Recent development of dental implant materials, synthesis process, and failure – A review

Results in Chemistry - Tập 6 - Trang 101136 - 2023
Nayem Hossain1, Md Hosne Mobarak1, Md. Aminul Islam1, Amran Hossain1, Md. Zobair Al Mahmud1, Md. Thohid Rayhan1, Mohammad Asaduzzaman Chowdhury2
1Department of Mechanical Engineering, IUBAT—International University of Business Agriculture and Technology, Bangladesh
2Department of Mechanical Engineering, Dhaka University of Engineering and Technology (DUET), Gazipur, Gazipur, 1707, Bangladesh

Tài liệu tham khảo

Jung, 2012, A systematic review of the survival rate and the incidence of biological, technical, and aesthetic complications of single crowns on implants reported in longitudinal studies with a mean follow-up of 5 years, Clin. Oral Implant Res., 23, 2, 10.1111/j.1600-0501.2012.02547.x Pjetursson, 2012, A systematic review of the survival and complication rates of implant-supported fixed dental prostheses (FDPs) after a mean observation period of at least five years, Clin. Oral Implant Res., 23, 22, 10.1111/j.1600-0501.2012.02546.x Abduljabbar, 2022, Chewing side preference and laterality in patients treated with unilateral posterior implant-supported fixed partial prostheses, J. Oral Rehabil., 49, 1080, 10.1111/joor.13366 Aghaloo, T., Pi-Anfruns, J., Moshaverinia, A., Sim, D., Grogan, T., &Hadaya, D. (2019). The Effects of Systemic Diseases and Medications on implant osseointegration: a systematic review. International Journal of Oral & Maxillofacial Implants, 34, s35–s49. doi: 10.11607/jomi.19suppl.g3. Rusu, D., Radulescu, V., Stratul, S., Luchian, I., Calniceanu, H., Vela, O., Boia, S., Kardaras, G., Chinnici, S., &Soancă, A. (2023). Clinical and Radiological Characterization of the Long-Term Association between Unaffected/Minimally Affected Implants and History of Severe Periodontitis: A Retrospective Study. Diagnostics, 13(11), 1880. doi: 10.3390/diagnostics13111880. Manam, 2017, Study of corrosion in biocompatible metals for implants: a review, J. Alloy. Compd., 701, 698, 10.1016/j.jallcom.2017.01.196 Catledge, 2002, Nanostructured ceramics for biomedical implants, J. Nanosci. Nanotechnol., 2, 293, 10.1166/jnn.2002.116 Halliday, 2012, Novel methods of antiepileptic drug delivery—polymer-based implants, Adv. Drug Deliv. Rev., 64, 953, 10.1016/j.addr.2012.04.004 Jiang, 2020, Design of dental implants at materials level: an overview, J. Biomed. Mater. Res. A, 108, 1634, 10.1002/jbm.a.36931 Palmquist, A., Omar, O. M., Esposito, M., Lausmaa, J., & Thomsen, P. (2010). Titanium oral implants: surface characteristics, interface biology and clinical outcome.Journal of the Royal Society Interface,7(suppl_5), S515-S527. Moiduddin, 2019, Fabrication and analysis of a Ti6Al4V implant for cranial restoration, Appl. Sci., 9, 2513, 10.3390/app9122513 Klawitter, 1977, An evaluation of porous alumina ceramic dental implants, J. Dent. Res., 56, 768, 10.1177/00220345770560071101 Camilo, 2017, Bone response to porous alumina implants coated with bioactive materials, observed using different characterization techniques, J. Appl. Biomater. Funct. Mater., 15, 223 Sheikhhassani, 2015, Potential use of a polycarbonate-urethane matrix reinforced with polyethylene fibers for shock-absorbing dental implants, Med. Hypotheses, 85, 241, 10.1016/j.mehy.2015.05.003 de Araújo Nobre, 2020, Hybrid Polyetheretherketone (PEEK)–Acrylic Resin Prostheses and the All-on-4 Concept: A Full-Arch Implant-Supported Fixed Solution with 3 Years of Follow-Up, J. Clin. Med., 9, 2187, 10.3390/jcm9072187 Lommen, 2022, Reduction of CT artifacts using polyetheretherketone (PEEK), polyetherketoneketone (PEKK), polyphenylsulfone (PPSU), and polyethylene (PE) reconstruction plates in oral oncology, J. Oral Maxillofac. Surg., 80, 1272, 10.1016/j.joms.2022.03.004 Kurtz, 2007, PEEK biomaterials in trauma, orthopedic, and spinal implants, Biomaterials, 28, 4845, 10.1016/j.biomaterials.2007.07.013 Osuchukwu, 2021, Synthesis techniques, characterization and mechanical properties of natural derived hydroxyapatite scaffolds for bone implants: A review, SN Applied Sciences, 3, 1, 10.1007/s42452-021-04795-y Shishkovsky, 2008, Porous biocompatible implants and tissue scaffolds synthesized by selective laser sintering from Ti and NiTi, J. Mater. Chem., 18, 1309, 10.1039/b715313a Hossain, 2023, Advances of plant and biomass extracted zirconium nanoparticles in dental implant application, Heliyon., 9, e15973, 10.1016/j.heliyon.2023.e15973 Lee, 2021, Biomechanical effects of dental implant diameter, connection type, and bone density on microgap formation and fatigue failure: A finite element analysis, Comput. Methods Programs Biomed., 200, 10.1016/j.cmpb.2020.105863 Sánchez, 2018, Which antibiotic regimen prevents implant failure or infection after dental implant surgery? A systematic review and meta-analysis, J. Cranio-Maxillofac. Surg., 46, 722, 10.1016/j.jcms.2018.02.004 Hossain, 2023, Synthesis and characterization