Recent crucial discoveries and perspectives on crystal nucleation in supercooled liquids and oxide glasses
Tài liệu tham khảo
Varshneya, 2019
Zanotto, 2017, The glassy state of matter: Its definition and ultimate fate, J Non Cryst Solids., 471, 490, 10.1016/j.jnoncrysol.2017.05.019
Mauro, 2009, Fictive temperature and the glassy state, J Am Ceram Soc, 92, 75, 10.1111/j.1551-2916.2008.02851.x
Montazerian, 2021, Nucleation, Growth, and Crystallization in Oxide Glass-formers. A Current Perspective, Rev Mineral Geochem, 87, 405, 10.2138/rmg.2022.87.09
Deubener, 2018, Updated definition of glass-ceramics, J Non Cryst Solids., 501, 3, 10.1016/j.jnoncrysol.2018.01.033
Davis, 2017, Glass-ceramics and realization of the unobtainable: Property combinations that push the envelope, MRS Bull., 42, 195, 10.1557/mrs.2017.27
Tammann, 1898, Über die Abhängigkeit der Zahl der Kerne, welche sich in verschiedenen unterkühlten Flüssigkeiten bilden, von der Temperatur, Z Phys Chem, 25, 441, 10.1515/zpch-1898-2526
Fokin, 2006, Homogeneous crystal nucleation in silicate glasses: A 40 years perspective, J Non Cryst Solids., 352, 2681, 10.1016/j.jnoncrysol.2006.02.074
Deubener, 2005, Structural aspects of volume nucleation in silicate glasses, J Non Cryst Solids., 351, 1500, 10.1016/j.jnoncrysol.2004.04.028
Sen, 1999, A generalized classical nucleation theory for rough interfaces: application in the analysis of homogeneous nucleation in silicate liquids, J Non Cryst Solids., 246, 229, 10.1016/S0022-3093(99)00093-9
James, 1985, Kinetics of crystal nucleation in silicate glasses, J Non Cryst Solids., 73, 517, 10.1016/0022-3093(85)90372-2
Schmelzer, 2004, Dynamics of first-order phase transitions in multicomponent systems: a new theoretical approach, J Colloid Interface Sci, 272, 109, 10.1016/j.jcis.2003.08.038
Schmelzer, 2006, Classical and generalized Gibbs’ approaches and the work of critical cluster formation in nucleation theory, J Chem Phys, 124, 10.1063/1.2196412
Cormier, 2014, Nucleation in glasses – new experimental findings and recent theories, Procedia Mater Sci, 7, 60, 10.1016/j.mspro.2014.10.009
Abyzov, 2017, The effect of heterogeneous structure of glass-forming liquids on crystal nucleation, J Non Cryst Solids., 462, 32, 10.1016/j.jnoncrysol.2017.02.004
Abyzov, 2016, The effect of elastic stresses on the thermodynamic barrier for crystal nucleation, J Non Cryst Solids., 432, 325, 10.1016/j.jnoncrysol.2015.10.029
Fokin, 2016, Crystal nucleation in glass-forming liquids : Variation of the size of the “structural units” with temperature, J Non Cryst Solids., 447, 35, 10.1016/j.jnoncrysol.2016.05.017
Gupta, 2016, Role of dynamic heterogeneities in crystal nucleation kinetics in an oxide supercooled liquid, J Chem Phys., 145, 10.1063/1.4964674
Cassar, 2020, Critical assessment of the alleged failure of the Classical Nucleation Theory at low temperatures, J Non Cryst Solids., 547, 10.1016/j.jnoncrysol.2020.120297
Xia, 2021, Low-temperature nucleation anomaly in silicate glasses shown to be artifact in a 5BaO·8SiO2 glass, Nat Commun., 12, 1
Acosta, 2021, Further evidence against the alleged failure of the classical nucleation theory below the glass transition range, J Am Ceram Soc, 104, 4537, 10.1111/jace.17852
Weinberg, 1989, Re-examination of the temperature dependence of the classical nucleation rate: homogeneous crystal nucleation in glass, J Non Cryst Solids., 108, 99, 10.1016/0022-3093(89)90337-2
