Recent developments in advanced aircraft aluminium alloys

Materials & Design - Tập 56 - Trang 862-871 - 2014
Tolga Dursun1, Constantinos Soutis2
1Aselsan Inc, Ankara 06750, Turkey
2Aerospace Research Institute, University of Manchester, Manchester M13 9PL, UK

Tóm tắt

Từ khóa


Tài liệu tham khảo

Campbell, 2006

Warren, 2004, Developments and challanges for aluminium – A Boeing perspective, Mater Forum, 28, 24

Hombergsmeier E. Development of advanced laminates for aircraft structures. In: 25th International congress of the aeronautical sciences, Hamburg, Germany; 2006.

Vlot, 1999, Towards application of fibre metal laminates in large aircraft, Aircr Eng Aerosp Technol, 7, 558, 10.1108/00022669910303711

Gunnink, 2002, GLARE technology development 1997–2000, Appl Compos Mater, 9, 201, 10.1023/A:1016006314630

Vogelesang, 2000, Development of fibre metal laminates for advanced aerospace structures, J Mater Process Technol, 103, 1, 10.1016/S0924-0136(00)00411-8

Vermeeren, 2003, An historic overview of the development of fibre metal laminates, Appl Compos Mater, 10, 189, 10.1023/A:1025533701806

Wu, 2005, The mechanical behavior of GLARE laminates for aircraft structures, JOM, 57, 72, 10.1007/s11837-005-0067-4

Alderliesten, 2006, Fatigue and damage tolerance issues of Glare in aircraft structures, Int J Fatigue, 28, 1116, 10.1016/j.ijfatigue.2006.02.015

Alderliesten RC, Benedictus R. Fiber/metal composite technology for future primary aircraft structures. In: 48th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics, and materials conference. Honolulu, Hawaii, 23–26 April 2007.

Vermeeren, 2003, Glare design aspects and philosophies, Appl Compos Mater, 10, 257, 10.1023/A:1025581600897

Soltani, 2011, Studying the tensile behaviour of GLARE laminates: a finite element modelling approach, Appl Compos Mater, 18, 271, 10.1007/s10443-010-9155-x

Flower, 2003, Materials for airframes, Aeronat J, 331, 10.1017/S0001924000013658

Soutis, 2009, Recent advances in building with composites, Plast Rubber Compos: Macromol Eng, 38, 359, 10.1179/146580109X12540995045606

Diamanti, 2010, Structural health monitoring techniques for aircraft composite structures, Prog Aerosp Sci, 46, 343, 10.1016/j.paerosci.2010.05.001

Giurgiutiu, 2012, Enhanced composites integrity through structural health monitoring, Appl Compos Mater, 1

Soutis, 2012, Performance of GLARE panels subjected to intense pressure pulse loading, Aeronaut J, 116, 667, 10.1017/S0001924000007120

Mohamed, 2012, Multi-material arbitrary-lagrangian eulerian formulation for blast-induced fluid-structure interaction in fibre metal laminates, AIAA J, 50, 1826, 10.2514/1.J051168

Cassada, 2002, Aluminium alloys for aircraft structures, Adv Mater Processes, 27

Starke, 1996, Application of modern aluminium alloys to aircraft, Prog Aerosp Sci, 32, 131, 10.1016/0376-0421(95)00004-6

Williams, 2003, Progress in structural materials for aerospace systems, Acta Mater, 51, 5775, 10.1016/j.actamat.2003.08.023

Merati A. Materials replacement for aging aircraft. RTO-AG-AVT-140 [Chapter 24].

Verma, 2001, Study of fatigue behaviour of 7475 aluminium alloy, Bull Mater Sci, 24, 231, 10.1007/BF02710107

Smith, 2003, The Boeing 777, Adv Mater Processes, 41

Chen, 2013, Effects of inclusions, grain boundaries and grain orientations on the fatigue crack initiation and propagation behavior of 2524-T3 Al alloy, Mater Sci Eng A, 580, 150, 10.1016/j.msea.2013.05.053

Zheng, 2011, The behavior of fatigue crack initiation and propagation in AA2524-T34 alloy, Mater Sci Eng A, 528, 2017, 10.1016/j.msea.2010.10.085

Necşulescu, 2011, The effects of corrosion on the mechanical properties of aluminum alloy 7075–T6, UPB Sci Bull, 73

Lam, 2010, A study to evaluate and understand the response of aluminum alloy 2026 subjected to tensile deformation, Mater Des, 31, 166, 10.1016/j.matdes.2009.06.040

Li, 2005, Four point bend fatigue of AA2026 aluminum alloy, Metull Mater Trans A, 36A, 2529, 10.1007/s11661-005-0126-z

Pantelakis, 2012, A critical consideration of use of Al-cladding for protecting aircraft aluminum alloy 2024 against corrosion, Theor Appl Fract Mec, 57, 36, 10.1016/j.tafmec.2011.12.006

Ziemian, 2014, Effect of substrate surface roughening and cold spray coating on the fatigue life of AA2024 specimens, Mater Des, 54, 212, 10.1016/j.matdes.2013.08.061

Shi, 2013, Protection of 2024-T3 aluminium alloy by corrosion resistant phytic acid conversion coating, Appl Surf Sci, 280, 325, 10.1016/j.apsusc.2013.04.156

Kim, 2006, Fatigue life prediction under random loading conditions in 7475–T7351 aluminum alloy using the RMS model, Int J Damage Mech, 15, 89, 10.1177/1056789506058605

Warner, 2006, Recently-developed aluminium solutions for aerospace applications, Mater Sci Forum, 519–521, 1271, 10.4028/www.scientific.net/MSF.519-521.1271