of Alocasia indica infused silver nanoparticles for dental implant applications, Chemical Physics Impact, 6, 10.1016/j.chphi.2023.100239 Koka, 2012, On osseointegration: the healing adaptation principle in the context of osseosufficiency, osseoseparation, and dental implant failure, Int. J. Prosthodont., 25 Hsu, 2012, Biomechanical implant treatment complications: a systematic review of clinical studies of implants with at least 1 year of functional loading, Int. J. Oral Maxillofac. Implants, 27 Chen, 2003, Dental implants: Maintenance, care and treatment of peri-implant infection, Aust. Dent. J., 48, 212, 10.1111/j.1834-7819.2003.tb00034.x Nimbalkar, 2021, A review article on factors affecting bone loss in dental implants, Mater. Today:. Proc., 43, 970 Liaw, K., Delfini, R. H., & Abrahams, J. J. (2015, October). Dental implant complications. InSeminars in Ultrasound, CT and MRI(Vol. 36, No. 5, pp. 427-433). WB Saunders. Manor, 2009, Characteristics of early versus late implant failure: a retrospective study, J. Oral Maxillofac. Surg., 67, 2649, 10.1016/j.joms.2009.07.050 Kang, 2019, Early implant failure: a retrospective analysis of contributing factors, Journal of Periodontal & Implant Science, 49, 287, 10.5051/jpis.2019.49.5.287 Feher, 2020, An advanced prediction model for postoperative complications and early implant failure, Clin. Oral Implant Res., 31, 928, 10.1111/clr.13636 Do, 2020, Risk factors related to late failure of dental implant—a systematic review of recent studies, Int. J. Environ. Res. Public Health, 17, 3931, 10.3390/ijerph17113931 Dvorak, 2011, Peri-implantitis and late implant failures in postmenopausal women: a cross-sectional study, J. Clin. Periodontol., 38, 950, 10.1111/j.1600-051X.2011.01772.x Brånemark, 1977, Osseointegrated implants in the treatment of the edentulous jaw. Experience from 10 years, Scand. J. Plast. Reconstr. Surg., 16, 1 Smith, 1993, Dental implants: Materials and design considerations, Int. J. Prosthodont., 6, 106 Parr, 1985, Titanium: The mystery metal of implant dentistry, Dental Materials Aspect. J. Prosthet. Dent., 54, 410, 10.1016/0022-3913(85)90562-1 Osman, 2015, A Critical Review of Dental Implant Materials with an Emphasis on Titanium versus Zirconia, Materials (basel)., 8, 932, 10.3390/ma8030932 Sykaras, 2000, Implant materials, designs, and surface topographies: Their effect on osseointegration. A literature review, Int. J. Oral Maxillofac. Implants, 15, 675 Williams, 1981, Implants in dental and maxillofacial surgery, Biomaterials, 2, 133, 10.1016/0142-9612(81)90039-9 Lemons, 1990, Dental implants biomaterials, J. Am. Dent. Assoc., 121, 716, 10.14219/jada.archive.1990.0268 Craig, R.G. Restorative Dental Materials; 9th ed.; C.V. Mosby: St. Louis, MO, USA, 1993; p. 169. Sagomonyants, 2007, The in vitro response of human osteoblasts to polyetheretherketone (PEEK) substrates compared to commercially pure titanium, Biomaterials, 24, 3115 Berner, 2009, Titanium-zirconium: A novel material for dental implants, Eur. Cells Mater., 17, 16 Jiang, 2020, Design of dental implants at materials level: An overview, J. Biomed. Mater. Res. A, 108, 1634, 10.1002/jbm.a.36931 McCracken, 1999, Dental implant materials: Commercially pure titanium and titanium alloys, J. Prosthodont., 8, 40, 10.1111/j.1532-849X.1999.tb00006.x Kim, 2013, Bone ingrowth and initial stability of titanium and porous tantalum dental implants: A pilot canine study, Implant Dent., 22, 399, 10.1097/ID.0b013e31829b17b5 Jinno, 1998, Osseointegration of surface-blasted implants made of titanium alloy and cobalt-chromium alloy in a rabbit intramedullary model, J. Biomed. Mater. Res., 42, 20, 10.1002/(SICI)1097-4636(199810)42:1<20::AID-JBM4>3.0.CO;2-Q Alaraby, 2017, A study of mechanical properties of titanium alloy Ti-6Al-4V used as dental implant material, International Journal of Scientific Reports, 3, 288, 10.18203/issn.2454-2156.IntJSciRep20174869 Niinomi, 1998, Mechanical properties of biomedical titanium alloys, Mater. Sci. Eng. A, 243, 231, 10.1016/S0921-5093(97)00806-X Choi, A. H. (2023). The Finite Element Approach. In Bone Remodeling and Osseointegration of Implants (pp. 7–21). doi: 10.1007/978-981-99-1425-8_2. Lai, Y., Chen, W., Huang, C., Cheng, C., Chan, K., & Chang, T. (2015). The Effect of Graft Strength on Knee Laxity and Graft In-Situ Forces after Posterior Cruciate Ligament Reconstruction. PLOS ONE, 10(5), e0127293. doi: 10.1371/journal.pone.0127293. Hulbert, 1974, Effect of stress on tissue ingrowth into porous aluminum oxide, J. Biomed. Mater. Res., 8, 85, 10.1002/jbm.820080310 deWijs, 1994, Front tooth replacement with Tübingen (Frialit®) implants, J. Oral Rehabil., 21, 11, 10.1111/j.1365-2842.1994.tb01120.x Sherman, 1978, Bone reaction to orthodontic forces on vitreous carbon dental implants, Am. J. Orthod. Dentofac. Orthop., 74, 79, 10.1016/0002-9416(78)90047-7 Ogiso, 1998, Reassessment of long-term use of dense HA as dental implant: case report, J. Biomed. Mater. Res., 