Soares, 2003, TEM and XRD study of early crystallization of lithium disilicate glasses, J Non Cryst Solids., 331, 217, 10.1016/j.jnoncrysol.2003.08.075
Lodesani, 2020, Disclosing crystal nucleation mechanism in lithium disilicate glass through molecular dynamics simulations and free-energy calculations, Sci Rep., 10, 7867, 10.1038/s41598-020-74764-9
Huang, 2018, Crystal nucleation rates in glass-forming molecular liquids: D-sorbitol, D-arabitol, D-xylitol, and glycerol, J Chem Phys, 149, 10.1063/1.5042112
Schmelzer, 2020, Effects of glass transition and structural relaxation on crystal nucleation: Theoretical description and model analysis, Entropy, 22, 1, 10.3390/e22101098
Fokin, 2021, Effect of structural relaxation on crystal nucleation in glasses, Acta Mater., 203, 9, 10.1016/j.actamat.2020.11.014
Rodrigues, 2021, Effect of structural relaxation on crystal nucleation in a soda-lime-silica glass, J Am Ceram Soc, 104, 3212, 10.1111/jace.17765
Neuville, 2017, From glass to crystal - Nucleation, growth and phase separation: from research to applications, EDP Sci
Sosso, 2016, Crystal Nucleation in Liquids: Open Questions and Future Challenges in Molecular Dynamics Simulations, Chem Rev., 116, 7078, 10.1021/acs.chemrev.5b00744
Tipeev, 2018, Diffusivity, Interfacial Free Energy, and Crystal Nucleation in a Supercooled Lennard-Jones Liquid, J Phys Chem C, 122, 28884, 10.1021/acs.jpcc.8b10637
Prado, 2019, Successful test of the classical nucleation theory by molecular dynamic simulations of BaS, Comput Mater Sci., 161, 99, 10.1016/j.commatsci.2019.01.023
Separdar, 2021, Molecular dynamics simulations of spontaneous and seeded nucleation and theoretical calculations for zinc selenide, Comput Mater Sci., 187, 10.1016/j.commatsci.2020.110124
Tipeev, 2020, Crystal Nucleation Kinetics in Supercooled Germanium: MD Simulations versus Experimental Data, J Phys Chem B., 124, 7979, 10.1021/acs.jpcb.0c05480
Ostwald, 1897, Studien über die bildung und umwandlung fester körper, Z Phys Chem, 22, 289, 10.1515/zpch-1897-2233
Zanotto, 2020, Effect of liquid phase separation on crystal nucleation in glass-formers. Case closed, Ceram Int., 46, 24779, 10.1016/j.ceramint.2020.06.305
Fitzner M, Sosso GC, Cox SJ, Michaelides A. Ice is born in low-mobility regions of supercooled liquid water. Proc Natl Acad Sci 2019; 116: 2009–2014. 10.1073/pnas.1817135116.
Puosi, 2019, Nucleation kinetics in a supercooled metallic glass former, Acta Mater., 174, 387, 10.1016/j.actamat.2019.05.057
Zhang, 2018, Spatially heterogeneous dynamics in a metallic glass forming liquid imaged by electron correlation microscopy, Nat Commun., 9, 1
James, 1974, Kinetics of crystal nucleation in lithium silicate glasses, Phys Chem Glasses, 15, 95
Weinberg, 1999, A few topics concerning nucleation and crystallization in glasses, J Non Cryst Solids., 255, 1, 10.1016/S0022-3093(99)00420-2
Fokin, 2005, Nucleation and Crystallization Kinetics in Silicate Glasses: Theory and Experiment, Nucleation Theory Appl, 74, 10.1002/3527604790.ch4
Kelton, 1991, Crystal Nucleation in Liquids and Glasses, Solid State Physics., 45, 75, 10.1016/S0081-1947(08)60144-7
Kelton, 1995, Transient nucleation in glasses, Mater Sci Eng B, 32, 145, 10.1016/0921-5107(95)80023-9
Gránásy L, James PF. Nucleation in oxide glasses: Comparison of theory and experiment. Proc Roy Soc A: Math, Phys Eng Sci 1998; 454: 1745–1766. 10.1098/rspa.1998.0230.
