Recent advances on cadmium free quantum dots-liquid crystal nanocomposites

Applied Materials Today - Tập 21 - Trang 100840 - 2020
Supreet1, Gautam Singh2
1Department of Physics, Amity School of Applied Sciences, Amity University Haryana 122413, India
2Department of Applied Physics, Amity Institute of Applied Sciences, Amity University, Noida, Uttar Pradesh 201313, India

Tài liệu tham khảo

deGennes, 1974 Chandrasekhar, 1977 Singh, 1996, Phys. Rep., 277, 283, 10.1016/S0370-1573(96)00016-6 Kumar, 2001 Yeh, 1999 Yang, 2006 Coles, 2010, Liquid-crystal lasers, Nat. Photon, 4, 676, 10.1038/nphoton.2010.184 Lagerwall, 2012, A new era for liquid crystal research: applications of liquid crystal in soft matter nano-, bio- and microtechnology, Current Appl. Phys., 12, 1387, 10.1016/j.cap.2012.03.019 Beeckman, 2011, Liquid crystal photonic applications, Opt. Eng., 50, 10.1117/1.3565046 Shibaev, 2015, Rebirth of Liquid Crystals for Sensoric Applications: environmental and Gas Sensors, Adv. Cond. Matter Phys., 2015, 1, 10.1155/2015/729186 Gajanan, 2018, Applications of nanomaterials, Mater. Today: Proc., 5, 1093 Holzinger, 2014, Nanomaterials for biosensing applications: a review, Front. Chem, 2, 1, 10.3389/fchem.2014.00063 Yang, 2008, Low Dimensional Nanomaterials for Spintronics, 3 Xu, 2014, Nanomaterials: electrical, Magnetic, and Photonic Applications, JOM, 66, 654, 10.1007/s11837-014-0923-1 Shiraishi, 2002, Frequency modulation response of a liquid-crystal electro-optic device doped with nanoparticles, Appl. Phys. Lett., 81, 2845, 10.1063/1.1511282 Kobayashi, 2006, Dielectric spectroscopy of metal nanoparticle doped liquid crystal displays exhibiting frequency modulation response, J. Disp. Technol., 2, 121, 10.1109/JDT.2006.872306 Lee, 2010, Quantification of ion trapping effect of carbon nanomaterials in liquid crystal, Mater. Lett, 64, 466, 10.1016/j.matlet.2009.11.049 Hirst, 2010, Quantum dot self-assembly in liquid crystal media, Proc. SPIE, 7618, 76180F, 10.1117/12.848195 Mirzaei, 2012, Quantum dots as liquid crystal dopants, J. Mater. Chem, 22, 22350, 10.1039/c2jm33274d Singh, 2016, Emissivity and electrooptical properties of semiconducting quantum dots/rods and liquid crystal composites: a review, Rep. Prog. Phys., 79, 056502, 10.1088/0034-4885/79/5/056502 Blach, 2010, BaTiO3 ferroelectric nanoparticles dispersed in 5CB nematic liquid crystal: synthesis and electro-optical characterization, J. Appl. Phys., 107, 10.1063/1.3369544 Qi, 2008, Impact of nanoscale particles and carbon nanotubes on current and future generations of liquid crystal displays, J. Mater. Chem., 18, 3288, 10.1039/b718920f Law, 2004, Semiconductor nanowires and nanotubes, Annu. Rev. Mater. Res., 34, 83, 10.1146/annurev.matsci.34.040203.112300 Lagerwall, 2008, Carbon nanotubes in liquid crystals, Mater. Chem, 18, 2890, 10.1039/b802707b Eren San, 2008, Carbon Nanoparticles in Nematic Liquid Crystals, Chin. Phys. Lett, 25, 212, 10.1088/0256-307X/25/1/058 Singh, 2016, Polymer Dispersed Liquid Crystals Malik, 2010, Dichroic dye-dependent studies in guest–host polymer-dispersed liquid crystal films, Physica B: Condens. Matter, 405, 161, 10.1016/j.physb.2009.08.049 Rodarte, 2014, Tuning quantum-dot organization in liquid crystals for robust photonic applications, ChemPhysChem, 15, 1413, 10.1002/cphc.201301007 Rodarte, 2015, Quantum dot/liquid crystal nanocomposites in photonic devices, Photonics, 2, 855, 10.3390/photonics2030855 Hardman, 2006, A toxicological review of quantum dots: toxicity depends on physicochemical and environmental factors, Environ. Health Perspect, 114, 165, 10.1289/ehp.8284 Hoshino, 2011, Toxicity of nanocrystal quantum dots: the relevance of surface modifications, Arch. Toxicol, 85, 707, 10.1007/s00204-011-0695-0 Kannan, 2008, Toxicological Impacts of Quantum Dots Restriction of the use of certain hazardous substances in electrical and electronic equipment, EU