43, 318, 10.1002/(SICI)1097-4636(199823)43:3<318::AID-JBM13>3.0.CO;2-B Kawamura, 2000, Stimulatory effect of zinc-releasing calcium phosphate implant on bone formation in rabbit femora, J. Biomed. Mater. Res., 50, 184, 10.1002/(SICI)1097-4636(200005)50:2<184::AID-JBM13>3.0.CO;2-3 Hodosh, 1969, The dental polymer implant concept, J. Prosthet. Dent., 22, 371, 10.1016/0022-3913(69)90200-5 Saini, 2015, Implant biomaterials: a comprehensive review, World J. Clin. Cases, 3, 52, 10.12998/wjcc.v3.i1.52 Shklar, 1970, Tissue reactions to polymercoatedvitallium pin implants, J. Prosthet. Dent., 24, 636, 10.1016/0022-3913(70)90100-9 Wu, 2012, Nano-TiO2/PEEK bioactive composite as a bone substitute material: in vitro and in vivo studies, Int. J. Nanomed., 7, 1215 Ma, 2017, Mechanical properties and in vivo study of modifiedhydroxyapatite/polyetheretherketonebiocomposites, Mater. Sci. Eng. C, 73, 429, 10.1016/j.msec.2016.12.076 Wang, 2014, Polyetheretherketone/nano-fluorohydroxyapatite composite with antimicrobial activity and osseointegration properties, Biomaterials, 35, 6758, 10.1016/j.biomaterials.2014.04.085 Peddinti, 2019, Inherently self-sterilizing charged multiblock polymers that kill drug-resistant microbes in minutes, Mater. Horiz., 6, 2056, 10.1039/C9MH00726A Najeeb, 2016, Applications of polyetheretherketone (PEEK) in oral implantology and prosthodontics, J. Prosthodont. Res., 60, 12, 10.1016/j.jpor.2015.10.001 Koizumi, 2019, Application of titanium and titanium alloys to fixed dental prostheses, J. Prosthodontic Res., 63, 266, 10.1016/j.jpor.2019.04.011 Paranthaman, 2021, A systematic review of fatigue behaviour of laser welding titanium alloys, Mater. Today:. Proc., 39, 520 Mohazzab, 2020, Laser surface treatment of pure titanium: microstructural analysis, wear properties, and corrosion behavior of titanium carbide coatings in Hank’s physiological solution, Surf. Interfaces, 20 Zheng, 2015, Boride precipitation and mechanical behaviour of high boron stainless steel with boron and titanium additions, IJMPT, 51, 332, 10.1504/IJMPT.2015.072559 Cheng, 2013, Effect of nucleation temperature and heat transfer on Ti and Fe boride nanoparticle synthesis in RF thermal plasmas, Powder Technol., 246, 210, 10.1016/j.powtec.2013.05.028 Wang, 2020, Investigation on preparation porous titanium through calciothermic reduction of porous TiO precursors, J. Mater. Res. Technol., 9, 13137, 10.1016/j.jmrt.2020.09.052 Baehre, 2016, Electrochemical dissolution behavior of titanium and titanium-based alloys in different electrolytes, Procedia CIRP, 42, 137, 10.1016/j.procir.2016.02.208 Research (IJSR), International Journal of Science and Research (IJSR), Int. J. Sci. Res. (IJSR). Available from: , . It was accessed 29 Aug. 2021. Alsawat, 2019, Titanium carbide – titanium boride composites by self propagating high temperature synthesis approach: Influence of zirconia additives on the mechanical properties, Results Phys., 13, 10.1016/j.rinp.2019.102292 Chen, 2007, Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications, Chem. Rev., 107, 2891, 10.1021/cr0500535 Lal, 1998, Preparation and characterization of ultrafine TiO 2 particles in reverse micelles by hydrolysis of titanium diethylhexyl sulfosuccinate, J. Mater. Res., 13, 1249, 10.1557/JMR.1998.0178 Bacsa, 1996, Rutile formation in hydrothermally crystallized nanosizedtitania, J. Am. Ceram. Soc., 79, 2185, 10.1111/j.1151-2916.1996.tb08956.x Camurlu, 2019, Titanium hydride, metal-matrix composites, titanium carbide, titanium boride, multilayered, microstructure, powders, Machines Technol. Mater., 13, 461 Campbell, 1992, Synthesis and characterization of titania aerogels, Chem. Mater., 4, 1329, 10.1021/cm00024a037 S. Bagheri et al., Synthesis and characterization of anatase titanium dioxide nanoparticles using egg white solution via sol-gel method, J. Chem. 2013 (2012). Available from: <cyberleninka.org>, <https://cyberleninka.org/article/n/306716>. Vieira, 2010, Optimization of performances of gelatin/LiBF4-based polymer electrolytes by plasticizing effects, Electrochim. Acta, 55, 1489, 10.1016/j.electacta.2009.04.039 Tashmetov, 2002, Neutron diffraction study of the ordered structures of nonstoichiometric titanium carbide, Phys. B, 311, 318, 10.1016/S0921-4526(01)01033-X Borges de Olival, A., da Penha Junior, N., Câmara, J., Corrêa Duarte Simões, A., EstrucVerbicário dos Santos, J., &Groisman, S. (2018). Analysis of Chemical Composition of Different Irreversible Hydrocolloids. Dentistry Journal, 6(3), 37. doi: 10.3390/dj6030037. Hu, 2019, Synthesis of nano zirconium oxide and its application in dentistry, Nanotechnol. Rev., 8, 396, 10.1515/ntrev-2019-0035 Chowdhury, M. A., Hossain, N., Mostofa, M. G., Mia, M. R., Tushar, M., Rana, M. M., & Hossain, M. H. (2023). Green synthesis and characterization of zirconium nanoparticlefor dental implant applications.Heliyon,9(1). Zhang, 2006, Flame spray synthesis of ZrO2 nano-particles using liquid