Gránásy, 1999, Non-classical theory of crystal nucleation: application to oxide glasses: review, J Non Cryst Solids., 253, 210, 10.1016/S0022-3093(99)00354-3
Müller, 2000, Surface crystallization of silicate glasses: Nucleation sites and kinetics, J Non Cryst Solids., 274, 208, 10.1016/S0022-3093(00)00214-3
Zanotto, 2003, Recent studies of internal and surface nucleation in silicate glasses, Philos Trans Roy Soc A: Math, Phys Eng Sci, 361, 591, 10.1098/rsta.2002.1150
Gutzow, 1997, Kinetics of transient nucleation in glass-forming liquids: A retrospective and recent results, J Non Cryst Solids., 219, 1, 10.1016/S0022-3093(97)00246-9
Gutzow, 1985, Nucleation and crystallization in glass-forming melts: Olds problems and new questions, J Non Cryst Solids., 73, 477, 10.1016/0022-3093(85)90370-9
Komatsu, 2015, Design and control of crystallization in oxide glasses, J Non Cryst Solids., 428, 156, 10.1016/j.jnoncrysol.2015.08.017
Karpukhina, 2014, Crystallisation in oxide glasses – a tutorial review, Chem Soc Rev., 42, 2174, 10.1039/C3CS60305A
Wisniewski, 2021, Oriented surface nucleation in inorganic glasses – A review, Prog Mater Sci., 118, 10.1016/j.pmatsci.2020.100758
Zanotto, 2013
Rodrigues, 2022, Relaxation effect on crystal nucleation in a glass unveiled by experimental, numerical, and analytical approaches, Acta Mater., 223, 10.1016/j.actamat.2021.117458
Guencheva, 2007, The induced crystallisation of glass forming melts. Part 2. Influence of surfactants and non-surfactant soluble additives, Physics and Chemistry of Glasses, Eur J Glass Sci Technol Part B., 48, 48
Kelton, 2010
Roura, 2004, Local thermodynamic derivation of Young’s equation, J Colloid Interface Sci., 272, 420, 10.1016/j.jcis.2004.01.028
Fokin, 1999, Surface and volume nucleation and growth in TiO2-cordierite glasses, J Non Cryst Solids., 246, 115, 10.1016/S0022-3093(99)00007-1
Guencheva, 2004, Induced crystallization of glass-forming melts Part 1. Heterogeneous nucleation. Effect of noble metal microcrystals on the crystallization of calcium metaphosphate glasses, Glas Sci Technol, 77, 217
Krüger, 2014, Stochastic nature of the liquid-to-crystal heterogeneous nucleation of supercooled lithium disilicate liquid, J Non Cryst Solids., 388, 6, 10.1016/j.jnoncrysol.2014.01.036
Krüger, 2015, Heterogeneous surface nucleation of lithium disilicate glass: An isothermal DSC study, J Non Cryst Solids., 417–418, 45, 10.1016/j.jnoncrysol.2015.03.013
Krüger, 2016, The TTT Curves of the Heterogeneous and Homogeneous Crystallization of Lithium Disilicate – A Stochastic Approach to Crystal Nucleation, Front Mater., 3, 1, 10.3389/fmats.2016.00042
DeCeanne, 2022, Examining the role of nucleating agents within glass-ceramic systems, J Non Cryst Solids., 591, 10.1016/j.jnoncrysol.2022.121714
Gibbs JW. On the equilibrium of heterogeneous substances, Trans Connecticut Acad Arts Sci s3-16 (1878) 441–458. 10.2475/ajs.s3-16.96.441.
Karthika, 2016, A Review of Classical and Nonclassical Nucleation Theories, Cryst Growth Des., 16, 6663, 10.1021/acs.cgd.6b00794
Fokin, 2013, Nonstoichiometric crystallization of lithium metasilicate – calcium metasilicate glasses. Part 1 — Crystal nucleation and growth rates, J Non Cryst Solids., 362, 56, 10.1016/j.jnoncrysol.2012.11.020
Xia, 2019, Time-dependent nucleation rate measurements in BaO⋅2SiO2 and 5BaO⋅8SiO2 glasses, J Non Cryst Solids., 525, 10.1016/j.jnoncrysol.2019.119575
Acosta, 2022, The best diffusivity proxy for crystal nucleation in stoichiometric oxide glasses, Ceram Int., 48, 12132, 10.1016/j.ceramint.2022.01.074
Martin, 2020, Transition Zone Theory Compared to Standard Models: Reexamining the Theory of Crystal Growth from Melts, J Phys Chem C, 124, 18724, 10.1021/acs.jpcc.0c03003
Manrich, 1995, Nucleação de cristais em silicatos vítreos analisada através de diferentes formas da teoria clássica, Cerâmica, 41, 105
Zanotto, 1985, Experimental tests of the classical nucleation theory for glasses, J Non Cryst Solids., 74, 373, 10.1016/0022-3093(85)90080-8
Schmelzer, 2019, Curvature dependence of the surface tension and crystal nucleation in liquids, Int J Appl Glass Sci., 10, 57, 10.1111/ijag.12900
Abyzov, 2020, Crystallization of Supercooled Liquids: Self-Consistency Correction of the Steady-State Nucleation Rate, Entropy, 22, 1, 10.3390/e22050558
