Recent advances to model anisotropic space–time data
Tóm tắt
Từ khóa
Tài liệu tham khảo
Abramowitz M, Stegun IA (1965) Handbook of mathematical functions. Dover, New York
Bevilacqua M, Gaetan C, Porcu E, Mateu J (2006) Composite likelihood methods for space–time data. In: International workshop on spatio-temporal modelling METMA3
Bochner S (1933) Monotone funktionen, Stiltjes integrale und harmonische analyse. Mathematische Annalen 108:378–410
Christakos G (2000) Modern spatiotemporal geostatistics. Oxford University Press, Oxford
Christakos G (2002) On a deductive logic-based spatiotemporal random field theory. Prob Theory Math Stat 66:54–65
Cressie NAC, Huang C (1999) Classes of nonseparable, spatiotemporal stationary covariance functions. J Am Stat Assoc 94:1330–1340
Curriero FC, Lele S (1999) A composite likelihood approach to semivariogram estimation. J Agric Biol Environ Stat 4(1):9–28
De Cesare L, Myers DE, Posa D (2000) Product-sum covariance for space–time modeling: an environmental application. Environmetrics 12:11–23
Dimitrakopoulos R, Lou X (1994) Spatiotemporal modeling: covariances and ordinary kriging system. In: Dimitrakopoulos R (eds). Geostatistics for the next century. Kluwer, Dordrecht, pp 88–93
Feller W (1966) An Introduction to probability theory and its applications, vol II. Wiley, New York
Fernández-Casal R, González-Manteiga W, Febrero-Bande M (2003) Flexible spatio-temporal stationary variogram models. Stat Comput 13:127–136
Fuentes M, Smith RL (2001) A new class of nonstationary spatial models (unpublished preprint)
Gneiting T, Genton MG, Guttorp P (2005) Geostatistical space–time models, stationarity, separability, and full symmetry. In: University of Washington Technical Report no. 475
Gneiting T, Schlather M (2004) Stochastic models that separate fractal dimension and the Hurst effect. SIAM Rev 46:269–282
Gregori P, Porcu E, Mateu J, Sasvári Z (2007) On potentially negative space time covariances obtained as sum of products of marginal ones. Ann Inst Stat Math. doi:10.1007/s10463-007-0122-8
Guttorp P, Sampson PD, Newman K (1992) Non-parametric estimation of spatial covariance with application to monitoring network evaluation. Statistics in the environmental and Earth sciences. Edward Arnold, London
Janauer GA (2001) Is what has been measured of any direct relevance to the success of the macrophyte in its particular environment? Ravera O (ed) Scientific and legal aspects of biological monitoring in freshwater. J Limnol 60(Suppl 1):33–38
Jones R, Zhang Y (1997) Models for continuous stationary space–time processes. In: Gregoire TG, Brillinger DR, Diggle PJ, Russek-Cohen E, Warren WG, Wolfinger RD (eds). Modelling longitudinal and spatially correlated data. Lecture Notes in Statistics, vol 122. Springer, New York, pp 289–298
Kolovos A, Christakos G, Hristopulos DT, Serre ML (2004) Methods for generating non-separable spatiotemporal covariance models with potential environmental applications. Adv Water Resources 27:815–830
Levinson SJ, Beall JM, Powers EJ, Bengtson RD (1984) Space–time statistics of the turbulence in a Tokamak edge plasma. Nucl Fusion 24:527–540
Lu N, Zimmerman DL (2005) Testing for directional symmetry in spatial dependence using the periodogram. J Stat Plan Inference 129(1–2):369–385
Ma C (2003) Families of spatio-temporal stationary covariance models. J Stat Plan Inference 116:489–501
Ma C (2005b) Linear combinations of spatio-temporal covariance functions and variograms. IEEE Trans Signal Process 53(3):857–864
Matheron G (1962) Traité de Géostatistique Apliquée, Tome I, Mémoires du Bureau de Recherches Géologiques et Miniès, no. 14. Editions Technip, Paris
Matheron G (1963a) Traité de Géostatistique Apliquée, Tome II. Le Krigéage, Mémoires du Bureau de Recherches Géologiques et Miniès, no. 14. Editions Bureau de Recherches Géologiques et Miniès, Paris
Matheron G (1963b) Principles of geostatistics. Econ Geogr 58:1246–1266
Matheron G (1965) Les variables régionalisées et leur estimation: une application de la théorie des fonctions aléatoires aux sciences de la nature. Masson, Paris
Mitchell MW, Genton MG, Gumpertz ML (2005) Testing for separability of space–time covariances. Environmetrics 16(8):819–831
Porcu E, Mateu J (2007) Covariance functions which are stationary or nonstationary in space and stationary in time. Statistica Neerlandica (to appear)
Porcu E, Gregori P, Mateu J (2006) Nonseparable stationary anisotropic space–time covariance functions. Stochast Environ Res Risk Assess 21(2):113–122
Porcu E, Gregori P, Mateu J (2007) La descente et la montée étendues: the spatially d-anisotropic and the spatio-temporal case. Stochast Environ Res Risk Assess. doi:10.1007/s00477-006-0079-9
Rouhani S, Hall TJ (1989) Space–time kriging of groundwater data, geostatistics, vol 2. Kluwer, Dordrecht, pp 639–651
Sampson PD, Guttorp P (1992) Nonparametric estimation of nonstationary spatial covariance structures. J Am Stat Assoc 87:108–119
Scaccia L, Martin RJ (2005) Testing axial symmetry and separability of lattice processes. J Stat Plan Inference 131(1):19–39
Shapiro A, Botha JD (1991) Variogram fitting with a conditional class of conditionally nonnegative definite functions. Comput Stat Data Anal 11:87–96
Shkarofsky IP (1968) Generalized turbulence space–correlation and wave–number spectrum–function pairs. Can J Phys 46:2133–2140
Xu Z-W, Wu J, Huo W-P, Wu Z-S (2003a) Temporal skewness of electromagnetic pulsed waves propagating through random media with embedded irregularity slab. Chin Phys Lett 20:370–373
Xu Z-W, Wu J, Huo W-P, Wu Z-S (2003b) Statistical temporal behaviour of pulse wave propagation through continuous random media. Waves Random Media 13:59–73