Recent advances with liposomes as pharmaceutical carriers
Tóm tắt
Từ khóa
Tài liệu tham khảo
Symon, Z. et al. Selective delivery of doxorubicin to patients with breast carcinoma metastases by stealth liposomes. Cancer 86, 72–78 (1999).
Perez, A. T., Domenech, G. H., Frankel, C. & Vogel, C. L. Pegylated liposomal doxorubicin (Doxil) for metastatic breast cancer: the Cancer Research Network, Inc., experience. Cancer Invest. 20 (Suppl. 2), 22–29 (2002).
O'Shaughnessy, J. A. Pegylated liposomal doxorubicin in the treatment of breast cancer. Clin. Breast Cancer 4, 318–328 (2003).
Schwonzen, M., Kurbacher, C. M. & Mallmann, P. Liposomal doxorubicin and weekly paclitaxel in the treatment of metastatic breast cancer. Anticancer Drugs 11, 681–685 (2000).
Goncalves, A. et al. Phase I study of pegylated liposomal doxorubicin (Caelyx) in combination with carboplatin in patients with advanced solid tumors. Anticancer Res. 23, 3543–3548 (2003).
Harrington, K. J. et al. Phase II study of pegylated liposomal doxorubicin (Caelyx) as induction chemotherapy for patients with squamous cell cancer of the head and neck. Eur. J. Cancer 37, 2015–2022 (2001).
Johnston, S. R. & Gore, M. E. Caelyx: phase II studies in ovarian cancer. Eur. J. Cancer 37 (Suppl. 9), S8–S14 (2001).
Schmidinger, M. et al. Pilot study with pegylated liposomal doxorubicin for advanced or unresectable hepatocellular carcinoma. Br. J. Cancer 85, 1850–1852 (2001).
Wollina, U. et al. Multicenter study of pegylated liposomal doxorubicin in patients with cutaneous T-cell lymphoma. Cancer 98, 993–1001 (2003).
Skubitz, K. M. Phase II trial of pegylated-liposomal doxorubicin (Doxil) in sarcoma. Cancer Invest. 21, 167–176 (2003).
Seiden, M. V. et al. A phase II study of liposomal lurtotecan (OSI-211) in patients with topotecan resistant ovarian cancer. Gynecol. Oncol. 93, 229–232 (2004).
Sundar, S. et al. Single-dose liposomal amphotericin B in the treatment of visceral leishmaniasis in India: a multicenter study. Clin. Infect. Dis. 37, 800–804 (2003).
Grant, G. J. et al. A novel liposomal bupivacaine formulation to produce ultralong-acting analgesia. Anesthesiology. 101, 133–137 (2004).
Torchilin, V. P. Liposomes as targetable drug carriers. CRC Crit. Rev. Ther. Drug Carrier Syst. 1, 65–115 (1985).
Klibanov, A. L., Maruyama, K., Torchilin, V. P. & Huang, L. Amphipatic polyethyleneglycols effectively prolong the circulation time of liposomes. FEBS Lett. 268, 235–238 (1990). The first paper on PEGylated long-circulated liposomes.
Blume, G. & Cevc, G. Molecular mechanism of the lipid vesicle longevity in vivo. Biochim. Biophys. Acta 1146, 157–168 (1993).
Gabizon, A. A. Pegylated liposomal doxorubicin: metamorphosis of an old drug into a new form of chemotherapy. Cancer Invest. 19, 424–436 (2001).
Stealth® Liposomes, Chapter 19 (eds Martin, F. & Lasic, D.) 225–237 (CRC Press, Boca Raton, 1995).
Torchilin, V. P. et al. Poly(ethylene glycol) on the liposome surface: on the mechanism of polymer-coated liposome longevity. Biochim. Biophys. Act., 1195, 11–20 (1994).
Torchilin, V. P. & Trubetskoy, V. S. Which polymers can make nanoparticulate drug carriers long-circulating? Adv. Drug Deliv. Rev. 16, 141–155 (1995).
Allen, T. M. & Hansen, C. Pharmacokinetics of stealth versus conventional liposomes: effect of dose. Biochim. Biophys. Acta 1068, 133–141 (1991).
Maeda, H., Sawa, T. & Konno, T. Mechanism of tumor-targeted delivery of macromolecular drugs, including the EPR effect in solid tumor and clinical overview of the prototype polymeric drug SMANCS. J. Control. Release 74, 47–61 (2001). One of the key publications on the mechanism and significance of the enhanced permeability and retention (EPR) effect.
Zalipsky, S., Qazen, M., Walker, J. A., Mullah, N., Quinn, Y. P. & Huang, S. K. New detachable poly(ethylene glycol) conjugates: cysteine-cleavable lipopolymers regenerating natural phospholipid, diacyl phosphatidylethanolamine. Bioconjug. Chem. 10, 703–707 (1999).
Woodle, M. C. Controlling liposome blood clearance by surface-grafted polymers. Adv. Drug Deliv. Rev. 32, 139–152 (1998).
Whiteman, K. R., Subr, V., Ulbrich, K. & Torchilin, V. P. Poly(HPMA)-coated liposomes demonstrate prolonged circulation in mice. J. Liposome Res. 11, 153–164 (2001).
Torchilin, V. P. et al. Amphiphilic poly-N-vinylpyrrolidones: synthesis, properties and liposome surface modification. Biomaterials. 22, 3035–3044 (2001).
Metselaar, J. M. et al. A novel family of l-amino acid-based biodegradable polymer-lipid conjugates for the development of long-circulating liposomes with effective drug-targeting capacity. Bioconjug. Chem. 14, 1156–1164 (2003).
Takeuchi, H., Kojima, H., Yamamoto, H. & Kawashima, Y. Evaluation of circulation profiles of liposomes coated with hydrophilic polymers having different molecular weights in rats. J. Control. Release 75, 83–91 (2001).
