Recent developments in advanced aircraft aluminium alloys
Tóm tắt
Từ khóa
Tài liệu tham khảo
Campbell, 2006
Warren, 2004, Developments and challanges for aluminium – A Boeing perspective, Mater Forum, 28, 24
Hombergsmeier E. Development of advanced laminates for aircraft structures. In: 25th International congress of the aeronautical sciences, Hamburg, Germany; 2006.
Vlot, 1999, Towards application of fibre metal laminates in large aircraft, Aircr Eng Aerosp Technol, 7, 558, 10.1108/00022669910303711
Gunnink, 2002, GLARE technology development 1997–2000, Appl Compos Mater, 9, 201, 10.1023/A:1016006314630
Vogelesang, 2000, Development of fibre metal laminates for advanced aerospace structures, J Mater Process Technol, 103, 1, 10.1016/S0924-0136(00)00411-8
Vermeeren, 2003, An historic overview of the development of fibre metal laminates, Appl Compos Mater, 10, 189, 10.1023/A:1025533701806
Wu, 2005, The mechanical behavior of GLARE laminates for aircraft structures, JOM, 57, 72, 10.1007/s11837-005-0067-4
Alderliesten, 2006, Fatigue and damage tolerance issues of Glare in aircraft structures, Int J Fatigue, 28, 1116, 10.1016/j.ijfatigue.2006.02.015
Alderliesten RC, Benedictus R. Fiber/metal composite technology for future primary aircraft structures. In: 48th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics, and materials conference. Honolulu, Hawaii, 23–26 April 2007.
Vermeeren, 2003, Glare design aspects and philosophies, Appl Compos Mater, 10, 257, 10.1023/A:1025581600897
Soltani, 2011, Studying the tensile behaviour of GLARE laminates: a finite element modelling approach, Appl Compos Mater, 18, 271, 10.1007/s10443-010-9155-x
Soutis, 2009, Recent advances in building with composites, Plast Rubber Compos: Macromol Eng, 38, 359, 10.1179/146580109X12540995045606
Diamanti, 2010, Structural health monitoring techniques for aircraft composite structures, Prog Aerosp Sci, 46, 343, 10.1016/j.paerosci.2010.05.001
Giurgiutiu, 2012, Enhanced composites integrity through structural health monitoring, Appl Compos Mater, 1
Soutis, 2012, Performance of GLARE panels subjected to intense pressure pulse loading, Aeronaut J, 116, 667, 10.1017/S0001924000007120
Mohamed, 2012, Multi-material arbitrary-lagrangian eulerian formulation for blast-induced fluid-structure interaction in fibre metal laminates, AIAA J, 50, 1826, 10.2514/1.J051168
Cassada, 2002, Aluminium alloys for aircraft structures, Adv Mater Processes, 27
Starke, 1996, Application of modern aluminium alloys to aircraft, Prog Aerosp Sci, 32, 131, 10.1016/0376-0421(95)00004-6
Williams, 2003, Progress in structural materials for aerospace systems, Acta Mater, 51, 5775, 10.1016/j.actamat.2003.08.023
Merati A. Materials replacement for aging aircraft. RTO-AG-AVT-140 [Chapter 24].
Verma, 2001, Study of fatigue behaviour of 7475 aluminium alloy, Bull Mater Sci, 24, 231, 10.1007/BF02710107
Smith, 2003, The Boeing 777, Adv Mater Processes, 41
Chen, 2013, Effects of inclusions, grain boundaries and grain orientations on the fatigue crack initiation and propagation behavior of 2524-T3 Al alloy, Mater Sci Eng A, 580, 150, 10.1016/j.msea.2013.05.053
Zheng, 2011, The behavior of fatigue crack initiation and propagation in AA2524-T34 alloy, Mater Sci Eng A, 528, 2017, 10.1016/j.msea.2010.10.085
Necşulescu, 2011, The effects of corrosion on the mechanical properties of aluminum alloy 7075–T6, UPB Sci Bull, 73
Lam, 2010, A study to evaluate and understand the response of aluminum alloy 2026 subjected to tensile deformation, Mater Des, 31, 166, 10.1016/j.matdes.2009.06.040
Li, 2005, Four point bend fatigue of AA2026 aluminum alloy, Metull Mater Trans A, 36A, 2529, 10.1007/s11661-005-0126-z
Pantelakis, 2012, A critical consideration of use of Al-cladding for protecting aircraft aluminum alloy 2024 against corrosion, Theor Appl Fract Mec, 57, 36, 10.1016/j.tafmec.2011.12.006
Ziemian, 2014, Effect of substrate surface roughening and cold spray coating on the fatigue life of AA2024 specimens, Mater Des, 54, 212, 10.1016/j.matdes.2013.08.061
Shi, 2013, Protection of 2024-T3 aluminium alloy by corrosion resistant phytic acid conversion coating, Appl Surf Sci, 280, 325, 10.1016/j.apsusc.2013.04.156
Kim, 2006, Fatigue life prediction under random loading conditions in 7475–T7351 aluminum alloy using the RMS model, Int J Damage Mech, 15, 89, 10.1177/1056789506058605
Warner, 2006, Recently-developed aluminium solutions for aerospace applications, Mater Sci Forum, 519–521, 1271, 10.4028/www.scientific.net/MSF.519-521.1271