precursors, Mater. Sci. Eng. B, 130, 114 Duran, 2006, Hydrothermal Synthesis of Nano ZrO<sub>2</sub> Powders, Key Eng. Mater., 317–318, 195, 10.4028/www.scientific.net/KEM.317-318.195 Liao, 2012, Sol–gel preparation and photoluminescence properties of tetragonal ZrO2:Y3+, Eu3+ nanophosphors, Opt. Mater., 35, 274, 10.1016/j.optmat.2012.08.016 Hsu, 2011, Synthesis and crystallization behavior of 3mol% yttria stabilized tetragonal zirconia polycrystals (3Y-TZP) nanosized powders prepared using a simple co-precipitation process, J. Alloy. Compd., 509, 6864, 10.1016/j.jallcom.2011.03.162 Tao, 2008, Interfacial coprecipitation to prepare magnetite nanoparticles: Concentration and temperature dependence, Colloids Surf A Physicochem Eng Asp, 320, 115, 10.1016/j.colsurfa.2008.01.051 Wang, 2006, Preparation of homodispersednano zirconia, Powder Technol., 168, 53, 10.1016/j.powtec.2006.07.001 Huang, 2011, Effect of the organic additions on crystal growth behavior of ZrO2 nanocrystals prepared via sol–gel process, Chem. Eng. J., 168, 1360, 10.1016/j.cej.2011.02.027 Shukla, 2004, Thermodynamic Tetragonal Phase Stability in Sol−Gel Derived Nanodomains of Pure Zirconia, J. Phys. Chem. B, 108, 3395, 10.1021/jp037532x Yoshimura, 1999, Hydrothermal synthesis of crystallized nano-particles of rare earth-doped zirconia and hafnia, Mater. Chem. Phys., 61, 1, 10.1016/S0254-0584(99)00104-2 Szepesi, 2011, High Yield Hydrothermal Synthesis of Nano-Scale Zirconia and YTZP, J. Am. Ceram. Soc., 94, 4239, 10.1111/j.1551-2916.2011.04806.x Tonetti, 1994, Pathogenesis of implant failures, Periodontol 2000, 4, 127, 10.1111/j.1600-0757.1994.tb00013.x Parker, D., Bussink, J., Van De Grampel, H. T., Wheatley, G. F., Dorf, E., Ostlinning, E. D., Reinking, K. D., Schubert, F., Jünger, O., & Wagener, R. (2012). Polymers, High-Temperature. Ullmann’s Encyclopedia of Industrial Chemistry. https://doi.org/10.1002/14356007.a21_449.pub4. Andreiotelli, 2009, Are ceramic implants a viable alternative to titanium implants? A systematic literature review, Clin. Oral Implant Res., 20, 32, 10.1111/j.1600-0501.2009.01785.x Skinner, 1988, Composite technology for total hip arthroplasty, Clin. Orthop., 235, 224, 10.1097/00003086-198810000-00022 Najeeb, 2015, Nanomodified Peek Dental Implants: Bioactive Composites and Surface Modification—A Review, International Journal of Dentistry, 2015, 1, 10.1155/2015/381759 Klokkevold, 2007, How do smoking, diabetes, and periodontitis affect outcomes of implant treatment?, Int. J. Oral Maxillofac. Implants, 22(Suppl.):173–202 Piattelli, 1998, Hollow implants retrieved for fracture: A light and scanning electron microscope analysis of 4 cases, J. Periodontol., 69, 185, 10.1902/jop.1998.69.2.185 Tolman, 1992, Tissue-integrated prosthesis complications, Int. J. Oral Maxillofac. Implants, 7, 477 Gupta S, Gupta H, Tandan A. Technical complications of implant-causes and management: A comprehensive review. Natl J Maxillofac Surg. 2015 Jan-Jun;6(1):3-8. doi: 10.4103/0975-5950.168233. PMID: 26668445; PMCID: PMC4668729. Chatzopoulos, 2023, Dental implant failure and factors associated with treatment outcome: A retrospective study, Journal of Stomatology, Oral and Maxillofacial Surgery, 124, 10.1016/j.jormas.2022.10.013 Goiato, 2014, Dental Implant Fractures – Aetiology, treatment and case report, J. Clin. Diagn. Res., 10.7860/JCDR/2014/8074.4158 Nadar, R. A., Van Den Beucken, J. J., &Leeuwenburgh, S. C. (2020). Pharmacological interventions targeting bone diseases in adjunction with bone grafting. In Elsevier eBooks (pp. 251–280). doi: 10.1016/b978-0-08-102478-2.00011-8. Albrektsson, 2017, Initial and long-term crestal bone responses to modern dental implants, Periodontol 2000, 73, 41, 10.1111/prd.12176 Kligman, 2021, The Impact of Dental Implant Surface Modifications on Osseointegrationand Biofilm Formation, J. Clin. Med., 10, 1641, 10.3390/jcm10081641 Salman, 2020, To develop dental prostheses and improve the addition of polymers (Atridox, Fort Collins) in dental procedures, EurAsian Journal of BioSciences, 14 Gazelakis, 2021, The biomechanical profile of an osseo-integrated rectangular block implant: A pilot in vivo experimental study, Clin. Oral Implant Res., 32, 1274, 10.1111/clr.13834 Kim, 2022, Three interfaces of the dental implant system and their clinical effects on hard and soft tissues, Mater. Horiz., 9, 1387, 10.1039/D1MH01621K Aminian, 2022, Nanoparticles to overcome bacterial resistance in orthopedic and dental implants, Nanomedicine Research Journal, 7, 107 OSTEOINTEGRÁVEIS, I., & IMEDIATA, C. C. IMMEDIATE LOADING TO OSSEOINTEGRATED DENTAL IMPLANTS. Lee, 2017, Selectable Implant Removal Methods due to Mechanical and Biological Failures, Case Reports in Dentistry, 2017, 1, 10.1155/2017/9640517 Verri, 2014, Effect of crown-to-implant ratio on peri-implant stress: A finite element analysis, Mater. Sci. Eng. C, 45, 234, 10.1016/j.msec.2014.09.005 Michalakis, 2014, The effect of different implant-abutment connections