury pollution in altered landscapes, Ambio, 47, 141, 10.1007/s13280-017-1006-7 Iavicoli, 2009, The effects of metals as endocrine disruptors, J. Toxicol. Environ. Health Part B, 12, 206, 10.1080/10937400902902062 Ijaz, 2016, Phytoremediation: recent advances in plant-endophytic synergistic interactions, Plant Soil, 405, 179, 10.1007/s11104-015-2606-2 Infante, 2014, Removal of lead, mercury and nickel using the yeast Saccharomyces cerevisiae, Rev. Mvz Córdoba, 19, 4141, 10.21897/rmvz.107 Ivask, 2007, Fibre-optic bacterial biosensors and their application for the analysis of bioavailable Hg and As in soils and sediments from Aznalcollar mining area in Spain, Biosens. Bioelectron., 22, 1396, 10.1016/j.bios.2006.06.019 Ivask, 2002, Construction and use of specific luminescent recombinant bacterial sensors for the assessment of bioavailable fraction of cadmium, zinc, mercury and chromium in the soil, Soil Biol. Biochem., 34, 1439, 10.1016/S0038-0717(02)00088-3 Iwahori, 2000, Ferrous iron-dependent volatilization of mercury by the plasma membrane of Thiobacillus ferrooxidans, Appl. Environ. Microbiol., 66, 3823, 10.1128/AEM.66.9.3823-3827.2000 Jafari, 2015, Employing response surface methodology for optimization of mercury bioremediation by Vibrio parahaemolyticus PG02 in coastal sediments of Bushehr, Iran, CLEAN–Soil Air Water, 43, 118, 10.1002/clen.201300616 Jaishankar, 2014, Toxicity, mechanism and health effects of some heavy metals, Interdiscip. Toxicol., 7, 60, 10.2478/intox-2014-0009 Kazantzis, 2002, Mercury exposure and early effects: an overview, G. Ital. Med. Lav. Ergon., 93, 139 Kim, 2001, The soil–air exchange characteristics of total gaseous mercury from a large-scale municipal landfill area, Atmos. Environ., 35, 3475, 10.1016/S1352-2310(01)00095-4 Kordialik-Bogacka, 2011, Surface properties of yeast cells during heavy metal biosorption, Open Chem., 9, 348, 10.2478/s11532-011-0008-8 Kostal, 2003, A temperature responsive biopolymer for mercury remediation, Environ. Sci. Technol., 37, 4457, 10.1021/es034210y Kumar, 2017, Plant mediated detoxification of mercury and lead, Arab. J. Chem., 10, S2335, 10.1016/j.arabjc.2013.08.010 Le, 2016, How does the metallothionein induction in bivalves meet the criteria for biomarkers of metal exposure?, Environ. Pollut., 212, 257, 10.1016/j.envpol.2016.01.070 Liebert, 1999, Transposon Tn21, flagship of the floating genome, Microbiol. Mol. Biol. Rev., 63, 507, 10.1128/MMBR.63.3.507-522.1999 Liu, 2017, Hg tolerance and biouptake of an isolated pigmentation yeast Rhodotorula mucilaginosa, PLoS One, 12 Liu, 2014, A plant species (Trifolium repens) with strong enrichment ability for mercury, Ecol. Eng., 70, 349, 10.1016/j.ecoleng.2014.06.029 Liu, 2018, Enhancer assisted-phytoremediation of mercury-contaminated soils by Oxalis corniculata L., and rhizosphere microorganism distribution of Oxalis corniculata L, Ecotoxicol. Environ. Saf., 160, 171, 10.1016/j.ecoenv.2018.05.041 Lohren, 2016, Effects on and transfer across the blood-brain barrier in vitro—comparison of organic and inorganic mercury species, BMC Pharmacol. Toxicol., 17, 63, 10.1186/s40360-016-0106-5 López, 2015, Mercury leaching from hazardous industrial wastes stabilized by sulfur polymer encapsulation, Waste Manag., 35, 301, 10.1016/j.wasman.2014.10.009 Lyyra, 2007, Coupling two mercury resistance genes in Eastern cottonwood enhances the processing of organomercury, Plant Biotechnol. J., 5, 254, 10.1111/j.1467-7652.2006.00236.x Ma, 2016, Magnetic solid phase extraction coupled with inductively coupled plasma mass spectrometry for the speciation of mercury in environmental water and human hair samples, Talanta, 146, 93, 10.1016/j.talanta.2015.08.036 Mahbub, 2017, Bioremediation of mercury: not properly exploited in contaminated soils!, Appl. Microbiol. Biotechnol., 101, 963, 10.1007/s00253-016-8079-2 Mahbub, 2016, Mercury inhibits soil enzyme activity in a lower concentration than the guideline