Levchenko, T. S., Rammohan, R., Lukyanov, A. N., Whiteman, K. R. & Torchilin, V. P. Liposome clearance in mice: the effect of a separate and combined presence of surface charge and polymer coating. Int. J. Pharm. 240, 95–102 (2002).
Gabizon, A. Emerging role of liposomal drug carrier systems in cancer chemotherapy. J. Liposome Res. 13, 17–20 (2003).
Cattel, L., Ceruti, M. & Dosio, F. From conventional to stealth liposomes: a new frontier in cancer chemotherapy. Tumori 89, 237–249 (2003).
Bakker-Woudenberg, I. A. Long-circulating sterically stabilized liposomes as carriers of agents for treatment of infection or for imaging infectious foci. Int. J. Antimicrob. Agents. 19, 299–311 (2002).
Moghimi, S. M. & Szebeni, J. Stealth liposomes and long circulating nanoparticles: critical issues in pharmacokinetics, opsonization and protein-binding properties. Prog. Lipid Res. 42, 463–478 (2003).
Torchilin, V. P. et al. Targeted accumulation of polyethylene glycol-coated immunoliposomes in infarcted rabbit myocardium. FASEB J. 6, 2716–2719 (1992).
Blume, G. et al. Specific targeting with poly(ethylene glycol)-modified liposomes: coupling of homing devices to the ends of polymeric chains combines effective target binding with long circulation times. Biochim. Biophys. Acta 1149, 180–184 (1993). A good paper on long-circulating immunoliposomes with specific ligands attached to distant termini of liposome-grafted polymeric chains.
Abra, R. M. et al. The next generation of liposome delivery systems: recent experience with tumor-targeted, sterically-stabilized immunoliposomes and active-loading gradients. J. Liposome Res. 12, 1–3 (2002).
Torchilin, V. P. et al. p-Nitrophenylcarbonyl-PEG-PE-liposomes: fast and simple attachment of specific ligands, including monoclonal antibodies, to distal ends of PEG chains via p-nitrophenylcarbonyl groups. Biochim. Biophys. Acta 1511, 397–411 (2001).
Torchilin, V. P. & Klibanov, A. L. in Phospholipid Handbook (ed. Cevc, G.) 293–321 (Marcel Dekker, New York, 1993).
Torchilin, V. P., Weissig, V., Martin, F. J. & Heath, T. D. in Liposomes: Practical Approach (eds Torchilin, V. P. & Weissig, V.) 193–229 (Oxford Univ. Press, Oxford, 2003).
Klibanov, A. L., Torchilin, V. P. & Zalipsky, S. in Liposomes: Practical Approach (eds Torchilin, V. P. & Weissig, V.) 231–265 (Oxford Univ. Press, Oxford, 2003).
Sapra, P. & Allen, T. M. Internalizing antibodies are necessary for improved therapeutic efficacy of antibody-targeted liposomal drugs. Cancer Res. 62, 7190–7194 (2002).
Park, J. W. et al. Tumor targeting using anti-HER2 immunoliposomes. J. Control. Release 74, 95–113 (2001).
Kamps, J. A. et al. Uptake of long-circulating immunoliposomes, directed against colon adenocarcinoma cells, by liver metastases of colon cancer. J. Drug Targ. 8, 235–245 (2000).
Lukyanov, A. N., Elbayoumi, T. A., Chakilam, A. R. & Torchilin, V. P. Tumor-targeted liposomes: doxorubicin-loaded long-circulating liposomes modified with anti-cancer antibody. J. Control. Release 100, 135–144 (2004).
Raffaghello, L. et al. Immunoliposomal fenretinide: a novel antitumoral drug for human neuroblastoma. Cancer Lett. 197, 151–155 (2003).
Mastrobattista, E. et al. Functional characterization of an endosome-disruptive peptide and its application in cytosolic delivery of immunoliposome-entrapped proteins. J. Biol. Chem. 277, 27135–27143 (2002).
Leamon, C. P. & Low, P. S. Delivery of macromolecules into living cells: a method that exploits folate receptor endocytosis. Proc. Natl Acad. Sci. USA 88, 5572–5576 (1991). A key paper on folate-mediated delivery.
Lee, R. J. & Low, P. S. Delivery of liposomes into cultured KB cells via folate receptor-mediated endocytosis. J. Biol. Chem. 269, 3198–3204 (1994).
Lu, Y. & Low, P. S. Folate-mediated delivery of macromolecular anticancer therapeutic agents. Adv. Drug Deliv. Rev. 54, 675–693 (2002). Provides a review on folate-targeted liposomes.
Gabizon, A., Shmeeda, H., Horowitz, A. T. & Zalipsky, S. Tumor cell targeting of liposome-entrapped drugs with phospholipid-anchored folic acid-PEG conjugates. Adv. Drug Deliv. Rev. 56, 1177–1192 (2004). This paper considers liposomal systems with folate attached via PEG spacer.
Ni, S., Stephenson, S. M. & Lee, R. J. Folate receptor targeted delivery of liposomal daunorubicin into tumor cells. Anticancer Res. 22, 2131–2135 (2002).
Pan, X. Q., Wang, H. & Lee, R. J. Antitumor activity of folate receptor-targeted liposomal doxorubicin in a KB oral carcinoma murine xenograft model. Pharm. Res. 20, 417–422 (2003).
Pan, X. Q. et al. Strategy for the treatment of acute myelogenous leukemia based on folate receptor β-targeted liposomal doxorubicin combined with receptor induction using all-trans retinoic acid. Blood 100, 594–602 (2002).
Stephenson, S. M. et al. Folate receptor-targeted liposomes as possible delivery vehicles for boron neutron capture therapy. Anticancer Res. 23, 3341–3345 (2003).