on screw joint stability, Journal of Oral Implantology, 40, 146, 10.1563/AAID-JOI-D-11-00032 Chee, 2007, Failures in implant dentistry, Br. Dent. J., 202, 123, 10.1038/bdj.2007.74 Jivraj, 2006, Treatment planning of implants in posterior quadrants, Br. Dent. J., 201, 13, 10.1038/sj.bdj.4813766 EL SAIH, E. A. E. M. (2010). Implant supported versus retained removable partial overdentures in mandibular distal extension cases (Radiographic study of abutments) (Doctoral dissertation, Mansoura University). Misch, 2004 Cowpe, 2010, Profile and competences for the graduating European dentist–update 2009, Eur. J. Dent. Educ., 14, 193, 10.1111/j.1600-0579.2009.00609.x Andersson, 2010, Patients' experiences of acquiring a deep surgical site infection: an interview study, Am. J. Infect. Control, 38, 711, 10.1016/j.ajic.2010.03.017 Edmiston, 2016, A narrative review of microbial biofilm in postoperative surgical site infections: clinical presentation and treatment, J. Wound Care, 25, 693, 10.12968/jowc.2016.25.12.693 Albrektsson, 2014, Is marginal bone loss around oral implants the result of a provoked foreign body reaction?, Clin. Implant Dent. Relat. Res., 16, 155, 10.1111/cid.12142 Kwon, 2014, Osteonecrosis associated with dental implants in patients undergoing bisphosphonate treatment, Clin. Oral Implant Res., 25, 632, 10.1111/clr.12088 Crippa, 2023, Immediate dental implant placement in post-extraction-infected sites decontaminated with Er, Cr: YSGG laser: a retrospective cohort study, Odontology, 111, 255, 10.1007/s10266-022-00734-4 Hegedus, 2006, Trigeminal nerve injuries after mandibular implant placement–practical knowledge for clinicians, Int. J. Oral Maxillofac. Implants, 21 Chrcanovic, 2014, Reasons for failures of oral implants, J. Oral Rehabil., 41, 443, 10.1111/joor.12157 Moy, 2019, Risk factors in bone augmentation procedures, Periodontol 2000, 81, 76, 10.1111/prd.12285 Annibali, 2008, Local complications in dental implant surgery: prevention and treatment, ORAL & Implantology, 1, 21 Moutsopoulos, 2006, Low-grade inflammation in chronic infectious diseases: paradigm of periodontal infections, Ann. N. Y. Acad. Sci., 1088, 251, 10.1196/annals.1366.032 Roulin, D., Donadini, A., Gander, S., Griesser, A. C., Blanc, C., Hübner, M., ...&Demartines, N. (2013). Cost-effectiveness of the implementation of an enhanced recovery protocol for colorectal surgery. Journal of British Surgery, 100(8), 1108-1114. Flores, 2006, Guidelines for the management of traumatic dental injuries. I. Fractures and luxations of permanent teeth, Endod. Top., 14, 102, 10.1111/j.1601-1546.2008.00234.x Tonetti, 2000, Pathogenesis of implant failures, Periodontol., 1994, 127 Greenstein, 2014, Failed dental implants: diagnosis, removal and survival of reimplantations, J. Am. Dent. Assoc., 145, 835, 10.14219/jada.2014.28 Mouhyi, 2012, The peri-implantitis: Implant surfaces, microstructure, and physicochemical aspects, Clin. Implant Dent. Relat. Res., 14, 170, 10.1111/j.1708-8208.2009.00244.x Mazzotti, 2023, Complications and treatment errors in root coverage procedures, Periodontol 2000, 92, 62, 10.1111/prd.12468 Alsaadi, 2007, Impact of local and systemic factors on the incidence of oral implant failures, up to abutment connection, J. Clin. Periodontol., 34, 610, 10.1111/j.1600-051X.2007.01077.x Derks, 2015, Effectiveness of implant therapy analyzed in a Swedish population: early and late implant loss, J. Dent. Res., 94, 44S, 10.1177/0022034514563077 Baqain, 2012, Early dental implant failure: risk factors, Br. J. Oral Maxillofac. Surg., 50, 239, 10.1016/j.bjoms.2011.04.074 Olmedo-Gaya, 2016, Risk ̃ factors associated with early implant failure: A 5-year retrospective clinical study, J. Prosthet. Dent., 115, 150, 10.1016/j.prosdent.2015.07.020 Chrcanovic, 2016, Factors influencing early dental implant failures, J. Dent. Res., 95, 995, 10.1177/0022034516646098 Alsaadi G, Quirynen M, Michiles K, et al. Impact of local and systemic factors on the incidence of failures up to abutment connection with modified surface oral implants. J ClinPeriodontol2008;35:51–7. Brügger, 2015, Implant therapy in a surgical specialty clinic: An analysis of patients, indications, surgical procedures, risk factors, and early failures, Int. J. Oral Maxillofac. Implants, 30, 151, 10.11607/jomi.3769 Costa-Junior, 2013, Influence of MMP-8 promoter polymorphism in early osseointegrated implant failure, Clin. Oral Invest., 17, 311, 10.1007/s00784-012-0699-z Urban, 2012, Immediate implant placement in molar regions: risk factors for early failure, Clin. Oral Implant Res., 23, 220, 10.1111/j.1600-0501.2011.02167.x Kronström M, Svensson B, Erickson E, et al. Humoral immunity host factors in subjects with failing or successful titanium dental implants. J ClinPeriodontol2000;27:875–82. Friberg, 1991, Early failures in 4,641 consecutively placed Branemark dental implants: a study from stage 1 surgery to the connection of completed prostheses, Int. J. Oral