value, Bull. Environ. Contam. Toxicol., 96, 76, 10.1007/s00128-015-1664-8 Marrugo-Negrete, 2015, Phytoremediation of mercury-contaminated soils by Jatropha curcas, Chemosphere, 127, 58, 10.1016/j.chemosphere.2014.12.073 Matsui, 2018, Mercury bioremediation by mercury resistance transposon-mediated in situ molecular breeding, Appl. Microbiol. Biotechnol., 102, 3037, 10.1007/s00253-018-8847-2 Mattigod, 2007, A thiol-functionalized nanoporous silica sorbent for removal of mercury from actual industrial waste Matulik, 2017, Bioaccumulation and biomagnification of mercury and methylmercury in four sympatric coastal sharks in a protected subtropical lagoon, Mar. Pollut. Bull., 116, 357, 10.1016/j.marpolbul.2017.01.033 Meacham, 2005, Accumulation of methylmercury or polychlorinated biphenyls in in vitro models of rat neuronal tissue, Toxicol. Appl. Pharmacol., 205, 177, 10.1016/j.taap.2004.08.024 Meagher, 2000, Phytoremediation of toxic elemental and organic pollutants, Curr. Opin. Plant Biol., 3, 153, 10.1016/S1369-5266(99)00054-0 Michalak, 2013, State of the art for the biosorption process—a review, Appl. Biochem. Biotechnol., 170, 1389, 10.1007/s12010-013-0269-0 Minoia, 2009, Effects of mercury on the endocrine system, Crit. Rev. Toxicol., 39 Minu, 2015, Role of gymnemic acid-chitosan nanoparticles in mercury removal from water, J. Chitin Chitosan Sci., 3, 68, 10.1166/jcc.2015.1092 Mosa, 2016, Potential biotechnological strategies for the cleanup of heavy metals and metalloids, Front. Plant Sci., 7, 303, 10.3389/fpls.2016.00303 Munthe, 1992, Some aqueous reactions of potential importance in the atmospheric chemistry of mercury, Atmos. Environ. Part A: Gen. Top., 26, 553, 10.1016/0960-1686(92)90168-K Naguib, 2018, Microbial diversity of mer operon genes and their potential rules in mercury bioremediation and resistance, Open Biotechnol. J., 12, 10.2174/1874070701812010056 Narita, 2004, Dissemination of Tn MERI1-like mercury resistance transposons among Bacillus isolated from worldwide environmental samples, FEMS Microbiol. Ecol., 48, 47, 10.1016/j.femsec.2003.12.011 Nascimento, 2003, Operon mer: bacterial resistance to mercury and potential for bioremediation of contaminated environments, Genet. Med. Res., 2, 92 Nigam, 2015, Enzyme based biosensors for detection of environmental pollutants-a review, J. Microbiol. Biotechnol., 25, 1773, 10.4014/jmb.1504.04010 Norambuena, 2018, Low-molecular-weight thiols and thioredoxins are important players in Hg (II) resistance in Thermus thermophilus HB27, Appl. Environ. Microbiol., 84, e01931, 10.1128/AEM.01931-17 Oehmen, 2014, Mercury removal from water streams through the ion exchange membrane bioreactor concept, J. Hazard. Mater., 264, 65, 10.1016/j.jhazmat.2013.10.067 Ojea-Jiménez, 2012, Citrate-coated gold nanoparticles as smart scavengers for mercury (II) removal from polluted waters, ACS Nano, 6, 2253, 10.1021/nn204313a Ojuederie, 2017, Microbial and plant-assisted bioremediation of heavy metal polluted environments: a review, Int. J. Environ. Res. Public Health, 14, 1504, 10.3390/ijerph14121504 Orr, 2017, Chronic kidney disease and exposure to nephrotoxic metals, Int. J. Mol. Sci., 18, 1039, 10.3390/ijms18051039 Parks, 2013, The genetic basis for bacterial mercury methylation, Science, 339, 1332, 10.1126/science.1230667 Peng, 2016, Human exposure to methylmercury from crayfish (Procambarus clarkii) in China, Environ. Geochem. Health, 38, 169, 10.1007/s10653-015-9701-4 Pepi, 2011, Mercury-resistant bacterial strains Pseudomonas and Psychrobacter spp. isolated from sediments of Orbetello Lagoon (Italy) and their possible use in bioremediation processes, Int. Biodeterior. Biodegrad., 65, 85, 10.1016/j.ibiod.2010.09.006 Pollack, 2011, Cadmium, lead, and mercury in relation to reproductive hormones and anovulation in premenopausal women, Environ. Health Perspect., 119, 1156, 10.1289/ehp.1003284 Priyadarshi, 2012, A GFP-based bacterial biosensor with chromosomally