Lu, Y. & Low, P. S. Folate targeting of haptens to cancer cell surfaces mediates immunotherapy of syngeneic murine tumors. Cancer Immunol. Immunother. 51, 153–162 (2002).
Reddy, J. A. et al. Folate-targeted, cationic liposome-mediated gene transfer into disseminated peritoneal tumors. Gene Ther. 9, 1542–1550 (2002).
Leamon, C. P., Cooper, S. R. & Hardee, G. E. Folate-liposome-mediated antisense oligodeoxynucleotide targeting to cancer cells: evaluation in vitro and in vivo. Bioconjug. Chem. 14, 738–747 (2003).
Hatakeyama, H., Akita, H., Maruyama, K., Suhara, T. & Harashima, H. Factors governing the in vivo tissue uptake of transferrin-coupled polyethylene glycol liposomes in vivo. Int. J. Pharm. 281, 25–33 (2004).
Ishida, O. et al. Liposomes bearing polyethyleneglycol-coupled transferrin with intracellular targeting property to the solid tumors in vivo. Pharm. Res. 18, 1042–1048 (2001).
Derycke, A. S. & De Witte, P. A. Transferrin-mediated targeting of hypericin embedded in sterically stabilized PEG-liposomes. Int. J. Oncol. 20, 181–187 (2002).
Gijsens, A. et al. Targeting of the photocytotoxic compound AlPcS4 to Hela cells by transferring conjugated PEG-liposomes. Int. J. Cancer 101, 78–85 (2002).
Iinuma, H. et al. Intracellular targeting therapy of cisplatin-encapsulated transferrin-polyethylene glycol liposome on peritoneal dissemination of gastric cancer. Int. J. Cancer 99, 130–137 (2002).
Eavarone, D. A., Yu, X. & Bellamkonda, R. V. Targeted drug delivery to C6 glioma by transferrin-coupled liposomes. J. Biomed. Mater. Res. 51, 10–14 (2000).
Omori, N. et al. Targeting of post-ischemic cerebral endothelium in rat by liposomes bearing polyethylene glycol-coupled transferrin. Neurol. Res. 25, 275–279 (2003).
Joshee, N., Bastola, D. R. & Cheng, P. W. Transferrin-facilitated lipofection gene delivery strategy: characterization of the transfection complexes and intracellular trafficking. Hum. Gene Ther. 13, 1991–2004 (2002).
Xu, L. et al. Systemic tumor-targeted gene delivery by anti-transferrin receptor scFv-immunoliposomes. Mol. Cancer Ther. 1, 337–346 (2002).
Huwyler, J., Wu, D. & Pardridge, W. M. Brain drug delivery of small molecules using immunoliposomes. Proc. Natl Acad. Sci. USA 93, 14164–14169 (1996).
Drummond, D. C., Hong, K., Park, J. W. & Benz, C. C. & Kirpotin DB. Liposome targeting to tumors using vitamin and growth factor receptors. Vitam. Horm. 60, 285–332 (2000).
Dagar, S., Krishnadas, A., Rubinstein, I., Blend, M. J. & Onyuksel, H. VIP grafted sterically stabilized liposomes for targeted imaging of breast cancer: in vivo studies. J. Control. Release 91, 123–133 (2003).
Schiffelers, R. M. et al. Anti-tumor efficacy of tumor vasculature-targeted liposomal doxorubicin. J. Control. Release 91, 115–122 (2003).
Lestini, B. J. et al. Surface modification of liposomes for selective cell targeting in cardiovascular drug delivery. J. Control. Release 78, 235–247 (2002).
Asai, T. et al. Anti-neovascular therapy by liposomal DPP-CNDAC targeted to angiogenic vessels. FEBS Lett. 520, 167–170 (2002).
Mamot, C. et al. Epidermal growth factor receptor (EGFR)-targeted immunoliposomes mediate specific and efficient drug delivery to EGFR- and EGFRvIII-overexpressing tumor cells. Cancer Res. 63, 3154–3161 (2003).
Peer, D. & Margalit, R. Loading mitomycin C inside long circulating hyaluronan targeted nano-liposomes increases its antitumor activity in three mice tumor models. Int. J. Cancer 108, 780–789 (2004).
Matsuda, I., Konno, H., Tanaka, T. & Nakamura, S. Antimetastatic effect of hepatotropic liposomal adriamycin on human metastatic liver tumors. Surg. Today. 31, 414–420 (2001).
Hashida, M., Nishikawa, M., Yamashita, F. & Takakura, Y. Cell-specific delivery of genes with glycosylated carriers. Adv. Drug Deliv. Rev. 52, 187–196 (2001). Good review on gene delivery by glycosylated carriers including liposomes.
Lee, C. M. et al. Novel chondroitin sulfate-binding cationic liposomes loaded with cisplatin efficiently suppress the local growth and liver metastasis of tumor cells in vivo. Cancer Res. 62, 4282–4288 (2002).
Tu, R., Mohanty, K. & Tirrell, M. Liposomal targeting through peptide-amphiphile functionalization. Pharm. Rev. 7, 36–41 (2004)
Simoes, S., Moreira, J. N., Fonseca, C., Duzgunes, N. & de Lima, M. C. On the formulation of pH-sensitive liposomes with long circulation times. Adv. Drug Deliv. Rev. 56, 947–965 (2004).
Fattal, E., Couvreur, P. & Dubernet, C. 'Smart' delivery of antisense oligonucleotides by anionic pH-sensitive liposomes. Adv. Drug Deliv. Rev. 56, 931–46 (2004).
Sudimack, J. J., Guo, W., Tjarks, W. & Lee, R. J. A novel pH-sensitive liposome formulation containing oleyl alcohol. Biochim. Biophys. Acta 1564, 31–37 (2002).
