Recent advances of low-dimensional materials in lasing applications
Tài liệu tham khảo
Huang, 2001, Room-temperature ultraviolet nanowire nanolasers, Science, 292, 1897, 10.1126/science.1060367
Johnson, 2002, Single gallium nitride nanowire lasers, Nat. Mater., 1, 106, 10.1038/nmat728
Vahala, 2003, Optical microcavities, Nature, 424, 839, 10.1038/nature01939
Johnson, 2003, Optical cavity effects in ZnO nanowire lasers and waveguides, J. Phys. Chem. B, 107, 8816, 10.1021/jp034482n
Park, 2004, Electrically driven single-cell photonic crystal laser, Science, 305, 1444, 10.1126/science.1100968
Watanabe, 2004, Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal, Nat. Mater., 3, 404, 10.1038/nmat1134
Agarwal, 2005, Lasing in single cadmium sulfide nanowire optical cavities, Nano Lett., 5, 917, 10.1021/nl050440u
Altug, 2006, Ultrafast photonic crystal nanocavity laser, Nat. Phys., 2, 484, 10.1038/nphys343
Wang, 2006, Lasing in whispering gallery mode in ZnO nanonails, J. Appl. Phys., 99
Van Vugt, 2006, Phase-correlated nondirectional laser emission from the end facets of a ZnO nanowire, Nano Lett., 6, 2707, 10.1021/nl0616227
Englund, 2008, Ultrafast photonic crystal lasers, Laser Photonics Rev., 2, 264, 10.1002/lpor.200710032
Li, 2009, Polarization, microscopic origin, and mode structure of luminescence and lasing from single ZnO nanowires, Nano Lett., 9, 3515, 10.1021/nl9017012
Mahler, 2009, Vertically emitting microdisk lasers, Nat. Photonics, 3, 46, 10.1038/nphoton.2008.248
Gargas, 2010, Whispering gallery mode lasing from zinc oxide hexagonal nanodisks, ACS Nano, 4, 3270, 10.1021/nn9018174
Chen, 2011, Excitonic properties and near-infrared coherent random lasing in vertically aligned CdSe nanowires, Adv. Mater., 23, 1404, 10.1002/adma.201003820
Witzany, 2011, Lasing properties of InP/(Ga0.51In0.49) P quantum dots in microdisk cavities, Phys. Rev. B, 83, 10.1103/PhysRevB.83.205305
Strauf, 2011, Single quantum dot nanolaser, Laser Photonics Rev., 5, 607, 10.1002/lpor.201000039
Vanmaekelbergh, 2011, ZnO nanowire lasers, Nanoscale, 3, 2783, 10.1039/c1nr00013f
Harayama, 2011, Two-dimensional microcavity lasers, Laser Photonics Rev., 5, 247, 10.1002/lpor.200900057
Chen, 2011, Room temperature excitonic whispering gallery mode lasing from high-quality hexagonal ZnO microdisks, Adv. Mater., 23, 2199, 10.1002/adma.201100423
Chu, 2011, Electrically pumped waveguide lasing from ZnO nanowires, Nat. Nanotechnol., 6, 506, 10.1038/nnano.2011.97
Ding, 2012, Room-temperature continuous wave lasing in deep-subwavelength metallic cavities under electrical injection, Phys. Rev. B, 85, 10.1103/PhysRevB.85.041301
Mizuochi, 2012, Electrically driven single-photon source at room temperature in diamond, Nat. Photonics, 6, 299, 10.1038/nphoton.2012.75
Xu, 2012, Photoluminescence and low-threshold lasing of ZnO nanorod arrays, Opt. Express, 20, 14857, 10.1364/OE.20.014857
Liu, 2013, Tailoring the lasing modes in semiconductor nanowire cavities using intrinsic self-absorption, Nano Lett., 13, 1080, 10.1021/nl304362u
Saxena, 2013, Optically pumped room-temperature GaAs nanowire lasers, Nat. Photonics, 7, 963, 10.1038/nphoton.2013.303
Attaccalite, 2013, Efficient gate-tunable light-emitting device made of defective boron nitride nanotubes: from ultraviolet to the visible, Sci. Rep., 3, 2698, 10.1038/srep02698
Gao, 2014, Selective-area epitaxy of pure wurtzite InP nanowires: high quantum efficiency and room-temperature lasing, Nano Lett., 14, 5206, 10.1021/nl5021409
Woolf, 2014, Distinctive signature of indium gallium nitride quantum dot lasing in microdisk cavities, PNAS, 111, 14042, 10.1073/pnas.1415464111
Tran, 2015, Quantum emission from hexagonal boron nitride monolayers, Nat. Nanotechnol., 11, 37, 10.1038/nnano.2015.242
Iyer, 2016, Low threshold quantum dot lasers, J. Phys. Chem. Lett., 7, 1244, 10.1021/acs.jpclett.6b00430
Dong, 2016, Dual-wavelength switchable vibronic lasing in single-crystal organic microdisks, Nano Lett., 17, 91, 10.1021/acs.nanolett.6b03499
Shi, 2016, Low threshold photonic crystal laser based on a Rhodamine dye doped high gain polymer, Phys. Chem. Chem. Phys., 18, 5306, 10.1039/C5CP06990D