integrated sensing cassette for quantitative detection of Hg (II) in environment, J. Environ. Sci., 24, 963, 10.1016/S1001-0742(11)60820-6 Qian, 2018, Total mercury and methylmercury accumulation in wild plants grown at wastelands composed of mine tailings: insights into potential candidates for phytoremediation, Environ. Pollut., 239, 757, 10.1016/j.envpol.2018.04.105 Rabbani, 2016, Application of nanotechnology to remediate contaminated soils, 219 Ramnani, 2016, Carbon nanomaterial-based electrochemical biosensors for label-free sensing of environmental pollutants, Chemosphere, 143, 85, 10.1016/j.chemosphere.2015.04.063 Rasmussen, 1997, Cell-density-dependent sensitivity of a mer-lux bioassay, Appl. Environ. Microbiol., 63, 3291, 10.1128/aem.63.8.3291-3293.1997 Rehman, 2018, Prevalence of exposure of heavy metals and their impact on health consequences, J. Cell. Biochem., 119, 157, 10.1002/jcb.26234 Rice, 2014, Environmental mercury and its toxic effects, J. Prev. Med. Public Health, 47, 74, 10.3961/jpmph.2014.47.2.74 Robinson, 1984, Mechanisms of microbial resistance and detoxification of mercury and organomercury compounds: physiological, biochemical, and genetic analyses, Microbiol. Rev., 48, 95, 10.1128/mr.48.2.95-124.1984 Rojas, 2011, Characterization of the metabolically modified heavy metal-resistant Cupriavidus metallidurans strain MSR33 generated for mercury bioremediation, PLoS One, 6, 10.1371/journal.pone.0017555 Rubino, 2015, Toxicity of glutathione-binding metals: a review of targets and mechanisms, Toxics, 3, 20, 10.3390/toxics3010020 Rugh, 1996, Mercuric ion reduction and resistance in transgenic Arabidopsis thaliana plants expressing a modified bacterial merA gene, Proc. Natl. Acad. Sci. U. S. A., 93, 3182, 10.1073/pnas.93.8.3182 Ruiz, 2011, Characterization of mercury bioremediation by transgenic bacteria expressing metallothionein and polyphosphate kinase, BMC Biotechnol., 11, 82, 10.1186/1472-6750-11-82 Ruiz, 2009, Genetic engineering to enhance mercury phytoremediation, Curr. Opin. Biotechnol., 20, 213, 10.1016/j.copbio.2009.02.010 Sasmaz, 2016, Mercury uptake and phytotoxicity in terrestrial plants grown naturally in the Gumuskoy (Kutahya) mining area, Turkey, Int. J. Phytoremediation, 18, 69, 10.1080/15226514.2015.1058334 Sas-Nowosielska, 2008, Remediation aspect of microbial changes of plant rhizosphere in mercury contaminated soil, Environ. Monit. Assess., 137, 101, 10.1007/s10661-007-9732-0 Saturday, 2018 Schottel, 1978, The mercuric and organomercurial detoxifying enzymes from a plasmid-bearing strain of Escherichia coli, J. Biol. Chem., 253, 4341, 10.1016/S0021-9258(17)34725-7 Schrag, 1985, Occupational exposures associated with male reproductive dysfunction, Annu. Rev. Pharmacol. Toxicol., 25, 567, 10.1146/annurev.pa.25.040185.003031 Selifonova, 1993, Bioluminescent sensors for detection of bioavailable Hg (II) in the environment, Appl. Environ. Microbiol., 59, 3083, 10.1128/aem.59.9.3083-3090.1993 Selin, 2009, Global biogeochemical cycling of mercury: a review, Annu. Rev. Environ. Resour., 34, 10.1146/annurev.environ.051308.084314 Shahi, 2017, Assessment of the horizontal transfer of functional genes as a suitable approach for evaluation of the bioremediation potential of petroleum-contaminated sites: a mini-review, Appl. Microbiol. Biotechnol., 101, 4341, 10.1007/s00253-017-8306-5 Sinha, 2011, Mercury bioaccumulation and simultaneous nanoparticle synthesis by Enterobacter sp. cells, Bioresour. Technol., 102, 4281, 10.1016/j.biortech.2010.12.040 Sinha, 2012, Mercury bioremediation by mercury accumulating Enterobacter sp. cells and its alginate immobilized application, Biodegradation, 23, 25, 10.1007/s10532-011-9483-z Siudek, 2011, Temporal variability of particulate mercury in the air over the urbanized zone of the southern Baltic, Atmos. Pollut. Res., 2, 484, 10.5094/APR.2011.055 Solt, 2010, Childhood vaccines and autism--much ado about nothing?, Harefuah, 149, 251 Sone, 