Asokan, A & Cho, M. J. Cytosolic delivery of macromolecules. II. Mechanistic studies with pH-sensitive morpholine lipids. Biochim. Biophys. Acta 1611, 151–160 (2003).
Roux, E., Passirani, C., Scheffold, S., Benoit, J. P. & Leroux, J. C. Serum-stable and long-circulating, PEGylated, pH-sensitive liposomes. J. Control. Release 94, 447–451 (2004).
Turk, M. J., Reddy, J. A., Chmielewski, J. A. & Low, P. S. Characterization of a novel pH-sensitive peptide that enhances drug release from folate-targeted liposomes at endosomal pHs. Biochim. Biophys. Acta 1559, 56–68 (2002).
Kakudo, T. et al. Transferrin-modified liposomes equipped with a pH-sensitive fusogenic peptide: an artificial viral-like delivery system. Biochemistry. 43, 5618–5628 (2004). Interesting paper on the combination of transferrin targeting and pH-sensitivity.
Shi, G., Guo, W., Stephenson, S. M. & Lee, R. J. Efficient intracellular drug and gene delivery using folate receptor-targeted pH-sensitive liposomes composed of cationic/anionic lipid combinations. J. Control. Release 80, 309–319 (2002).
Gaspar, M. M., Perez-Soler, R. & Cruz, M. E. Biological characterization of l-asparaginase liposomal formulations. Cancer Chemother. Pharmacol. 38, 373–377 (1996).
Stanimirovic, D. B., Markovic, M., Micic, D. V., Spatz, M. & Mrsulja, B. B. Liposome-entrapped superoxide dismutase reduces ischemia/reperfusion 'oxidative stress' in gerbil brain. Neurochem. Res. 19, 1473–1478 (1994).
Lo, Y.-I., Tsai, J.-C. & Kuo, J.-H. Liposomes and disaccharides as carriers in spray-dried powder formulations of superoxide dismutase. J. Control. Release 94, 259– (2004).
Heeremans, J. L. et al. Thrombolytic treatment with tissue-type plasminogen activator (t-PA) containing liposomes in rabbits: a comparison with free t-PA, Thromb. Haemost. 73, 488–494 (1995).
Rubas, W. et al. Treatment of Murine L1210 lymphoid leukemia and melanoma bl6 with lipophilic cytosine arabinoside prodrugs incorporated into unilamellar liposomes. Int. J. Cancer 37, 149–154 (1986).
Fonseca, M. J., Jagtenberg, J. C., Haisma, H. J. & Storm, G. Liposome-mediated targeting of enzymes to cancer cells for site-specific activation of prodrugs: comparison with the corresponding antibody-enzyme conjugate. Pharm. Res. 20, 423–428 (2003).
Iwanaga, K. et al. Application of surface-coated liposomes for oral delivery of peptide: effects of coating the liposome's surface on the GI transport of insulin. J. Pharm. Sci. 88, 248–52 (1999).
Kisel, M. A. et al. Liposomes with phosphatidylethanol as a carrier for oral delivery of insulin: studies in rat. Int. J. Pharm. 216, 105–114 (2001).
Kim, A., Yun, M. O., Oh, Y. K., Ahn, W. S. & Kim, C. K. Phospholipid deformable vesicles for buccal delivery of insulin. Chem. Phar. Bull. (Tokyo) 50, 749–751 (2002).
Kim, A., Yun, M. O., Oh, Y. K., Ahn, W. S. & Kim, C. K. Pharmacodynamics of insulin in polyethylene glycol-coated liposomes, Int. J. Pharm. 180, 75–81 (1999).
Kanaoka, E. et al. A novel and simple type of liposome carrier for recombinant interleukin-2. J. Pharm. Pharmacol. 53, 295–302 (2001).
Opanasopit, P. et al. Inhibition of liver metastasis by targeting immunomodulators using mannosylated liposome carriers. J. Control. Release 80, 283–294 (2002).
Li. H., Song, J. H., Park, J. S. & Han, K. Polyethylene glycol-coated liposomes for oral delivery of recombinant human epidermal growth factor. Int. J. Pharm. 258, 11–19 (2003).
Postma, N. S., Crommelin, D. J., Eling, W. M. & Zuidema, J. Treatment with liposome-bound recombinant human tumor necrosis factor-α suppresses parasitemia and protects against Plasmodium berghei k173-induced experimental cerebral malaria in mice. J. Pharmacol. Exp. Ther. 288, 114–120 (1999).
van Slooten, M. L. et al. Liposomes containing interferon-γ as adjuvant in tumor cell vaccines. Pharm. Res. 17, 42–48 (2000).
Lange, C. F., Hancock, R. E., Samuel, J. & Finlay, W. H. In vitro aerosol delivery and regional airway surface liquid concentration of a liposomal cationic peptide. J. Pharm. Sci. 90, 1647–1657 (2001).
Felgner, P. L. & Ringold, G. M. Cationic liposome-mediated transfection. Nature 337, 387–388 (1989). A key publication on transfection with cationic lipids.
Safinya, C. R. Structures of lipid-DNA complexes: supramolecular assembly and gene delivery. Curr. Opin. Struct. Biol. 11, 440–448 (2001).
Lasic, D. D., Vallner, J. J. & Working, P. K. Sterically stabilized liposomes in cancer therapy and gene delivery. Curr. Opin. Mol. Ther. 1, 177–185 (1999).
Matsuura, M. et al. Polycation liposome-mediated gene transfer in vivo. Biochim. Biophys. Acta 1612, 136–143 (2003).
Audouy, S. A., de Leij, L. F., Hoekstra, D. & Molema, G. In vivo characteristics of cationic liposomes as delivery vectors for gene therapy. Pharm. Res. 19, 1599–1605 (2002).
