Recent advances on cadmium free quantum dots-liquid crystal nanocomposites
Tài liệu tham khảo
deGennes, 1974
Chandrasekhar, 1977
Singh, 1996, Phys. Rep., 277, 283, 10.1016/S0370-1573(96)00016-6
Kumar, 2001
Yeh, 1999
Yang, 2006
Coles, 2010, Liquid-crystal lasers, Nat. Photon, 4, 676, 10.1038/nphoton.2010.184
Lagerwall, 2012, A new era for liquid crystal research: applications of liquid crystal in soft matter nano-, bio- and microtechnology, Current Appl. Phys., 12, 1387, 10.1016/j.cap.2012.03.019
Beeckman, 2011, Liquid crystal photonic applications, Opt. Eng., 50, 10.1117/1.3565046
Shibaev, 2015, Rebirth of Liquid Crystals for Sensoric Applications: environmental and Gas Sensors, Adv. Cond. Matter Phys., 2015, 1, 10.1155/2015/729186
Gajanan, 2018, Applications of nanomaterials, Mater. Today: Proc., 5, 1093
Holzinger, 2014, Nanomaterials for biosensing applications: a review, Front. Chem, 2, 1, 10.3389/fchem.2014.00063
Yang, 2008, Low Dimensional Nanomaterials for Spintronics, 3
Xu, 2014, Nanomaterials: electrical, Magnetic, and Photonic Applications, JOM, 66, 654, 10.1007/s11837-014-0923-1
Shiraishi, 2002, Frequency modulation response of a liquid-crystal electro-optic device doped with nanoparticles, Appl. Phys. Lett., 81, 2845, 10.1063/1.1511282
Kobayashi, 2006, Dielectric spectroscopy of metal nanoparticle doped liquid crystal displays exhibiting frequency modulation response, J. Disp. Technol., 2, 121, 10.1109/JDT.2006.872306
Lee, 2010, Quantification of ion trapping effect of carbon nanomaterials in liquid crystal, Mater. Lett, 64, 466, 10.1016/j.matlet.2009.11.049
Hirst, 2010, Quantum dot self-assembly in liquid crystal media, Proc. SPIE, 7618, 76180F, 10.1117/12.848195
Mirzaei, 2012, Quantum dots as liquid crystal dopants, J. Mater. Chem, 22, 22350, 10.1039/c2jm33274d
Singh, 2016, Emissivity and electrooptical properties of semiconducting quantum dots/rods and liquid crystal composites: a review, Rep. Prog. Phys., 79, 056502, 10.1088/0034-4885/79/5/056502
Blach, 2010, BaTiO3 ferroelectric nanoparticles dispersed in 5CB nematic liquid crystal: synthesis and electro-optical characterization, J. Appl. Phys., 107, 10.1063/1.3369544
Qi, 2008, Impact of nanoscale particles and carbon nanotubes on current and future generations of liquid crystal displays, J. Mater. Chem., 18, 3288, 10.1039/b718920f
Law, 2004, Semiconductor nanowires and nanotubes, Annu. Rev. Mater. Res., 34, 83, 10.1146/annurev.matsci.34.040203.112300
Lagerwall, 2008, Carbon nanotubes in liquid crystals, Mater. Chem, 18, 2890, 10.1039/b802707b
Eren San, 2008, Carbon Nanoparticles in Nematic Liquid Crystals, Chin. Phys. Lett, 25, 212, 10.1088/0256-307X/25/1/058
Singh, 2016, Polymer Dispersed Liquid Crystals
Malik, 2010, Dichroic dye-dependent studies in guest–host polymer-dispersed liquid crystal films, Physica B: Condens. Matter, 405, 161, 10.1016/j.physb.2009.08.049
Rodarte, 2014, Tuning quantum-dot organization in liquid crystals for robust photonic applications, ChemPhysChem, 15, 1413, 10.1002/cphc.201301007
Rodarte, 2015, Quantum dot/liquid crystal nanocomposites in photonic devices, Photonics, 2, 855, 10.3390/photonics2030855
Hardman, 2006, A toxicological review of quantum dots: toxicity depends on physicochemical and environmental factors, Environ. Health Perspect, 114, 165, 10.1289/ehp.8284
Hoshino, 2011, Toxicity of nanocrystal quantum dots: the relevance of surface modifications, Arch. Toxicol, 85, 707, 10.1007/s00204-011-0695-0
Kannan, 2008, Toxicological Impacts of Quantum Dots
Restriction of the use of certain hazardous substances in electrical and electronic equipment, EU Directive 2002/95/EC, (2003).