Maxillofac. Implants, 6, 142 Grisar, 2017, Retrospective analysis of dental implants placed between 2012 and 2014: indications, risk factors, and early survival, Int. J. Oral Maxillofac. Implants, 32, 649, 10.11607/jomi.5332 Jemt, 2017, A retro-prospective effectiveness study on 3448 implant operations at one referral clinic: A multifactorial analysis. Part I: clinical factors associated to early implant failures, Clin. Implant Dent. Relat. Res., 19, 980, 10.1111/cid.12539 Antoun, 2017, A retrospective study on 1592 consecutively performed operations in one private referral clinic. Part I: Early inflammation and early implant failures, Clin. Implant Dent. Relat. Res., 19, 404, 10.1111/cid.12477 Borba, 2017, Risk factors for implant failure: a retrospective study in an educational institution using GEE analyses, Braz. Oral Res., 31, e69, 10.1590/1807-3107bor-2017.vol31.0069 De Bruyn, 1994, The effect of smoking on early implant failure, Clin. Oral Implant Res., 5, 260, 10.1034/j.1600-0501.1994.050410.x Cordeiro, 2017, Is there scientific evidence favoring the substitution of commercially pure titanium with titanium alloys for the manufacture of dental implants?, Mater. Sci. Eng. C, 71, 1201, 10.1016/j.msec.2016.10.025 De Stefano, 2022, (Bio) Tribocorrosion in Dental Implants: Principles and Techniques of Investigation, Appl. Sci., 12, 7421, 10.3390/app12157421 Schimmel, 2017, Implants for elderly patients, Periodontol 2000, 73, 228, 10.1111/prd.12166 Wang, 1997 Korner, J., Lill, H., Müller, L. P., Hessmann, M., Kopf, K., Goldhahn, J., ...&Rommens, P. M. (2005). Distal humerus fractures in elderly patients: results after open reduction and internal fixation.Osteoporosis international,16, S73-S79. Kim, 2005, Occlusal considerations in implant therapy: clinical guidelines with biomechanical rationale, Clin. Oral Implant Res., 16, 26, 10.1111/j.1600-0501.2004.01067.x Saha, 2023, Metallic Dental Implants Wear Mechanisms, Materials, and Manufacturing Processes: A Literature Review, Materials, 16, 161, 10.3390/ma16010161 Adya, 2005, Corrosion in titanium dental implants: literature review, The Journal of Indian Prosthodontic Society, 5, 126, 10.4103/0972-4052.17104 Jäger, 2007, Significance of nano-and microtopography for cell-surface interactions in orthopaedic implants, J. Biomed. Biotechnol., 2007, 1, 10.1155/2007/69036 Noronha Oliveira, 2018, Can degradation products released from dental implants affect peri-implant tissues?, J. Periodontal Res., 53, 1, 10.1111/jre.12479 Ramakrishna, 2001, Biomedical applications of polymer-composite materials: a review, Compos. Sci. Technol., 61, 1189, 10.1016/S0266-3538(00)00241-4 Makvandi, 2021, Drug delivery (nano) platforms for oral and dental applications: tissue regeneration, infection control, and cancer management, Adv. Sci., 8, 10.1002/advs.202004014 Lebre, 2016, Modulation of immune responses by particulate materials, Adv. Mater., 28, 5525, 10.1002/adma.201505395 Mi, 2018, Reducing bacterial infections and biofilm formation using nanoparticles and nanostructured antibacterial surfaces, Adv. Healthc. Mater., 7, 1800103, 10.1002/adhm.201800103 Knežević, 2013, Magnetic mesoporous silica-based core/shell nanoparticles for biomedical applications, RSC Adv., 3, 9584, 10.1039/c3ra23127e Wang, 2021, Functions and applications of metallic and metallic oxide nanoparticles in orthopedic implants and scaffolds, J. Biomed. Mater. Res. B Appl. Biomater., 109, 160, 10.1002/jbm.b.34688 Fischer, 2020, Harnessing biomolecules for bioinspired dental biomaterials, J. Mater. Chem. B, 8, 8713, 10.1039/D0TB01456G Necula, 2012, In vitro cytotoxicity evaluation of porous TiO2–Ag antibacterial coatings for human fetal osteoblasts, Actabiomaterialia, 8, 4191 Cherry, 2018, Total-body PET: maximizing sensitivity to create new opportunities for clinical research and patient care, J. Nucl. Med., 59, 3, 10.2967/jnumed.116.184028 Malaekeh-Nikouei, 2020, The role of nanotechnology in combating biofilm-based antibiotic resistance, J. Drug Delivery Sci. Technol., 60, 10.1016/j.jddst.2020.101880 Parnia, 2017, Overview of nanoparticle coating of dental implants for enhanced osseointegration and antimicrobial purposes, J. Pharm. Pharm. Sci., 20, 148, 10.18433/J3GP6G López-Píriz, 2019, Current state-of-the-art and future perspectives of the three main modern implant-dentistry concerns: Aesthetic requirements, mechanical properties, and peri-implantitis prevention, J. Biomed. Mater. Res. A, 107, 1466, 10.1002/jbm.a.36661 Berglundh, 2018, Peri-implant diseases and conditions: Consensus report of workgroup 4 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions, J. Periodontol., 89, 10.1002/JPER.17-0739 Thomas, 2022, Surgical management of peri-implantitis: a narrative review, Oral Surg., 16, 47, 10.1111/ors.12765 Chee, 2011, Peri-Implant management of patients with aggressive periodontitis, J. Calif. Dent. Assoc., 39, 416 Liñares, 2023, Efficacy of adjunctive measures in the non-surgical