Brignole, C. et al. Targeted delivery system for antisense oligonucleotides: a novel experimental strategy for neuroblastoma treatment. Cancer Lett. 197, 231–235 (2003).
Sioud, M. & Sorensen, D. R. Cationic liposome-mediated delivery of siRNAs in adult mice. Biochem. Biophys. Res. Commun. 312, 1220–1225 (2003).
Rogers, J. A. & Anderson, K. E. The potential of liposomes in oral drug delivery. CRC Crit. Rev. Ther. Drug Carrier Syst. 15, 421–480 (1998).
Chen, H., Torchilin, V. & Langer, R. Lectin-bearing polymerized liposomes as potential oral vaccine carriers. Pharm. Res. 13, 1378–1383 (1996).
Wu, Z. H., Ping, Q. N., Wei, Y. & Lai, J. M. Hypoglycemic efficacy of chitosan-coated insulin liposomes after oral administration in mice. Acta Pharmacol. Sin. 25, 966–972 (2004).
Taira, M. C., Chiaramoni, N. S., Pecuch, K. M. & Alonso-Romanowski, S. Stability of liposomal formulations in physiological conditions for oral drug delivery. Drug Deliv. 11, 123–128 (2004).
Li, H., Song, J. H., Park, J. S. & Han, K. Polyethylene glycol-coated liposomes for oral delivery of recombinant human epidermal growth factor. Int. J. Pharm. 258, 11–19 (2003).
Yamabe, K., Kato, Y., Onishi, H. & Machida, Y. Potentiality of double liposomes containing salmon calcitonin as an oral dosage form. J. Control. Release 89, 429–436 (2003).
Minato, S., Iwanaga, K., Kakemi, M., Yamashita, S. & Oku, N. Application of polyethyleneglycol (PEG)-modified liposomes for oral vaccine: effect of lipid dose on systemic and mucosal immunity. J. Control. Release 89, 189–197 (2003).
Xing, L., Dawei, C., Liping, X. & Rongqing, Z. Oral colon-specific drug delivery for bee venom peptide: development of a coated calcium alginate gel beads-entrapped liposome. J. Control. Release 93, 293–300 (2003).
van Winden, E. C. Freezy-drying of liposomes: theory and practice. Meth. Enzymol. 367, 99–110 (2003).
Koshkina, N. V., Golunski, E., Roberts, L. E., Gilbert, B. E. & Knight, V. Cyclosporin A aerosol improves the anticancer effect of paclitaxel aerosol in mice. J. Aerosol Med. 17, 7–14 (2004).
Lo, Y. L., Tsai, J. C. & Kuo, J. H. Liposomes and disaccharides as carriers in spray-dried powder formulations of superoxide dismutase. J. Control. Release 94, 259–272 (2004).
Vyas, S. P., Kannan, M. E., Jain, S., Mishra, V. & Singh, P. Design of liposomal aerosols for improved delivery of rifampicin to alveolar macrophages. Int. J. Pharm. 269, 37–49 (2004).
Konduri, K. S. et al. Efficacy of liposomal budesonide in experimental asthma. J. Allergy Clin. Immunol. 111, 321–327 (2003).
Gilbert, B. E., Seryshev, A., Knight, V. & Brayton, C. 9-nitrocamptothecin liposome aerosol: lack of subacute toxicity in dogs. Inhal. Toxicol. 14, 185–197 (2002).
Koshkina, N. V. et al. 9-Nitrocamptothecin liposome aerosol treatment of melanoma and osteosarcoma lung metastases in mice. Clin. Cancer Res. 6, 2876–2880 (2000).
Desai, T. R., Hancock, R. E. & Finlay, W. H. A facile method of delivery of liposomes by nebulization. J. Control. Release 84, 69–78 (2002). An interesting paper on liposome nebulization.
Cevc, G. Lipid vesicles and other colloids as drug carriers on the skin. Adv. Drug Deliv. Rev. 56, 675–711 (2004). An important review on transdermal delivery of drug carriers including liposomes.
Cevc, G. & Blume, G. New, highly efficient formulation of diclofenac for the topical, transdermal administration in ultradeformable drug carriers, Transfersomes. Biochim. Biophys. Acta 1514, 191–205 (2001). A key paper on transferosomes.
Honeywell-Nguyen, P. L., Frederik, P. M., Bomans, P. H., Junginger, H. E. & Bouwstra, J. A. Transdermal delivery of pergolide from surfactant-based elastic and rigid vesicles: characterization and in vitro transport studies. Pharm. Res. 19, 991–997 (2002).
Vutla, N. B., Betageri, G. V. & Banga, A. K. Transdermal iontophoretic delivery of enkephalin formulated in liposomes. J. Pharm. Sci. 85, 5–8 (1996).
Oussoren, C. & Storm, G. Liposomes to target the lymphatics by subcutaneous administration. Adv. Drug Deliv. Rev. 50, 143–156 (2001). Provides a good review of the lymphatic delivery of liposomes.
Phillips, W. T., Klipper, R. & Goins, B. Novel method of greatly enhanced delivery of liposomes to lymph nodes. J. Pharmacol. Exp. Ther. 295, 309–313 (2000).
Kim, C. K. & Ham, J. H. Lymphatic delivery and pharmacokinetics of methotrexate to rats. J. Microencapsul. 12, 437–446 (1995).
Fujimoto, Y., Okuhata, Y., Tyngi, S., Namba, Y. & Oku, N. Magnetic resonance lymphography of profundus lymph nodes with liposomal gadolinium-diethylenetriamine pentaacetic acid. Biol. Pharm. Bull. 23, 97–100 (2000).
Goldberg, S. N. et al. Percutaneous tumor ablation: increased necrosis with combined radio-frequency ablation and intravenous liposomal doxorubicin in a rat breast tumor model. Radiology. 222, 797–804 (2002).