Alivisatos, 1996, Perspectives on the physical chemistry of semiconductor nanocrystals, J. Phys. Chem., 100, 13226, 10.1021/jp9535506
Tian, 2008, Quantization rules for low dimensional quantum dots, Chin. Phys. B, 17, 4378, 10.1088/1674-1056/17/12/008
Bawendi, 1990, The quantum mechanics of larger semiconductor clusters (“Quantum Dots”), Annu. Rev. Phys. Chem, 41, 477, 10.1146/annurev.pc.41.100190.002401
Uri, 1999, Identification of atomic-like electronic states in indium arsenide nanocrystal quantum dots, Nature, 400, 542, 10.1038/22979
Ekimov, 1985, Quantum size effect in semiconductor microcrystals, Solid State Commun., 56, 921, 10.1016/S0038-1098(85)80025-9
Brus, 1984, Electron–electron and electron‐hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state, J. Chem. Phys., 80, 4403, 10.1063/1.447218
Brus, 1986, Electronic wave functions in semiconductor clusters: experiment and theory, J. Phys. Chem., 90, 2555, 10.1021/j100403a003
Brus, 1983, A simple-model for the ionization-potential, electron-affinity, and aqueous redox potentials of small semiconductor crystallites, J. Chem. Phys., 79, 5566, 10.1063/1.445676
Kippeny, 2002, Semiconductor nanocrystals: a powerful visual aid for introducing the particle in a box, J. Chem. Educ., 79, 1094, 10.1021/ed079p1094
van Dijken, 2001, The influence of particle size on the luminescence quantum efficiency of nanocrystalline ZnO particles, J. Lumin., 92, 323, 10.1016/S0022-2313(00)00262-3
Michalet, 2001, Properties of fluorescent semiconductor nanocrystals and their application to biological labeling, Single Mol., 2, 261, 10.1002/1438-5171(200112)2:4<261::AID-SIMO261>3.0.CO;2-P
Chen, 2011, Tunable coupling between exciton and surface plasmon in liquid crystal devices consisting of Au nanoparticles and CdSe quantum dots, Appl. Phys. Lett., 98, 10.1063/1.3606539
Lukishova, 2012, "Resonance in quantum dot fluorescence in a photonic bandgap liquid crystal host, Opt. Lett., 37, 1259, 10.1364/OL.37.001259
Gardner, 2011, Towards reconfigurable optical metamaterials: colloidal nanoparticle self-assembly and self-alignment in liquid crystals, Mol. Cryst. Liq. Cryst., 545, 1227, 10.1080/15421406.2011.571966
Chen, 2010, Color-tunable light-emitting device based on the mixture of cdse nanorods and dots embedded in liquid-crystal cells, J. Phys. Chem. C, 114, 7995, 10.1021/jp100295a
Wu, 2007, CdS nanorods imbedded in liquid crystal cells for smart optoelectronic devices, Nano Lett., 7, 1908, 10.1021/nl070541n
Lin, 2008, Liquid crystal cells with built-in CdSe nanotubes for chromogenic smart emission devices, Opt. Express, 16, 671, 10.1364/OE.16.000671
Danilov, 2008, Fluorescence of semiconductor nanorods in liquid-crystal composites, Opt. Spectrosc., 105, 306, 10.1134/S0030400X08080213
Singh, 2017, Tunable polarised fluorescence of quantum dot doped nematic liquid crystals, Liq. Cryst, 44, 444, 10.1080/02678292.2016.1217357
Singh, 2018, Electrically tunable photoluminescence of semiconducting quantum dots doped nematic liquid crystal nanocomposites, AIP Conf. Proc, 1953
Singh, 2014, Electro-optical and dielectric properties of CdSe quantum dots and 6CHBT liquid crystals composites, AIP Adv., 4, 10.1063/1.4901908
Shukla, 2014, Effect of CdSe quantum dots doping on the switching time, localised electric field and dielectric parameters of ferroelectric liquid crystal, Liq. Cryst., 41, 1889, 10.1080/02678292.2014.959571
Kumar, 2011, CdSe quantum dots in a columnar matrix, Chem. Commun., 47, 12182, 10.1039/c1cc15633k
Kumar, 2010, Sign reversal of dielectric anisotropy of ferroelectric liquid crystals doped with cadmium telluride quantum dots, Appl. Phys. Lett., 97, 10.1063/1.3495780
Kumar, 2016, Optical and electrical control of circularly polarised fluorescence in CdSe quantum dots dispersed polymer stabilised cholesteric liquid crystal shutter, Liq. Cryst, 43, 994, 10.1080/02678292.2016.1155771