Schmelzer, 2008, Crystal nucleation and growth in glass-forming melts: Experiment and theory, J Non Cryst Solids., 354, 269, 10.1016/j.jnoncrysol.2007.06.103
Schmelzer, 2010, On the determination of the kinetic pre-factor in classical nucleation theory, J Non Cryst Solids., 356, 2901, 10.1016/j.jnoncrysol.2010.02.026
Schmelzer, 2018, Crystallization of glass-forming melts: New answers to old questions, J Non Cryst Solids., 501, 11, 10.1016/j.jnoncrysol.2017.11.047
Fokin, 2019, Effect of non-stoichiometry on the crystal nucleation and growth in oxide glasses, Acta Mater., 180, 317, 10.1016/j.actamat.2019.09.017
Gránásy, 1993, Diffuse interface theory of nucleation, J Non Cryst Solids., 162, 301, 10.1016/0022-3093(93)91250-7
Spaepen, 1994, Homogeneous Nucleation and the Temperature Dependence of the Crystal-Melt Interfacial Tension, Solid State Phys, 47, 1, 10.1016/S0081-1947(08)60638-4
Gránásy, 1997, Comparison of experiments and modern theories of crystal nucleation, J Chem Phys., 107, 3634, 10.1063/1.474721
Van Hoesen, 2020, Modeling nonisothermal crystallization in a BaO∙2SiO2 glass, J Am Ceram Soc, 103, 2471, 10.1111/jace.16979
Xia, 2017, Temperature dependence of crystal nucleation in BaO·2SiO2 and 5BaO·8SiO2 glasses using differential thermal analysis, J Non Cryst Solids., 459, 45, 10.1016/j.jnoncrysol.2016.12.032
McKenzie, 2021, Nucleation pathways in barium silicate glasses, Sci Rep., 11, 1, 10.1038/s41598-020-79749-2
Fokin, 2003, Homogeneous nucleation versus glass transition temperature of silicate glasses, J Non Cryst Solids., 321, 52, 10.1016/S0022-3093(03)00089-9
Zanotto, 1987, Isothermal and adiabatic nucleation in glass, J Non Cryst Solids., 89, 361, 10.1016/S0022-3093(87)80278-8
Gupta, 2016, On the variation of the maximum crystal nucleation rate temperature with glass transition temperature, J Non Cryst Solids., 442, 34, 10.1016/j.jnoncrysol.2016.03.024
Abyzov, 2018, Predicting homogeneous nucleation rates in silicate glass-formers, J Non Cryst Solids., 500, 231, 10.1016/j.jnoncrysol.2018.08.002
Tielemann, 2022, Internal nucleation tendency and crystal surface energy obtained from bond energies and crystal lattice data, J Non-Cryst Solids: X., 14
Zanotto, 2015, Thirty-year quest for structure-nucleation relationships in oxide glasses, Int Mater Rev, 60, 376, 10.1080/09506608.2015.1114706
Deubener, 2004, Configurational entropy and crystal nucleation of silicate glasses, Phys Chem Glasses, Eur J Glass Sci Technol - Part B., 45, 61
Richet, 1995, Rheology and configurational entropy of silicate melts, Rev Mineral Geochem, 32, 67
Navrotsky A. Thermochemistry of crystalline and amorphous silica. In: Heaney PJ, Prewitt CT, Gibbs VV (eds) Silica: physical behavior, geochemistry and materials applications, Reviews in Mineralogy. 29 (1994) 309–329.
Eckert, 2018, Spying with spins on messy materials: 60 Years of glass structure elucidation by NMR spectroscopy, Int J Appl Glass Sci., 9, 167, 10.1111/ijag.12333
Mastelaro, 2000, Relationship between short-range order and ease of nucleation in Na2Ca2Si3O9, CaSiO3 and PbSiO3 glasses, J Non Cryst Solids., 262, 191, 10.1016/S0022-3093(99)00685-7
Bradtmüller, 2020, Structural aspects of the glass-to-crystal transition in sodium-calcium silicate glasses, J Non Cryst Solids., 532
Du, 2004, The medium range structure of sodium silicate glasses: a molecular dynamics simulation, J Non Cryst Solids., 349, 66, 10.1016/j.jnoncrysol.2004.08.264
James, 1975, Liquid-phase separation in glass-forming systems, J Mater Sci., 10, 1802, 10.1007/BF00554944
Lin, 2015, Nanocrystallization in Oxyfluoride Glasses Controlled by Amorphous Phase Separation, Nano Lett., 15, 6764, 10.1021/acs.nanolett.5b02605
Souza, 2011, Liquid-liquid phase separation in photo-thermo-refractive glass, J Am Ceram Soc, 94, 145, 10.1111/j.1551-2916.2010.04053.x
Bischoff, 2011, Phase evolution in lithium disilicate glass–ceramics based on non-stoichiometric compositions of a multi-component system: structural studies by 29Si single and double resonance solid state NMR, Phys Chem Chem Phys, 13, 4540, 10.1039/c0cp01440k
Mckenzie, 2018, Implicit glass model for simulation of crystal nucleation for glass-ceramics, NPJ Comput Mater., 4, 1, 10.1038/s41524-018-0116-5