Gregoriadis, G. in Liposomes in Drug Delivery (eds Gregoriadis, G., Florence, A. T. & Patel, H. M.) 77 (Harwood Academic, Switzerland, 1993).
Friede, M. in Liposomes as Tools in Basic Research and Industry (eds Philippot, J. R. & Schuber, F.) 189 (CRC Press, Boca Raton, 1995). References 138 and 139 provide extensive information regarding the use of liposomes as immunological adjuvants.
Guan, H. H. et al. Liposomal formulations of synthetic MUC1 peptides: effects of encapsulation versus surface display of peptides on immune responses. Bioconjug. Chem. 9, 451–458 (1998).
Griffiths, G. D., Phillips, G. J. & Bailey, S. C. Comparison of the quality of protection elicited by toxoid and peptide liposomal vaccine formulations against ricin as assessed by markers of inflammation. Vaccine. 17, 2562–2568 (1999).
Chikh, G. G., Kong, S., Bally, M. B., Meunier, J. C. & Schutze-Redelmeier, M. P. Efficient delivery of Antennapedia homeodomain fused to CTL epitope with liposomes into dendritic cells results in the activation of CD8+ T cells. J. Immunol. 167, 6462–6470 (2001).
Masuda, K., Horie, K., Suzuki, R., Yoshikawa, T. & Hirano, K. Oral delivery of antigens in liposomes with some lipid compositions modulates oral tolerance to the antigens. Microbiol. Immunol. 46, 55–58 (2002).
Rao, M. & Alving, C. R. Delivery of lipids and liposomal proteins to the cytoplasm and Golgi of antigen-presenting cells. Adv. Drug Deliv. Rev. 41, 171–188 (2000).
Chikh, G. & Schutze-Redelmeier, M. P. Liposomal delivery of CTL epitopes to dendritic cells. Biosci. Rep. 22, 339–353 (2002).
Copland, M. J. et al. Liposomal delivery of antigens to human dendritic cells. Vaccine 21, 883–890 (2003).
Ludewig, B. et al. In vivo antigen loading and activation of dendritic cells via a Liposomal peptide vaccine mediates protective antiviral and anti-tumour immunity. Vaccine 19, 23–32 (2000).
Chikh, G. & Schutze-Redelmeier, M. P. Liposomal delivery of CTL epitopes to dendritic cells. Biosci. Rep. 22, 339–353 (2002).
Chikh, G. G., Kong, S., Bally, M. B., Meunier, J. C. & Schutze-Redelmeier, M. P. Efficient delivery of Antennapedia homeodomain fused to CTL epitope with liposomes into dendritic cells results in the activation of CD8+ T cells. J. Immunol. 167, 6462–6470 (2001).
Copland, M. J. et al. Liposomal delivery of antigen to human dendritic cells. Vaccine 21, 883–890 (2003).
Torchilin, V. P. Liposomes as delivery agents for medical imaging. Mol. Med. Today. 2, 242–249 (1996).
Tilcock, C. in Liposomes as Tools in Basic Research and Industry (eds Philippot, J. R. & Schuber, F.) 225–240 (CRC, Boca Raton, 1995).
Torchilin, V. P. Surface-modified liposomes in γ and MR-imaging. Adv. Drug Deliv. Rev. 24, 301–313 (1997).
Torchilin, V. P. Polymeric contrast agents for medical imaging. Current. Pharm. Biotech. 1, 183–215 (2000).
Weissig, V., Babich, J. & Torchilin, V. P. Long-circulating gadolinium-loaded liposomes: potential use for magnetic resonance imaging of the blood pool. Coll. Surf. B: Biointerfaces. 18, 293–299 (2000).
Lokling, K. E., Fossheim, S. L., Klaveness, J. & Skurtveit, R. Biodistribution of pH-responsive liposomes for MRI and a novel approach to improve the pH-responsiveness. J. Control. Release 98, 87–95 (2004).
Vigilanti, B. L. et al. In vivo monitoring of tissue pharmacokinetics of liposome/drug using MRI: illustration of targeted delivery. Magn. Res. Med. 51, 1153–1162 (2004).
Bao, A. et al. A novel liposome radiolabeling method using 99mTc-'SNS/S' complexes: in vitro and in vivo evaluation. J. Pharm. Sci. 92, 1893–1904 (2003).
Bao, A., Goins, B., Klipper, R., Negrete, G. & Phillips, W. T. 186Re-liposome labeling using 186Re-SNS/S complexes: in vitro stability, imaging, and biodistribution in rats. J. Nucl. Med. 44, 1992–1994 (2003).
Sachse, A., Leike, J. U., Robling, G. L., Wagner, S. E. & Krause, W. Preparation and evaluation of lyophilized iopromide-carrying liposomes for liver tumor detection. Invest. Radiol. 28, 838–844 (1993).
Sachse, A. et al. Biodistribution and computed tomography blood-pool imaging properties of polyethylene glycol-coated Iopromide-carrying liposomes. Invest. Radiol. 32, 44–50 (1997).
Dagar, S., Rubinstein, I. & Onyuksel, H. Liposomes in ultrasound and gamma-scintigraphic imaging. Meth. Enzymol. 373, 198–214 (2003).
Kaneda, Y. Virosomes: evolution of the liposome as a targeted drug delivery system. Adv. Drug Deliv. Rev. 43, 197–205 (2000). Good review on virosomes.
Sarkar, D. P., Ramani, K. & Tyagi, S. K. Targeted gene delivery by virosomes. Methods Mol. Biol. 199, 163–173 (2002).
Cusi, M. G. et al. Efficient delivery of DNA to dendritic cells mediated by influenza virosomes. Vaccine 22, 735–739 (2004).