Rodarte, 2012, Directed assembly and in situ manipulation of semiconductor quantum dots in liquid crystal matrices, Proc. SPIE, 8279, 82790H, 10.1117/12.906235
Rodarte, 2012, Spectral and polarization modulation of quantum dot emission in a one-dimensional liquid crystal photonic cavity, Phys. Rev. B, 85, 10.1103/PhysRevB.85.035430
Du, 2015, Combination of photoinduced alignment and self-assembly to realize polarized emission from ordered semiconductor nanorods, ACS Nano, 9, 11049, 10.1021/acsnano.5b04483
Schneider, 2017, Photoinduced micropattern alignment of semiconductor nanorods with polarized emission in a liquid crystal matrix, Nano. Lett., 17, 3133, 10.1021/acs.nanolett.7b00563
Dudka, 2019, Formulation of a composite system of liquid crystals and light‐emitting semiconductor quantum rods: from assemblies in solution to photoaligned films, Adv. Mater. Technol., 4, 10.1002/admt.201900695
Lee, 2013, CIS–ZnS quantum dots for self-aligned liquid crystal molecules with superior electro-optic properties, Nanoscale, 5, 193, 10.1039/C2NR32458J
Singh, 2018, CuInS2/ZnS QD-ferroelectric liquid crystal mixtures for faster electro-optical devices and their energy storage aspects, J. Appl. Phys., 123, 10.1063/1.5021474
Park, 2011, CuInS2/ZnS core/shell quantum dots by cation exchange and their blue-shifted photoluminescence, J. Mater. Chem., 21, 3745, 10.1039/c0jm03194a
Bøtter-Jensen, 2003
Chen, 2011
Bailey, 2001, Towards a general kinetic model for optically and thermally stimulated luminescence of quartz, Radiat. Meas., 33, 17, 10.1016/S1350-4487(00)00100-1
Dorenbos, 2005, Thermal quenching of Eu2+ 5d 4f luminescence in inorganic compounds, J. Phys. Condens. Matter., 17, 8103, 10.1088/0953-8984/17/50/027
Shibata, 1998, Negative thermal quenching curves in photoluminescence of solids, Jap. J. Appl. Phys, 37, 12, 10.1143/JJAP.37.550
Roy, 2018, InP/ZnS quantum-dot-dispersed nematic liquid crystal illustrating characteristic birefringence and enhanced electro-optical parameters, Appl. Phys. A, 124, 273, 10.1007/s00339-018-1678-2
Doke, 2020, Improvement in molecular alignment of ferroelectric liquid crystal by Co-ZnO/ZnO core/ shell quantum dots, Liq. Cryst, 47, 309, 10.1080/02678292.2019.1645898
Doke, 2019, Sustained multiferroicity in liquid crystal induced by core/shell quantum dots, J. Mol. Liq., 288, 10.1016/j.molliq.2019.04.113
Joshi, 2014, Tuning the photoluminescence of ferroelectric liquid crystal by controlling the size of dopant ZnO quantum dots, Mat. Lett., 114, 156, 10.1016/j.matlet.2013.09.110
Singh, 2016, Mn2+ doped ZnS quantum dots in ferroelectric liquid crystal matrix: analysis of new relaxation phenomenon, faster optical response, and concentration dependent quenching in photoluminescence, J. Appl. Phys., 119, 10.1063/1.4942663
Kumar, 2012, Enhancing the photoluminescence of ferroelectric liquid crystal by doping with ZnS quantum dots, Appl. Phys. Lett., 100, 10.1063/1.3698120
Vimal, 2016, Analysis of optical properties and mechanism of photoluminescence enhancement of a quantum dot – ferroelectric liquid crystal composite, Photonics Lett., 8, 23
Shukla, 2015, Electro-optic and dielectric properties of a ferroelectric liquid crystal doped with chemically and thermally stable emissive carbon dots, RSC Adv., 5, 34491, 10.1039/C5RA01257K
Gangwar, 2019, Probing the impact of carbon quantum dots on partially unwound helical mode in ferroelectric liquid crystals, J. Appl. Phys., 125, 10.1063/1.5082903
Urbanski, 2016, Chemically and thermally stable, emissive carbon dots as viable alternatives to semiconductor quantum dots for emissive nematic liquid crystal–nanoparticle mixtures with lower threshold voltage, Liq. Cryst., 43, 183, 10.1080/02678292.2015.1082651
Chen, 2018, Wavelength-tunable and highly stable perovskite-quantum dots-doped lasers with liquid crystal lasing cavities, ACS Appl. Mater. Interfaces, 10, 33307, 10.1021/acsami.8b08474