treatment of peri-implantitis: A systematic review, J. Clin. Periodontol., 50, 224, 10.1111/jcpe.13821 Ravidà, 2020, Diagnosis of peri-implant status after peri-implantitis surgical treatment: Proposal of a new classification, J. Periodontol., 91, 1553, 10.1002/JPER.20-0124 Dhingra, 2022, Mucoadhesive silver nanoparticle-based local drug delivery system for peri-implantitis management in COVID-19 era. Part 1: Antimicrobial and safety in-vitro analysis, Journal of Oral Biology and Craniofacial Research, 12, 177, 10.1016/j.jobcr.2021.11.007 Wu, 2022, Microbial resistance to nanotechnologies: An important but understudied consideration using antimicrobial nanotechnologies in orthopaedic implants, Bioact. Mater., 16, 249 Lee, 2021, How microbes read the map: Effects of implant topography on bacterial adhesion and biofilm formation, Biomaterials, 268, 10.1016/j.biomaterials.2020.120595 Miele, 2012, Nanoparticle-based delivery of small interfering RNA: challenges for cancer therapy, Int. J. Nanomed., 3637 Anil, S., Anand, P. S., Alghamdi, H., & Jansen, J. A. (2011). Dental implant surface enhancement and osseointegration. Implant dentistry—a rapidly evolving practice, 83-108. Hu, 2019, Bioinspired surface modification of orthopedic implants for bone tissue engineering, Biomaterials, 219, 10.1016/j.biomaterials.2019.119366 Balasundaram, 2006, Using hydroxyapatite nanoparticles and decreased crystallinity to promote osteoblast adhesion similar to functionalizing with RGD, Biomaterials, 27, 2798, 10.1016/j.biomaterials.2005.12.008 Dong, 2020, Surface modified techniques and emerging functional coating of dental implants, Coatings, 10, 1012, 10.3390/coatings10111012 Martocq, 2021, Amine-Rich Coatings to Potentially Promote Cell Adhesion, Proliferation and Differentiation, and Reduce Microbial Colonization: Strategies for Generation and Characterization, Coatings, 11, 983, 10.3390/coatings11080983 Allizond, 2022, Current knowledge on biomaterials for orthopedic applications modified to reduce bacterial adhesive ability, Antibiotics, 11, 529, 10.3390/antibiotics11040529 Yurttutan, 2018, Evaluation of the effects of different sand particles that used in dental implant roughened for osseointegration, BMC Oral Health, 18, 10.1186/s12903-018-0509-3 Li, 2012, Osteoblast response on Ti- and Zr-based bulk metallic glass surfaces after sand blasting modification, J. Biomed. Mater. Res. Part B, 100B, 1721, 10.1002/jbm.b.32738 Mandracci, 2016, Surface treatments and functional coatings for biocompatibility improvement and bacterial adhesion reduction in dental implantology, Coatings, 6, 7, 10.3390/coatings6010007 Roach, 2016, Tuning anatase and rutile phase ratios and nanoscale surface features by anodization processing onto titanium substrate surfaces, Mater. Sci. Eng. C, 58, 213, 10.1016/j.msec.2015.08.028 Thakral, 2014, Nanosurface–the future of implants, J. Clin. Diagn. Res., 8, ZE07 Nikiforov, V. N., &Filinova, E. Y. (2009). Biomedical applications of magnetic nanoparticles. Magnetic nanoparticles, 10, 393-455. Esteves, 2022, Antimicrobial and Antibiofilm Coating of Dental Implants—Past and New Perspectives, Antibiotics, 11, 235, 10.3390/antibiotics11020235 Wang, 2021, Tantalum and its derivatives in orthopedic and dental implants: Osteogenesis and antibacterial properties, Colloids Surf. B Biointerfaces, 208, 10.1016/j.colsurfb.2021.112055 Gulati, 2023, Fit and Forget: The Future of Dental Implant Therapy Via Nanotechnology, Adv. Drug Deliv. Rev., 199, 114900, 10.1016/j.addr.2023.114900 Mubeen, 2021, Nanotechnology as a novel approach in combating microbes providing an alternative to antibiotics, Antibiotics, 10, 1473, 10.3390/antibiotics10121473 Raura, 2020, Nanoparticle technology and its implications in endodontics: a review, Biomater Res, 24, 21, 10.1186/s40824-020-00198-z Valente, 2016, Analyzing the infuence of a new dental implant design on primary stability, Clin. Implant Dent. Relat. Res., 18, 168, 10.1111/cid.12324 Eskan, 2020, A fixed reconstruction of fully edentulous patients with immediate function using an apically tapered implant design: a retrospective clinical study, Int J Implant Dent, 6, 1, 10.1186/s40729-020-00271-1 Herrero-Climent, 2020, Infuence of implant design and under-preparation of the implant site on implant primary stability. An in vitro study. International J Environ, Public Health, 17, 4436 Lozano-Carrascal N, Salomó-Coll O, Gilabert-Cerdà M, FarréPagés N, Gargallo-Albiol J, Hernández-Alfaro F (2016) Efect of implant macro-design on primary stability: a prospective clinical study. Med Oral Patol Oral Cir Bucal21:e214. doi: 10.4317/medoral.21024. Fanali, 2021, The efect of threads geometry on insertion torque (IT) and periotest implant primary stability: a high-density polyurethane simulation for the anterior mandible, CurrComput-Aided Drug Des, 11, 308 Tardelli, 2022, Evaluation of biomechanical and stress distribution of diferent dental implant designs: primary stability and