Bungener, L., Huckriede, A., Wilschut, J. & Daemen, T. Delivery of protein antigens to the immune system by fusion-active virosomes: a comparison with liposomes and ISCOMs. Biosci. Rep. 22, 323–338 (2002).
Bungener, L. et al. Virosome-mediated delivery of protein antigens to dendritic cells. Vaccine 20, 2287–2295 (2002).
Huckriede, A., Bungener, L., Daemen, T. & Wilschut, J. Influenza virosomes in vaccine. development. Meth. Enzymol. 373, 74–91 (2003).
Herzog, C., Metcalfe, I. C. & Schaad, U. B. Virosome influenza vaccine in children. Vaccine 20 (Suppl. 5), B24–B28 (2002).
Usonis, V. et al. Antibody titres after primary and booster vaccination of infants and young children with a virosomal hepatitis A vaccine (Epaxal). Vaccine 21, 4588–4592 (2003).
Ambrosch, F., Finkel, B., Herzog, C., Koren, A. & Kollaritsch, H. Rapid antibody response after vaccination with a virosomal hepatitis a Vaccine. Infection. 32, 149–152 (2004).
Ruf, B. R., Colberg, K., Frick, M. & Preusche, A. Open, randomized study to compare the immunogenicity and reactogenicity of an influenza split vaccine with an MF59-adjuvanted subunit vaccine and a virosome-based subunit vaccine in elderly. Infection. 32, 191–198 (2004).
Gluck, R., Moser, C., Metcalfe, I. C. Influenza virosomes as an efficient system for adjuvanted vaccine delivery. Expert Opin. Biol. Ther. 4, 1139–1145 (2004).
Moser, C., Metcalfe, I. C. & Viret, J. F. Virosomal adjuvanted antigen delivery systems. Expert Rev Vaccines. 2, 189–196 (2003).
Nobuto, H. et al. Evaluation of systemic chemotherapy with magnetic liposomal doxorubicin and a dipole external electromagnet. Int. J. Cancer 109, 627–635 (2004).
Kubo, T. et al. Targeted systemic chemotherapy using magnetic liposomes with incorporated adriamycin for osteosarcoma in hamsters. Int. J. Oncol. 18, 121–125 (2001).
Babincova, M. et al. Site-specific in vivo targeting of magnetoliposomes using externally applied magnetic field. Z. Naturforsch [C]. 55, 278–281 (2000).
Khaw, B. A. et al. Monoclonal antibody to cardiac myosin: imaging of experimental myocardial infarction. Hybridoma. 3, 11–23 (1984).
Khaw, B. A., Torchilin, V. P., Vural, I. & Narula, J. Plug and seal: prevention of hypoxic cardiocyte death by sealing membrane lesions with antimyosin-liposomes. Nature Med. 1, 1195–1198 (1995). Important paper on the use of cytoskeleton-specific immunoliposomes.
Khudairi, T. & Khaw, B. A. Preservation of ischemic myocardial function and integrity with targeted cytoskeleton-specific immunoliposomes. J. Am. Coll. Cardiol. 43, 1683–1689 (2004).
Asahi, M. et al. Antiactin-targeted immunoliposomes ameliorate tissue plasminogen activator-induced hemorrhage after focal embolic stroke. J. Cerebral Blood Flow Metab. 23, 895–899 (2003).
Khaw, B. A., daSilva, J., Vural, I., Narula, J. & Torchilin, V. P. Intracytoplasmic gene delivery for in vitro transfection with cytoskeleton-specific immunoliposomes. J. Control. Release 75, 199–210 (2001).
Awasthi, V. D., Garcia, D., Klipper, R., Goins, B. A. & Phillips, W. T. Neutral and anionic liposome-encapsulated hemoglobin: effect of postinserted poly(ethylene glycol)-distearoylphosphatidylethanolamine on distribution and circulation kinetics. J. Pharmacol. Exp. Ther. 309, 241–248 (2004).
Sakai, H., Tomiyama, K. I., Sou, K., Takeoka, S. & Tsuchida, E. Poly(ethylene glycol)-conjugation and deoxygenation enable long-term preservation of hemoglobin-vesicles as oxygen carriers in a liquid state. Bioconjug. Chem. 11, 425–432 (2000).
Phillips, W. T. et al. Polyethylene glycol-modified liposome-encapsulated hemoglobin: a long circulating red cell substitute. J. Pharmacol. Exp. Ther. 288, 665–670 (1999). Nice paper on liposomal haemoglobin.
Takeoka, S., Teramura, Y., Atoji, T. & Tsuchida, E. Effect of Hb-encapsulation with vesicles on H2O2 reaction and lipid peroxidation. Bioconjug. Chem. 13, 1302–1308 (2002).
Sakai, H. et al. Microvascular responses to hemodilution with Hb vesicles as red blood cell substitutes: influence of O2 affinity. Am. J. Physiol. 276, H553–H562 (1999).
Sakai, H. et al. Hemoglobin-vesicles suspended in recombinant human serum albumin for resuscitation from hemorrhagic shock in anesthetized rats. Crit. Care Med. 32, 539–545 (2004).
Shibuya-Fujiwara, N., Hirayama, F., Ogata, Y., Ikeda, H. & Ikebuchi, K. Phagocytosis in vitro of polyethylene glycol-modified liposome-encapsulated hemoglobin by human peripheral blood monocytes plus macrophages through scavenger receptors. Life Sci. 70, 291–300 (2001).
Szebeni, J. & Alving, C. R. Complement-mediated acute effects of liposome-encapsulated hemoglobin. Artif. Cells Blood Substit. Immobil. Biotechnol. 27, 23–41 (1999). Important paper on complement activation with PEG-liposomes.