Chen, 2012, Effect of heat treatment on strength, exfoliation corrosion and electrochemical behavior of 7085 aluminum alloy, Mater Des, 35, 93, 10.1016/j.matdes.2011.09.033

Zhang, 2013, Characterization of microstructure and mechanical properties of Al–Cu–Mg–Ag–(Mn/Zr) alloy with high Cu:Mg, Mater Des, 49, 311, 10.1016/j.matdes.2013.01.044

Chakherlou, 2011, An experimental investigation of the bolt clamping force and friction effect on the fatigue behavior of aluminum alloy 2024-T3 double shear lap joint, Mater Des, 32, 4641, 10.1016/j.matdes.2011.04.022

Vazquez, 2012, Experimental results in fretting fatigue with shot and laser peened Al 7075-T651 specimens, Int J Fatigue, 40, 143, 10.1016/j.ijfatigue.2011.12.014

Chakherlou, 2012, Effect of cold expansion and bolt clamping on fretting behavior of Al 2024-T3 in double shear lap joints, Eng Fail Anal, 25, 29, 10.1016/j.engfailanal.2012.04.008

Oskouei, 2012, Improving fretting fatigue behaviour of Al 7075-T6 bolted plates using electroless Ni–P coatings, Int J Fatigue, 44, 157, 10.1016/j.ijfatigue.2012.05.003

Oskouei, 2012, An investigation on the fatigue behaviour of Al 7075-T6 coated with titanium nitride using physical vapour deposition process, Mater Des, 39, 294, 10.1016/j.matdes.2012.02.056

Sarhan, 2013, The influence of higher surface hardness on fretting fatigue life of hard anodized aerospace Al 7075-T6 alloy, Mater Sci Eng A, 560, 377, 10.1016/j.msea.2012.09.082

Polmear, 2004, Aluminium alloys – a century of age hardening, Mater Forum, 28, 1

Giummarra C, Thomas B, Rioja RJ. New aluminium lithium alloys for aerospace applications. In: Light metals technology conference; 2007.

Kalyanam, 2009, Delamination cracking in advanced aluminium–lithium alloys-experimental and computational studies, Eng Fract Mech, 76, 2174, 10.1016/j.engfracmech.2009.06.010

Soboyejo, 2006

Bodily B, Heinimann M, Bray G, Colvin E, Witters J. Advanced aluminum and aluminum–lithium solutions for derivative and next generation aerospace structures. SAE paper no 2012-01-1874.

Yuan, 2011, Mechanical properties of a novel high-strength aluminium–lithium alloy, Mater Sci Forum, 689, 385, 10.4028/www.scientific.net/MSF.689.385

Lequeu, 2010, Aluminium–copper–lithium alloy 2050 developed for medium to thick plate, JMEPEG, 19, 841, 10.1007/s11665-009-9554-z

Alexopoulos, 2013, Fatigue behavior of the aeronautical Al–Li (2198) aluminum alloy under constant amplitude loading, Int J Fatigue, 56, 95, 10.1016/j.ijfatigue.2013.07.009

Decreus, 2013, On the role of microstructure in governing fracture behavior of an aluminum–copper–lithium alloy, Mat Sci Eng A, 586, 418, 10.1016/j.msea.2013.06.075

Moreto, 2011, Beneduce Fea. Corrosion and fatigue behavior of new Al alloys, Proc Eng, 10, 1521, 10.1016/j.proeng.2011.04.254

Rioj, 2012, The evolution of Al–Li base products for aerospace and space applications, Metull Mater Trans A, 43A, 3325, 10.1007/s11661-012-1155-z

Hamel SF. A parametric study of delaminations in an aluminium–lithium alloy. In: MS Thesis. Champaign: University of Illinois at Urbana; 2010.

Lenczowski B. New lightweight alloys for welded aircraft structure. In: ICAS Congress; 2002.

ESAB Technical. Friction Stir Welding. <http://www.esab.com> [accessed 25.01.12].

Nandan, 2008, Recent advances in friction stir welding-process, weldment structure and properties, Prog Mater Sci, 53, 980, 10.1016/j.pmatsci.2008.05.001

Burford D, Widener C, Tweedy B. Advances in friction stir welding for aerospace application. In: 6th AIAA Aviation Technology, Integration and Operations Conference, Wichita, USA; 2006.

Colegrove P. Airbus evaluates friction stir welding. <http://www.comsol.com/academic/papers/1614> [accessed 20.02.12].

Vilaça P, Thomas W. Friction stir welding technology. Adv Struct Mater. Heidelberg, Berlin: Springer-Verlag; 2011.

Lertora, 2010, AA8090 Al–Li alloy fsw parameters to minimize defects and increase fatigue life, Int J Mater Form, 3, 1003, 10.1007/s12289-010-0939-1

Liu H, Zhang H, Pan Q, Yu L. Effect of friction stir welding parameters on microstructural characteristics and mechanical properties of 2219–T6 aluminium alloy joints. Int J Mater Form 2011;201:1048–5.

Buffa, 2009, Friction stir welding of lap joints: influence of process parameters on the metallurgical and mechanical properties, Mater Sci Eng A, 519, 19, 10.1016/j.msea.2009.04.046

Yang, 2012, Double-sided laser beam welded T-joints for aluminum aircraft fuselage panels: process, microstructure, and mechanical properties, Mater Des, 33, 652, 10.1016/j.matdes.2011.07.059

Quintino L, Miranda R, Dilthey U. Laser welding of structural aluminium. Adv Struct Mater. Heidelberg, Berlin: Springer-Verlag; 2011.