photoelastic analysis, IRBM, 43, 100, 10.1016/j.irbm.2021.01.003 Cochran D, Stavropoulos A, Obrecht M, Pippenger B, Dard M (2016) A comparison of tapered and nontapered implants in the minipig. Int J Oral Maxillofac Implants 31:1341–1347. doi: 10.11607/jomi.4712. Tumedei M, Petrini M, Pietropaoli D, Cipollina A, La Torre C, Di Carmine MS, Piattelli A, Iezzi G (2021) The infuence of the implant macrogeometry on insertion torque, removal torque, and periotest implant primary stability: A mechanical simulation on high-density artifcial bone. Symmetry 13:776. doi: 10.3390/sym13050776. Silva, 2021, Effect of macrogeometry and bone type on insertion torque, primary stability, surface topography damage and titanium release of dental implants during surgical insertion into artifcial bone, J. Mech. Behav. Biomed. Mater., 119, 10.1016/j.jmbbm.2021.104515 Soto-Peñaloza D, Caneva M, Viña-Almunia J, Martin-de-Llano JJ, García-Mira B, Peñarrocha-Oltra D, Botticelli D, Peñarrocha-Diago M (2019) Efect on osseointegration of two implant macro-designs: a histomorphometric analysis of bicortically installed implants in diferent topographic sites of rabbit’s tibiae. Med Oral Patol Oral Cir Bucal24:e502. doi: 10. 4317/medoral.22825. Chien, 2017, Influence of thread design on dental implant osseointegration assayed using the Lan-Yu mini-pig model, J Med Biol Eng, 37, 627, 10.1007/s40846-017-0240-6 Zhou, 2022, Glioblastoma Extracellular Vesicle-Specific Peptides Inhibit EV-Induced Neuronal Cytotoxicity, Int. J. Mol. Sci., 23, 7200, 10.3390/ijms23137200 Ghodake, 2021, Biological characteristics and biomarkers of novel SARS-CoV-2 facilitated rapid development and implementation of diagnostic tools and surveillance measures, Biosens. Bioelectron., 177, 10.1016/j.bios.2021.112969 Rajendran, 2018, A review on nanoparticle based treatment for wound healing, J. Drug Delivery Sci. Technol., 44, 421, 10.1016/j.jddst.2018.01.009 Picard, 2009 Gulati, 2017, Dental implants modified with drug releasing titania nanotubes: therapeutic potential and developmental challenges, Expert Opin. Drug Deliv., 14, 1009, 10.1080/17425247.2017.1266332 Wennerberg, 2011, Current challenges in successful rehabilitation with oral implants: CHALLENGES IN ORAL IMPLANT TREATMENT, Current Challenges in Successful Rehabilitation with Oral Implants., 38, 286 Zhu, 2016, Proliferation and osteogenic differentiation of rat BMSCs on a novel Ti/SiC metal matrix nanocomposite modified by friction stir processing, Sci. Rep., 6, 38875, 10.1038/srep38875 Madhankumar, 2014, Multi-functional ceramic hybrid coatings on biodegradable AZ31 Mg implants: electrochemical, tribological and quantum chemical aspects for orthopaedic applications, RSC Adv., 4, 24272, 10.1039/c4ra02363c Jung, 2008, A systematic review of the 5-year survival and complication rates of implant-supported single crowns, Clin. Oral Implant Res., 19, 119, 10.1111/j.1600-0501.2007.01453.x Larsson, 2006, All-ceramic two- to five-unit implant-supported reconstructions, Swed. Dent. J., 30, 45 Mellinghoff J. ErsteklinischeErgebnissezudentalenSchraubenimpantatenauszirconiumoxid. Z Zahna¨rtzlImplantol. 2006;22:288–293. Lee, 2007, Effect of microthread on the maintenance of marginal bone level: A 3-year prospective study, Clin. Oral Implant Res., 18, 465, 10.1111/j.1600-0501.2007.01302.x DeBruyn, 2008, Effect of microthread design on preservation of marginal bone loss, Applied Osseointegration Research., 7, 38 Kumar, Sandeep; Nehra, Monika; Kedia, Deepak; Dilbaghi, Neeraj; Tankeshwar, K.; Kim, Ki-Hyun (2020). Nanotechnology-based biomaterials for orthopaedic applications: Recent advances and future prospects. Materials Science and Engineering: C, 106, 110154. doi: 10.1016/j.msec.2019.110154. Wang, 2018, IWSHM 2017: Application of guided wave methods to quantitatively assess healing in osseointegrated prostheses, Struct. Health Monit., 17, 1377, 10.1177/1475921718782399 Mastinu E, Brånemark R, Aszmann O, Ortiz-Catalan M. 2018. Myoelectric signals and pattern recognition from implanted electrodes in two TMR subjects with an osseointegrated communication interface.ConfProc IEEE Eng Med BiolSoc 2018:5174–5177. Lopez-Heredia, 2008, Bone growth in rapid prototyped porous titanium implants, Journal of Biomedical Materials Research Part a: an Official Journal of the Society for Biomaterials, the Japanese Society for Biomaterials, and the Australian Society for Biomaterials and the Korean Society for Biomaterials, 85A, 664, 10.1002/jbm.a.31468 Gulati, 2016, Drug-releasing nano-engineered titanium implants: therapeutic efficacy in 3D cell culture model, controlled release and stability, Mater. Sci. Eng. C, 69, 831, 10.1016/j.msec.2016.07.047 Xiao, 2011, The effect of hierarchical micro/nanosurface titanium implant on osseointegration in ovariectomized sheep, Osteoporos. Int., 22, 1907, 10.1007/s00198-010-1413-0 Alghamdi, 2020, The development and future of dental implants, Dent. Mater. J., 39, 167, 10.4012/dmj.2019-140