Han, Y. Y. et al. Liposomal atp or NAD+ protects human endothelial cells from energy failure in a cell culture model of sepsis. Res. Commun. Mol. Pathol. Pharmacol. 110, 107–116 (2001).
Laham, A. et al. Liposomally entrapped adenosine triphosphate. Improved efficiency against experimental brain ischaemia in the rat. J. Chromatogr. 440, 455–458 (1988).
Konno, H., Matin, A. F., Maruo, Y., Nakamura, S. & Baba, S. Liposomal ATP protects the liver from injury during shock. Eur. Surg. Res. 28, 140–145 (1996).
Neveux, N., De Bandt, J. P., Chaumeil, J. C. & Cynober, L. Hepatic preservation, liposomally entrapped adenosine triphosphate and nitric oxide production: a study of energy state and protein metabolism in the cold-stored rat liver. Scand. J. Gastroenterol. 37, 1057–1063 (2002).
Niibori, K., Wroblewski, K. P., Yokoyama, H., Crestanello, J. A. & Whitman, G. J. Bioenergetic effect of liposomal coenzyme Q10 on myocardial ischemia reperfusion injury. Biofactors 9, 307–313 (1999).
Xu, G. X. et al. Adenosine triphosphate liposomes: encapsulation and distribution studies. Pharm. Res. 7, 553–557 (1990).
Verma, D. D., Levchenko, T. S., Bernstein, E. & Torchilin, V. P. ATP-Loaded liposomes effectively protect mechanical functions of the myocardium from global ischemia in an isolated rat heart model. Transactions of the 31th Annual Meeting of the Controlled Release Society, Controlled Release Society, Abs 572 (2004).
Liang, W., Levchenko, T., Khaw, B.-A. & Torchilin, V. P. ATP-containing immunoliposomes specific for cardiac myosin. Curr. Drug Deliv. 1, 1–7 (2004). The first example of ATP-containing immunoliposomes specific for hypoxic cells.
Derycke, A. S. & de Witte, P. A. Liposomes for photodynamic therapy. Adv. Drug Deliv. Rev. 56, 17–30 (2004). Good review on the use of liposomes for photo-dynamic therapy.
Takeuchi, Y. et al. Intracellular target for photosensitization in cancer antiangiogenic photodynamic therapy mediated by polycation liposome. J. Control. Release 97, 231–240 (2004).
Ichikawa, K. et al. Antiangiogenic photodynamic therapy (PDT) using Visudyne causes effective suppression of tumor growth. Cancer Lett. 205, 39–48 (2004).
Igarashi, A. et al. Liposomal photofrin enhances therapeutic efficacy of photodynamic therapy against the human gastric cancer. Toxicol. Lett. 145, 133–141 (2003).
Bourre, L., Thibaut, S., Fimiani, M., Ferrand, Y., Simonneaux, G. & Patrice, T. In vivo photosensitizing efficiency of a diphenylchlorin sensitizer: interest of a DMPC liposome formulation. Pharmacol. Res. 47, 253–261 (2003).
Jezek, P. et al. Experimental photodynamic therapy with MESO-tetrakisphenylporphyrin (TPP) in liposomes leads to disintegration of human amelanotic melanoma implanted to nude mice. Int. J. Cancer 103, 693–702 (2003).
Frankel, A. D. & Pabo, C. O. Cellular uptake of the tat protein from human immunodeficiency virus. Cell. 55, 1189–1193 (1988).
Wadia, J. S., Stan, R. V. & Dowdy, S. F. Transducable TAT-HA fusogenic peptide enhances escape of TAT fusion proteins after lipid raft macropinocytosis. Nature Med. 10, 310–315 (2004). An important paper regarding the mechanism of transduction.
Rothbard, J. B., Jessop, T. C., Lewis, R. S., Murray, B. A. & Wender, P. A. Role of membrane potential and hydrogen bonding in the mechanism of translocation of guanidinium-rich peptides into cells. J. Am. Chem. Soc. 126, 9506–9507 (2004). An important paper regarding the mechanism of transduction.
Torchilin, V. P., Rammohan, R., Weissig, V. & Levchenko, T. TAT peptide on the surface of liposomes affords their efficient intracellular delivery even at low temperature and in the presence of metabolic inhibitors. Proc. Natl Acad. Sci. USA 98, 8786–8791 (2001).
Tseng, Y. L., Liu, J. J. & Hong, R. L. Translocation of liposomes into cancer cells by cell-penetrating peptides penetratin and TAT: a kinetic and efficacy study. Mol. Pharmacol. 62, 864–872 (2002).
Gorodetsky, R. et al. Liposome transduction into cells enhanced by haptotactic peptides (Haptides) homologous to fibrinogen C-termini. J. Control. Release 95, 477–488 (2004).
Torchilin, V. P. et al. Cell transfection in vitro and in vivo with nontoxic TAT peptide–liposome–DNA complexes. Proc. Natl Acad. Sci. USA 100, 1972–1977 (2003).
Crommelin, D. J. & Storm, G. Liposomes: from the bench to the bed. J. Liposome Res. 13, 33–36 (2003).
Gregoriadis, G. (ed.). Liposome Technology vol. 1–3 (CRC, Boca Raton, 1984).
Gregoriadis, G. (ed.). Liposomes as Drug Carriers (John Wiley & Sons, Chichester, 1988).
Lasic, D. D. Liposomes: From Physics to Applications (Elsevier, Amsterdam, 1993).
Martin, F. & Lasic, D. (eds.). Stealth Liposomes (CRC, Boca Raton, 1995).
Woodle, M.C. & Storm, G. (eds.). Long Circulating Liposomes: Old Drugs, New Therapeutics (Springer, Berlin, 1997).
Lasic, D. D. & Papahadjopoulos, D. (eds.). Medical Applications of Liposomes (Elsevier, Amsterdam, 1998).