Lodesani, 2020, Disclosing crystal nucleation mechanism in lithium disilicate glass through molecular dynamics simulations and free–energy calculations, Sci Rep., 10, 17867, 10.1038/s41598-020-74764-9
Krüger, 2013, Nucleation Kinetics of Lithium Metasilicate in ZrO2-Bearing Lithium Disilicate Glasses for Dental Application, Int J Appl Glass Sci., 4, 9, 10.1111/ijag.12011
Höche, 2011, ZrTiO4 crystallisation in nanosized liquid – liquid phase-separation droplets in glass — a quantitative XANES study, CrstEngComm, 13, 2550, 10.1039/c0ce00716a
Golovchak, 2014, Influence of phase separation on the devitrification of 45S5 bioglass, Acta Biomater., 10, 4878, 10.1016/j.actbio.2014.07.024
Deng, 2014, Liquid-phase separation and crystallization of high silicon canasite-based glass ceramic, J Non Cryst Solids., 385, 47, 10.1016/j.jnoncrysol.2013.11.006
Boulay, 2014, Influence of amorphous phase separation on the crystallization behavior of glass-ceramics in the BaO-TiO2-SiO2 system, J Non Cryst Solids., 384, 61, 10.1016/j.jnoncrysol.2013.06.023
Lin, 2018, Chalcogenide glass-ceramics: Functional design and crystallization mechanism, Prog Mater Sci., 93, 1, 10.1016/j.pmatsci.2017.11.001
Acosta, 2021, Assessing glass-ceramic homogeneity and nucleation correlation by crystallization statistics, J Am Ceram Soc, 104, 4459, 10.1111/jace.17815
Ediger, 2000, Spatially heterogeneous dynamics in supercooled liquids, Annu Rev Phys Chem., 51, 99, 10.1146/annurev.physchem.51.1.99
Glotzer, 2000, Spatially heterogeneous dynamics in liquids: insights from simulation, J Non Cryst Solids., 274, 342, 10.1016/S0022-3093(00)00225-8
Karpov, 1996, Nucleation in disordered systems, Phys Rev B., 54, 9734, 10.1103/PhysRevB.54.9734
Zanotto, 2020, Dominant Effect of Heterogeneous Dynamics on Homogenous Crystal Nucleation in Supercooled Liquids, Front Phys., 8, 1, 10.3389/fphy.2020.00020
Avramov, 2000, Crystallization kinetics and rigidity percolation in glass-forming melts, J Non Cryst Solids., 272, 147, 10.1016/S0022-3093(00)00159-9
Kawasaki, 2010, Structural origin of dynamic heterogeneity in three-dimensional colloidal glass formers and its link to crystal nucleation, J Phys Condens Matter, 22, 10.1088/0953-8984/22/23/232102
Rüssel, 2005, Nanocrystallization of CaF2 from Na2O/K2O/CaO/CaF2/Al2O3/SiO2 glasses, Chem Mater, 17, 5843, 10.1021/cm051430x
Bocker, 2009, Self-organized nano-crystallisation of BaF2 from Na2O/K2O/BaF2/Al2O3/SiO2 glasses, J Eur Ceram Soc., 29, 1221, 10.1016/j.jeurceramsoc.2008.08.005
Bocker, 2012, Crystal growth in non-isochemical, highly viscous liquids and percolation theory, Chem Phys., 406, 50, 10.1016/j.chemphys.2012.07.015
Vargheese, 2010, Origin of dynamical heterogeneities in calcium aluminosilicate liquids, J Chem Phys, 132, 10.1063/1.3429880
Roth, 1959, Phase equilibria in the barium disilicate–dibarium trisilicate subsystem, J. Res. Natl. Bur. Stand., 62, 193, 10.6028/jres.062.034
Araujo, 2015, Residual glass and crystalline phases in a barium disilicate glass-ceramic, Mater Charact., 110, 192, 10.1016/j.matchar.2015.10.019
Takahashi, 2010, Transmission electron microscopy and in situ Raman studies of glassy sanbornite: An insight into nucleation trend and its relation to structural variation, J Appl Phys., 108, 10.1063/1.3487473
Cai, 2020, Nucleation and early stage crystallization in barium disilicate glass, J Non Cryst Solids., 548, 10.1016/j.jnoncrysol.2020.120330
Moulton, 2019, The origin of the unusual DSC peaks of supercooled barium disilicate liquid, CrstEngComm, 21, 2768, 10.1039/C8CE02054J
Takahashi, 2010, Formation of spherulite and metastable phase in stoichiometric Ba2Si3O8 glass, J Ceram Soc Jpn, 118, 955, 10.2109/jcersj2.118.955
Fokin, 1999, The effect of pre-existing crystals on the crystallization kinetics of a soda-lime-silica glass. The courtyard phenomenon, J Non Cryst Solids., 258, 180, 10.1016/S0022-3093(99)00417-2
Fokin, 2003, Mutant crystals in Na2O·2CaO·3SiO2 glasses, J Non Cryst Solids., 331, 240, 10.1016/j.jnoncrysol.2003.08.074
Komatsu, 2020, Crystallization data-driven proposal on distribution model of composition fluctuations in structure of oxide glasses, J Solid State Chem., 288, 10.1016/j.jssc.2020.121379
Takahashi Y, Osada M, Masai H, Fujiwara T. Structural heterogeneity and homogeneous nucleation of 1BaO-2SiO2 glass. Appl Phys Lett 2009; 94: 211907–211907–3. 10.1063/1.3142394.