Chen, 2012, Effect of heat treatment on strength, exfoliation corrosion and electrochemical behavior of 7085 aluminum alloy, Mater Des, 35, 93, 10.1016/j.matdes.2011.09.033
Zhang, 2013, Characterization of microstructure and mechanical properties of Al–Cu–Mg–Ag–(Mn/Zr) alloy with high Cu:Mg, Mater Des, 49, 311, 10.1016/j.matdes.2013.01.044
Chakherlou, 2011, An experimental investigation of the bolt clamping force and friction effect on the fatigue behavior of aluminum alloy 2024-T3 double shear lap joint, Mater Des, 32, 4641, 10.1016/j.matdes.2011.04.022
Vazquez, 2012, Experimental results in fretting fatigue with shot and laser peened Al 7075-T651 specimens, Int J Fatigue, 40, 143, 10.1016/j.ijfatigue.2011.12.014
Chakherlou, 2012, Effect of cold expansion and bolt clamping on fretting behavior of Al 2024-T3 in double shear lap joints, Eng Fail Anal, 25, 29, 10.1016/j.engfailanal.2012.04.008
Oskouei, 2012, Improving fretting fatigue behaviour of Al 7075-T6 bolted plates using electroless Ni–P coatings, Int J Fatigue, 44, 157, 10.1016/j.ijfatigue.2012.05.003
Oskouei, 2012, An investigation on the fatigue behaviour of Al 7075-T6 coated with titanium nitride using physical vapour deposition process, Mater Des, 39, 294, 10.1016/j.matdes.2012.02.056
Sarhan, 2013, The influence of higher surface hardness on fretting fatigue life of hard anodized aerospace Al 7075-T6 alloy, Mater Sci Eng A, 560, 377, 10.1016/j.msea.2012.09.082
Polmear, 2004, Aluminium alloys – a century of age hardening, Mater Forum, 28, 1
Giummarra C, Thomas B, Rioja RJ. New aluminium lithium alloys for aerospace applications. In: Light metals technology conference; 2007.
Kalyanam, 2009, Delamination cracking in advanced aluminium–lithium alloys-experimental and computational studies, Eng Fract Mech, 76, 2174, 10.1016/j.engfracmech.2009.06.010
Soboyejo, 2006
Bodily B, Heinimann M, Bray G, Colvin E, Witters J. Advanced aluminum and aluminum–lithium solutions for derivative and next generation aerospace structures. SAE paper no 2012-01-1874.
Yuan, 2011, Mechanical properties of a novel high-strength aluminium–lithium alloy, Mater Sci Forum, 689, 385, 10.4028/www.scientific.net/MSF.689.385
Lequeu, 2010, Aluminium–copper–lithium alloy 2050 developed for medium to thick plate, JMEPEG, 19, 841, 10.1007/s11665-009-9554-z
Alexopoulos, 2013, Fatigue behavior of the aeronautical Al–Li (2198) aluminum alloy under constant amplitude loading, Int J Fatigue, 56, 95, 10.1016/j.ijfatigue.2013.07.009
Decreus, 2013, On the role of microstructure in governing fracture behavior of an aluminum–copper–lithium alloy, Mat Sci Eng A, 586, 418, 10.1016/j.msea.2013.06.075
Moreto, 2011, Beneduce Fea. Corrosion and fatigue behavior of new Al alloys, Proc Eng, 10, 1521, 10.1016/j.proeng.2011.04.254
Rioj, 2012, The evolution of Al–Li base products for aerospace and space applications, Metull Mater Trans A, 43A, 3325, 10.1007/s11661-012-1155-z
Hamel SF. A parametric study of delaminations in an aluminium–lithium alloy. In: MS Thesis. Champaign: University of Illinois at Urbana; 2010.
Lenczowski B. New lightweight alloys for welded aircraft structure. In: ICAS Congress; 2002.
ESAB Technical. Friction Stir Welding. <http://www.esab.com> [accessed 25.01.12].
Nandan, 2008, Recent advances in friction stir welding-process, weldment structure and properties, Prog Mater Sci, 53, 980, 10.1016/j.pmatsci.2008.05.001
Burford D, Widener C, Tweedy B. Advances in friction stir welding for aerospace application. In: 6th AIAA Aviation Technology, Integration and Operations Conference, Wichita, USA; 2006.
Colegrove P. Airbus evaluates friction stir welding. <http://www.comsol.com/academic/papers/1614> [accessed 20.02.12].
Vilaça P, Thomas W. Friction stir welding technology. Adv Struct Mater. Heidelberg, Berlin: Springer-Verlag; 2011.
Lertora, 2010, AA8090 Al–Li alloy fsw parameters to minimize defects and increase fatigue life, Int J Mater Form, 3, 1003, 10.1007/s12289-010-0939-1
Liu H, Zhang H, Pan Q, Yu L. Effect of friction stir welding parameters on microstructural characteristics and mechanical properties of 2219–T6 aluminium alloy joints. Int J Mater Form 2011;201:1048–5.
Buffa, 2009, Friction stir welding of lap joints: influence of process parameters on the metallurgical and mechanical properties, Mater Sci Eng A, 519, 19, 10.1016/j.msea.2009.04.046
Yang, 2012, Double-sided laser beam welded T-joints for aluminum aircraft fuselage panels: process, microstructure, and mechanical properties, Mater Des, 33, 652, 10.1016/j.matdes.2011.07.059