2017, Cysteine and histidine residues are involved in Escherichia coli Tn21 MerE methylmercury transport, FEBS Open Bio, 7, 1994, 10.1002/2211-5463.12341 Tak, 2013, Advances in the application of plant growth-promoting rhizobacteria in phytoremediation of heavy metals, vol. 223, 33 Tangahu, 2011, A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation, Int. J. Chem. Eng., 2011, 10.1155/2011/939161 Tariq, 2014, Bioremediation of mercury compounds by using immobilized nitrogen-fixing bacteria, Int. J. Agric. Biol., 16 Taube, 2008, Soil remediation–mercury speciation in soil and vapor phase during thermal treatment, Water Air Soil Pollut., 193, 155, 10.1007/s11270-008-9679-y Thompson, 2019, Environmental chemical contaminants in food: review of a global problem, J. Toxicol., 2019, 10.1155/2019/2345283 Turdean, 2011, Design and development of biosensors for the detection of heavy metal toxicity, Int. J. Electrochem., 2011, 10.4061/2011/343125 US Environmental Protection Agency (USEPA), 2007 Usman, 2018 Varjani, 2018 Velásquez-Riaño, 2016, Bioremediation techniques applied to aqueous media contaminated with mercury, Crit. Rev. Biotechnol., 36, 1124, 10.3109/07388551.2015.1100156 Wagner-Döbler, 2003, Pilot plant for bioremediation of mercury-containing industrial wastewater, Appl. Microbiol. Biotechnol., 62, 124, 10.1007/s00253-003-1322-7 Wagner-Dobler, 2013 Wang, 2006, Biosorption of heavy metals by Saccharomyces cerevisiae: a review, Biotechnol. Adv., 24, 427, 10.1016/j.biotechadv.2006.03.001 Wang, 2011, Ammonium thiosulphate enhanced phytoextraction from mercury contaminated soil–Results from a greenhouse study, J. Hazard. Mater., 186, 119, 10.1016/j.jhazmat.2010.10.097 Wang, 2012, Remediation of mercury contaminated sites–a review, J. Hazard. Mater., 221, 1 Wang, 2017, Screening of chelating ligands to enhance mercury accumulation from historically mercury-contaminated soils for phytoextraction, J. Environ. Manage., 186, 233, 10.1016/j.jenvman.2016.05.031 Wang, 2004, Sources and remediation for mercury contamination in aquatic systems—a literature review, Environ. Pollut., 131, 323, 10.1016/j.envpol.2004.01.010 Wei, 2018, Cell surface display of MerR on Saccharomyces cerevisiae for biosorption of mercury, Mol. Biotechnol., 60, 12, 10.1007/s12033-017-0039-2 Wiatrowski, 2006, Novel reduction of mercury (II) by mercury-sensitive dissimilatory metal reducing bacteria, Environ. Sci. Technol., 40, 6690, 10.1021/es061046g Wireman, 1997, Association of mercury resistance with antibiotic resistance in the gram-negative fecal bacteria of primates, Appl. Environ. Microbiol., 63, 4494, 10.1128/aem.63.11.4494-4503.1997 Wongkarnka, 2005 Xiong, 2009, Immobilization of mercury in sediment using stabilized iron sulfide nanoparticles, Water Res., 43, 5171, 10.1016/j.watres.2009.08.018 Xun, 2017, Mercury accumulation plant Cyrtomium macrophyllum and its potential for phytoremediation of mercury polluted sites, Chemosphere, 189, 161, 10.1016/j.chemosphere.2017.09.055 Yadav, 2017, A review of nanobioremediation technologies for environmental cleanup: a novel biological approach, J. Mater. Environ. Sci., 8, 740 Yoshida, 2002, Placental to fetal transfer of mercury and fetotoxicity, Tohoku J. Exp. Med., 196, 79, 10.1620/tjem.196.79 Zeng, 2010, Isolation, characterization and extraction of mer gene of Hg2+ resisting strain D2, Trans. Nonferrous Met. Soc. China, 20, 507, 10.1016/S1003-6326(09)60170-9 Zhang, 2010, Photolytic degradation of methylmercury enhanced by binding to natural organic ligands, Nat. Geosci., 3, 473, 10.1038/ngeo892 Zhang, 2012, Methylation of mercury by bacteria exposed to dissolved, nanoparticulate, and microparticulate mercuric sulfides, Environ. Sci. Technol., 46, 6950, 10.1021/es203181m Zhang, 2015, Electrochemical sensor based on electrodeposited graphene-Au modified electrode and nanoAu carrier amplified signal strategy for attomolar mercury detection, Anal. Chem., 87, 989, 10.1021/ac503472p