Takahashi, 2008, Anomalous Boson Behavior and Nanometric Heterogeneity in Glassy Fresnoite, Appl Phys Express, 1, 10.1143/APEX.1.121901
Angell, 1991, Relaxation in liquids, polymers and plastic crystals — strong/fragile patterns and problems, J Non Cryst Solids., 131–133, 13, 10.1016/0022-3093(91)90266-9
Lubauer, 2021, Concurrent kinetics of crystallization and toughening in multicomponent biomedical SiO2-Li2O-P2O5-ZrO2 glass-ceramics, J Non Cryst Solids., 554, 10.1016/j.jnoncrysol.2020.120607
Huang, 2015, Trace phase formation, crystallization kinetics and crystallographic evolution of a lithium disilicate glass probed by synchrotron XRD technique, Sci Rep., 5, 9159, 10.1038/srep09159
Huang, 2013, Fabrication of a high-strength lithium disilicate glass-ceramic in a complex glass system, J Asian Ceram Soc, 1, 46, 10.1016/j.jascer.2013.02.007
Komatsu, 2022, Nanoscale composition fluctuations and crystallization process: Case study in Li2O–SiO2-based glasses, Int J Appl Glass Sci., 13, 591, 10.1111/ijag.16583
Dressler, 2014, Crystallization kinetics in a lithium alumosilicate glass using SnO2 and ZrO2 additives, J Non Cryst Solids., 389, 60, 10.1016/j.jnoncrysol.2014.02.008
Komatsu, 2023, A comprehensive approach to crystallization sequence in novel MgO/CaO-Al2O3-SiO2 glass-ceramics by Ostwald’s step rule and composition fluctuation model, Ceram Int., 49, 13666, 10.1016/j.ceramint.2022.12.244
Saika-voivod, 2009, Crystal Nucleation in a Supercooled Liquid with Glassy Dynamics, Phys Rev Lett., 103, 10.1103/PhysRevLett.103.225701
Fokin, 2007, Continuous compositional changes of crystal and liquid during crystallization of a sodium calcium silicate glass, J Non Cryst Solids., 353, 2459, 10.1016/j.jnoncrysol.2007.04.014
Macena GS, Abyzov AS, Fokin VM, Nascimento MLF, Zanotto ED, Ferreira EB. Diffusion zone evolution around growing crystals in combeite glass, (2023) In preparation.
Fokin VM, Reis RMCV, Abyzov AS, Chinaglia CR, Schmelzer JWP, Zanotto ED.Non-stoichiometric crystallization of lithium metasilicate – calcium metasilicate glasses. Part 2 — Effect of the residual liquid, 379 (2013) 131–144. 10.1016/j.jnoncrysol.2013.08.006.
Nuernberg, 2019, Non-stoichiometric crystallization of Li2SiO3-CaSiO3 glasses: Residual glass composition from ionic conductivity, J Non Cryst Solids., 510, 158, 10.1016/j.jnoncrysol.2019.01.022
Macena, 2020, Off-stoichiometry effects on crystal nucleation and growth kinetics in soda-lime-silicate glasses. The combeite (Na2O•2CaO•3SiO2) – devitrite (Na2O•3CaO•6SiO2) joint, Acta Mater., 196, 191, 10.1016/j.actamat.2020.06.039
Guo, 2014, Crystallization and microstructure of CaO-MgO-Al2O3-SiO2 glass-ceramics containing complex nucleation agents, J Non Cryst Solids., 405, 63, 10.1016/j.jnoncrysol.2014.08.048
Cicconi, 2022, Nucleation mechanisms in a SiO2-Li2O-P2O5-ZrO2 biomedical glass-ceramic: Insights on crystallisation, residual glasses and Zr4+ structural environment, J Eur Ceram Soc., 42, 1762, 10.1016/j.jeurceramsoc.2021.12.009
Kleebusch, 2018, The evidence of phase separation droplets in the crystallization process of a Li2O-Al2O3-SiO2 glass with TiO2 as nucleating agent – An X-ray diffraction and (S)TEM-study supported by EDX-analysis, Ceram Int., 44, 2919, 10.1016/j.ceramint.2017.11.040
Kleebusch, 2017, The formation of nanocrystalline ZrO2 nuclei in a Li2O-Al2O3-SiO2 glass - A combined XANES and TEM study, Sci Rep., 7, 1, 10.1038/s41598-017-11228-7
Kleebusch, 2017, Phase formation during crystallization of a Li2O-Al2O3-SiO2 glass with ZrO2 as nucleating agent – An X-ray diffraction and (S)TEM-study, Ceram Int., 43, 9769, 10.1016/j.ceramint.2017.04.153