Directive 2002/95/EC, (2003). Alivisatos, 1996, Perspectives on the physical chemistry of semiconductor nanocrystals, J. Phys. Chem., 100, 13226, 10.1021/jp9535506 Tian, 2008, Quantization rules for low dimensional quantum dots, Chin. Phys. B, 17, 4378, 10.1088/1674-1056/17/12/008 Bawendi, 1990, The quantum mechanics of larger semiconductor clusters (“Quantum Dots”), Annu. Rev. Phys. Chem, 41, 477, 10.1146/annurev.pc.41.100190.002401 Uri, 1999, Identification of atomic-like electronic states in indium arsenide nanocrystal quantum dots, Nature, 400, 542, 10.1038/22979 Ekimov, 1985, Quantum size effect in semiconductor microcrystals, Solid State Commun., 56, 921, 10.1016/S0038-1098(85)80025-9 Brus, 1984, Electron–electron and electron‐hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state, J. Chem. Phys., 80, 4403, 10.1063/1.447218 Brus, 1986, Electronic wave functions in semiconductor clusters: experiment and theory, J. Phys. Chem., 90, 2555, 10.1021/j100403a003 Brus, 1983, A simple-model for the ionization-potential, electron-affinity, and aqueous redox potentials of small semiconductor crystallites, J. Chem. Phys., 79, 5566, 10.1063/1.445676 Kippeny, 2002, Semiconductor nanocrystals: a powerful visual aid for introducing the particle in a box, J. Chem. Educ., 79, 1094, 10.1021/ed079p1094 van Dijken, 2001, The influence of particle size on the luminescence quantum efficiency of nanocrystalline ZnO particles, J. Lumin., 92, 323, 10.1016/S0022-2313(00)00262-3 Michalet, 2001, Properties of fluorescent semiconductor nanocrystals and their application to biological labeling, Single Mol., 2, 261, 10.1002/1438-5171(200112)2:4<261::AID-SIMO261>3.0.CO;2-P Chen, 2011, Tunable coupling between exciton and surface plasmon in liquid crystal devices consisting of Au nanoparticles and CdSe quantum dots, Appl. Phys. Lett., 98, 10.1063/1.3606539 Lukishova, 2012, "Resonance in quantum dot fluorescence in a photonic bandgap liquid crystal host, Opt. Lett., 37, 1259, 10.1364/OL.37.001259 Gardner, 2011, Towards reconfigurable optical metamaterials: colloidal nanoparticle self-assembly and self-alignment in liquid crystals, Mol. Cryst. Liq. Cryst., 545, 1227, 10.1080/15421406.2011.571966 Chen, 2010, Color-tunable light-emitting device based on the mixture of cdse nanorods and dots embedded in liquid-crystal cells, J. Phys. Chem. C, 114, 7995, 10.1021/jp100295a Wu, 2007, CdS nanorods imbedded in liquid crystal cells for smart optoelectronic devices, Nano Lett., 7, 1908, 10.1021/nl070541n Lin, 2008, Liquid crystal cells with built-in CdSe nanotubes for chromogenic smart emission devices, Opt. Express, 16, 671, 10.1364/OE.16.000671 Danilov, 2008, Fluorescence of semiconductor nanorods in liquid-crystal composites, Opt. Spectrosc., 105, 306, 10.1134/S0030400X08080213 Singh, 2017, Tunable polarised fluorescence of quantum dot doped nematic liquid crystals, Liq. Cryst, 44, 444, 10.1080/02678292.2016.1217357 Singh, 2018, Electrically tunable photoluminescence of semiconducting quantum dots doped nematic liquid crystal nanocomposites, AIP Conf. Proc, 1953 Singh, 2014, Electro-optical and dielectric properties of CdSe quantum dots and 6CHBT liquid crystals composites, AIP Adv., 4, 10.1063/1.4901908 Shukla, 2014, Effect of CdSe quantum dots doping on the switching time, localised electric field and dielectric parameters of ferroelectric liquid crystal, Liq. Cryst., 41, 1889, 10.1080/02678292.2014.959571 Kumar, 2011, CdSe quantum dots in a columnar matrix, Chem. Commun., 47, 12182, 10.1039/c1cc15633k Kumar, 2010, Sign reversal of dielectric anisotropy of ferroelectric liquid crystals doped with cadmium telluride quantum dots, Appl. Phys. Lett., 97, 10.1063/1.3495780 Kumar, 2016, Optical and electrical control of circularly polarised fluorescence in CdSe quantum dots dispersed polymer stabilised cholesteric liquid crystal shutter, Liq. Cryst, 43, 994, 10.1080/02678292.2016.1155771 