Guo, 2006, Crystallization and microstructure of Li2O – Al2O3 – SiO2 glass containing complex nucleating agent, Thermochim Acta., 444, 201, 10.1016/j.tca.2006.02.016
Khater, 2009, Effect of some nucleating agents on crystallizing phases and microstructure in Li2O-BaO-Al2O3-SiO2 system, Ceram Int., 35, 69, 10.1016/j.ceramint.2007.09.118
Al-Harbi, 2009, Effect of different nucleation catalysts on the crystallization of Li2O-ZnO-MgO-Al2O3-SiO2 glasses, Ceram Int., 35, 1121, 10.1016/j.ceramint.2008.05.008
Li, 2010, Crystallization mechanism and microstructure evolution of Li 2O-Al2O3-SiO2 glass-ceramics with Ta2O5 as nucleating agent, J Therm Anal Calorim., 101, 941, 10.1007/s10973-009-0598-y
Kleebusch, 2016, Effect of the concentrations of nucleating agents ZrO2 and TiO2 on the crystallization of Li2O – Al2O3 – SiO2 glass: an X-ray diffraction and TEM investigation, J Mater Sci., 51, 10127, 10.1007/s10853-016-0241-9
Thieme, 2018, WO3 as a nucleating agent for BaO/SrO/ZnO/SiO2 glasses – experiments and simulations, CrstEngComm, 20, 4565, 10.1039/C8CE00512E
Dargaud, 2010, Structural role of Zr4+ as a nucleating agent in a MgO–Al2O3–SiO2 glass-ceramics: A combined XAS and HRTEM approach, J Non Cryst Solids., 356, 2928, 10.1016/j.jnoncrysol.2010.05.104
Guignard, 2010, Structural fluctuations and role of Ti as nucleating agent in an aluminosilicate glass, J Non Cryst Solids., 356, 1368, 10.1016/j.jnoncrysol.2010.04.004
Guo, 2007, Nucleation of lithium aluminosilicate glass containing complex nucleation agent, Ceram Int., 33, 1375, 10.1016/j.ceramint.2006.04.019
Wu, 2020, The effects of a complex nucleating agent with different ratios of MgF2/LiF on the crystallization and performance of lithium aluminum silicate glasses, J Non Cryst Solids., 540, 10.1016/j.jnoncrysol.2020.120087
Dittmer, 2010, Self-organized nanocrystallinity in MgO-Al2O3- SiO2 glasses with ZrO2 as nucleating agent, Mater Chem Phys., 124, 1083, 10.1016/j.matchemphys.2010.08.037
Patzig, 2014, Crystallization of ZrO2-nucleated MgO/Al2O3/SiO2 glasses-a TEM study, CrstEngComm, 16, 6578, 10.1039/C4CE00636D
He, 2021, Effect of different nucleating agent ratios on the crystallization and properties of MAS glass ceramics, J Eur Ceram Soc., 41, 342, 10.1016/j.jeurceramsoc.2021.09.034
Salman, 2008, Crystallization characteristics and physico-chemical properties of the glasses based on Li2O-CaO-SiO2 eutectic (954 °C) system containing magnesium oxide, Ceram Int., 34, 1819, 10.1016/j.ceramint.2007.06.008
Mingsheng, 2008, The effect of TiO2 on phase separation and crystallization of glass-ceramics in CaO-MgO-Al2O3-SiO2-Na2O system, J Non Cryst Solids., 354, 5395, 10.1016/j.jnoncrysol.2008.09.019
Goharian, 2010, Properties, crystallization mechanism and microstructure of lithium disilicate glass-ceramic, J Non Cryst Solids., 356, 208, 10.1016/j.jnoncrysol.2009.11.015
Gaddam, 2018, The roles of P2O5 and SiO2/Li2O ratio on the network structure and crystallization kinetics of non-stoichiometric lithium disilicate based glasses, J Non Cryst Solids., 481, 512, 10.1016/j.jnoncrysol.2017.11.034
Heitmann, 2019, Surface and bulk crystallization of Ba1-xSrxZn2Si2O7 from glasses in the system BaO/SrO/ZnO/SiO2 doped with Nb2O5 or Ta2O5, Ceram Int., 45, 7580, 10.1016/j.ceramint.2019.01.052
Thieme, 2014, Nucleation inhibitors — The effect of small concentrations of Al2O3, La2O3 or TiO2 on nucleation and crystallization of lithium disilicate, J Eur Ceram Soc., 34, 3969, 10.1016/j.jeurceramsoc.2014.06.008
Thieme, 2016, CeO2 and Y2O3 as nucleation inhibitors in lithium disilicate glasses, J Mater Sci., 51, 989, 10.1007/s10853-015-9430-1
Galhardi, 1985