Rodarte, 2012, Directed assembly and in situ manipulation of semiconductor quantum dots in liquid crystal matrices, Proc. SPIE, 8279, 82790H, 10.1117/12.906235 Rodarte, 2012, Spectral and polarization modulation of quantum dot emission in a one-dimensional liquid crystal photonic cavity, Phys. Rev. B, 85, 10.1103/PhysRevB.85.035430 Du, 2015, Combination of photoinduced alignment and self-assembly to realize polarized emission from ordered semiconductor nanorods, ACS Nano, 9, 11049, 10.1021/acsnano.5b04483 Schneider, 2017, Photoinduced micropattern alignment of semiconductor nanorods with polarized emission in a liquid crystal matrix, Nano. Lett., 17, 3133, 10.1021/acs.nanolett.7b00563 Dudka, 2019, Formulation of a composite system of liquid crystals and light‐emitting semiconductor quantum rods: from assemblies in solution to photoaligned films, Adv. Mater. Technol., 4, 10.1002/admt.201900695 Lee, 2013, CIS–ZnS quantum dots for self-aligned liquid crystal molecules with superior electro-optic properties, Nanoscale, 5, 193, 10.1039/C2NR32458J Singh, 2018, CuInS2/ZnS QD-ferroelectric liquid crystal mixtures for faster electro-optical devices and their energy storage aspects, J. Appl. Phys., 123, 10.1063/1.5021474 Park, 2011, CuInS2/ZnS core/shell quantum dots by cation exchange and their blue-shifted photoluminescence, J. Mater. Chem., 21, 3745, 10.1039/c0jm03194a Bøtter-Jensen, 2003 Chen, 2011 Bailey, 2001, Towards a general kinetic model for optically and thermally stimulated luminescence of quartz, Radiat. Meas., 33, 17, 10.1016/S1350-4487(00)00100-1 Dorenbos, 2005, Thermal quenching of Eu2+ 5d 4f luminescence in inorganic compounds, J. Phys. Condens. Matter., 17, 8103, 10.1088/0953-8984/17/50/027 Shibata, 1998, Negative thermal quenching curves in photoluminescence of solids, Jap. J. Appl. Phys, 37, 12, 10.1143/JJAP.37.550 Roy, 2018, InP/ZnS quantum-dot-dispersed nematic liquid crystal illustrating characteristic birefringence and enhanced electro-optical parameters, Appl. Phys. A, 124, 273, 10.1007/s00339-018-1678-2 Doke, 2020, Improvement in molecular alignment of ferroelectric liquid crystal by Co-ZnO/ZnO core/ shell quantum dots, Liq. Cryst, 47, 309, 10.1080/02678292.2019.1645898 Doke, 2019, Sustained multiferroicity in liquid crystal induced by core/shell quantum dots, J. Mol. Liq., 288, 10.1016/j.molliq.2019.04.113 Joshi, 2014, Tuning the photoluminescence of ferroelectric liquid crystal by controlling the size of dopant ZnO quantum dots, Mat. Lett., 114, 156, 10.1016/j.matlet.2013.09.110 Singh, 2016, Mn2+ doped ZnS quantum dots in ferroelectric liquid crystal matrix: analysis of new relaxation phenomenon, faster optical response, and concentration dependent quenching in photoluminescence, J. Appl. Phys., 119, 10.1063/1.4942663 Kumar, 2012, Enhancing the photoluminescence of ferroelectric liquid crystal by doping with ZnS quantum dots, Appl. Phys. Lett., 100, 10.1063/1.3698120 Vimal, 2016, Analysis of optical properties and mechanism of photoluminescence enhancement of a quantum dot – ferroelectric liquid crystal composite, Photonics Lett., 8, 23 Shukla, 2015, Electro-optic and dielectric properties of a ferroelectric liquid crystal doped with chemically and thermally stable emissive carbon dots, RSC Adv., 5, 34491, 10.1039/C5RA01257K Gangwar, 2019, Probing the impact of carbon quantum dots on partially unwound helical mode in ferroelectric liquid crystals, J. Appl. Phys., 125, 10.1063/1.5082903 Urbanski, 2016, Chemically and thermally stable, emissive carbon dots as viable alternatives to semiconductor quantum dots for emissive nematic liquid crystal–nanoparticle mixtures with lower threshold voltage, Liq. Cryst., 43, 183, 10.1080/02678292.2015.1082651 Chen, 2018, Wavelength-tunable and highly stable perovskite-quantum dots-doped lasers with liquid crystal lasing cavities, ACS Appl. Mater. Interfaces, 10, 33307, 10.1021/acsami.8b08474