Thieme, 2015, The effect of niobium- and tantalum oxide on nucleation and growth kinetics in lithium disilicate glasses, Mater Chem Phys., 162, 354, 10.1016/j.matchemphys.2015.05.078
Thieme, 2015, Nucleation and growth kinetics and phase analysis in zirconia-containing lithium disilicate glass, J Mater Sci., 50, 1488, 10.1007/s10853-014-8710-5
Thieme, 2017, Nucleation inhibition despite lower glass viscosities? - Effect of the B2O3, Na2O and K2O addition on the crystallization behavior of lithium disilicate glasses, Ceram Int., 43, 9644, 10.1016/j.ceramint.2017.04.134
Thieme, 2016, The mechanism of deceleration of nucleation and crystal growth by the small addition of transition metals to lithium disilicate glasses, Sci Rep., 6, 25451, 10.1038/srep25451
Ray, 2000, New Method for Determining the Nucleation and Crystal-Growth Rates in Glasses, J Am Ceram Soc, 83, 865, 10.1111/j.1151-2916.2000.tb01287.x
Ranasinghe, 2002, A generalized method for determining the crystal nucleation and growth rates in glasses by differential thermal analysis, J Mater Sci., 37, 547, 10.1023/A:1013769624501
Cabral, 2010, On the Determination of Nucleation Rates in Glasses by Nonisothermal Methods, J Am Ceram Soc, 93, 2438, 10.1111/j.1551-2916.2010.03782.x
Fokin, 2010, Critical assessment of DTA – DSC methods for the study of nucleation kinetics in glasses, J Non Cryst Solids., 356, 358, 10.1016/j.jnoncrysol.2009.11.038
Cabral, 2013, On the Determination of the Concentration of Crystal Nuclei in Glasses by DSC, J Am Ceram Soc, 96, 2817, 10.1111/jace.12501
Ranasinghe, 2017, Heterogeneous nucleation on platinum doped Li2O·2SiO2 glass by differential thermal analysis, J Non Cryst Solids., 473, 141, 10.1016/j.jnoncrysol.2017.08.014
Zheng, 2019, Understanding Glass through Differential Scanning Calorimetry, Chem Rev., 10.1021/acs.chemrev.8b00510
Ray, 1990, Determining the Nucleation Rate Curve for lithium Disilicate Glass by Differential Thermal Analysis, J Am Ceram Soc, 73, 439, 10.1111/j.1151-2916.1990.tb06532.x
Weinberg, 1991, Interpretation of DTA Experiments Used for Crystal Nucleation Rate Determinations, J Am Ceram Soc, 74, 1905, 10.1111/j.1151-2916.1991.tb07807.x
Kelton, 1992, Estimation of the Nucleation Rate by Differential Scanning Calorimetry, J Am Ceram Soc, 75, 2449, 10.1111/j.1151-2916.1992.tb05597.x
Rodrigues, 2012, Effect of Simultaneous Nucleation and Crystal Growth on DSC Crystallization Peaks of Glasses, J Am Ceram Soc, 95, 2885, 10.1111/j.1551-2916.2012.05333.x
Reis, 2018, Simple model for particle phase transformation kinetics, Acta Mater., 154, 228, 10.1016/j.actamat.2018.05.039
Fernandes, 2019, Simulation and experimental study of the particle size distribution and pore effect on the crystallization of glass powders, Acta Mater., 175, 130, 10.1016/j.actamat.2019.05.049
Separdar, 2021, Unveiling nucleation dynamics by seeded and spontaneous crystallization in supercooled liquids, Comput Mater Sci., 199, 10.1016/j.commatsci.2021.110802
Tipeev, 2019, Nucleation kinetics in supercooled Ni50Ti50: Computer simulation data corroborate the validity of the Classical Nucleation Theory, Chem Phys Lett., 735, 10.1016/j.cplett.2019.136749
Gonçalves, 2021, Assessment of the classical nucleation theory in supercooled nickel by molecular dynamics, Mater Chem Phys., 272, 10.1016/j.matchemphys.2021.125011
Mckenzie ME, Mauro JC. Hybrid Monte Carlo technique for modeling of crystal nucleation and application to lithium disilicate glass-ceramics. 149 (2018) 202–207. 10.1016/j.commatsci.2018.03.034.
Wilkinson, 2021, Energy landscape modeling of crystal nucleation, Acta Mater., 217, 10.1016/j.actamat.2021.117163