Wan, 2016, Sub-wavelength InAs quantum dot micro-disk lasers epitaxially grown on exact Si(001) substrates, Appl. Phys. Lett., 108, 10.1063/1.4952600
Zhu, 2017, 1.55 μm band low-threshold, continuous-wave lasing from InAs/InAlGaAs quantum dot microdisks, Opt. Lett., 42, 679, 10.1364/OL.42.000679
Zhu, 2017, A thresholdless tunable Raman nanolaser using a ZnO-graphene superlattice, Adv. Mater., 29, 1604351, 10.1002/adma.201604351
Wang, 2017, Robust whispering-gallery-mode microbubble lasers from colloidal quantum dots, Nano Lett., 17, 2640, 10.1021/acs.nanolett.7b00447
Mak, 2010, Atomically thin MoS2: a new direct-gap semiconductor, Phys. Rev. Lett., 105, 10.1103/PhysRevLett.105.136805
Splendiani, 2010, Emerging photoluminescence in monolayer MoS2, Nano Lett., 10, 1271, 10.1021/nl903868w
Tongay, 2012, Thermally driven crossover from indirect toward direct bandgap in 2D semiconductors: MoSe2 versus MoS2, Nano Lett., 12, 5576, 10.1021/nl302584w
Castellanos-Gomez, 2010, Optical identification of atomically thin dichalcogenide crystals, Appl. Phys. Lett., 96, 10.1063/1.3442495
Peimyoo, 2013, Nonblinking, intense two-dimensional light emitter: monolayer WS2 triangles, ACS Nano, 7, 10985, 10.1021/nn4046002
Wang, 2014, Chemical vapor deposition growth of crystalline monolayer MoSe2, ACS Nano, 8, 5125, 10.1021/nn501175k
Gong, 2015, Two-step growth of two-dimensional WSe2/MoSe2 heterostructures, Nano Lett., 15, 6135, 10.1021/acs.nanolett.5b02423
Fang, 2012, High-performance single layered WSe2 p-FETs with chemically doped contacts, Nano Lett., 12, 3788, 10.1021/nl301702r
Frindt, 1963, Physical properties of layer structures: optical properties and photoconductivity of thin crystals of molybdenum disulphide, 69
Bromley, 1972, The band structures of some transition metal dichalcogenides. III. Group VIA: trigonal prism materials, J. Phys. C: Solid State Phys., 5, 759, 10.1088/0022-3719/5/7/007
Lopez-Sanchez, 2013, Ultrasensitive photodetectors based on monolayer MoS2, Nat. Nanotechnol., 8, 497, 10.1038/nnano.2013.100
Janisch, 2014, Ultrashort optical pulse characterization using WS2 monolayers, Opt. Lett., 39, 383, 10.1364/OL.39.000383
Xie, 2017, Ultrabroadband MoS2 photodetector with spectral response from 445 to 2717 nm, Adv. Mater., 29, 1605972, 10.1002/adma.201605972
Radisavljevic, 2011, Single-layer MoS2 transistors, Nat. Nanotechnol., 6, 147, 10.1038/nnano.2010.279
Yin, 2011, Single-layer MoS2 phototransistors, ACS Nano, 6, 74, 10.1021/nn2024557
Radisavljevic, 2011, Integrated circuits and logic operations based on single-layer MoS2, ACS Nano, 5, 9934, 10.1021/nn203715c
Late, 2012, Hysteresis in single-layer MoS2 field effect transistors, ACS Nano, 6, 5635, 10.1021/nn301572c
Roy, 2013, Graphene-MoS2 hybrid structures for multifunctional photoresponsive memory devices, Nat. Nanotechnol., 8, 826, 10.1038/nnano.2013.206
Bao, 2013, High mobility ambipolar MoS2 field-effect transistors: substrate and dielectric effects, Appl. Phys. Lett., 102, 10.1063/1.4789365
Radisavljevic, 2013, Mobility engineering and a metal-insulator transition in monolayer MoS2, Nat. Mater., 12, 815, 10.1038/nmat3687
Baugher, 2014, Optoelectronic devices based on electrically tunable p-n diodes in a monolayer dichalcogenide, Nat. Nanotechnol., 9, 262, 10.1038/nnano.2014.25
Cheng, 2014, Electroluminescence and photocurrent generation from atomically sharp WSe2/MoS2 heterojunction p-n diodes, Nano Lett., 14, 5590, 10.1021/nl502075n
Ross, 2014, Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions, Nat. Nanotechnol., 9, 268, 10.1038/nnano.2014.26
Clark, 2016, Single defect light-emitting diode in a van der waals heterostructure, Nano Lett., 16, 3944, 10.1021/acs.nanolett.6b01580
Palacios-Berraquero, 2016, Atomically thin quantum light-emitting diodes, Nat. Commun., 7, 12978, 10.1038/ncomms12978
Schwarz, 2016, Electrically pumped single-defect light emitters in WSe2, 2D Mater., 3, 10.1088/2053-1583/3/2/025038
Liu, 2017, Nano-cavity integrated van der waals heterostructure light-emitting tunneling diode, Nano Lett., 17, 200, 10.1021/acs.nanolett.6b03801
Berkelbach, 2013, Theory of neutral and charged excitons in monolayer transition metal dichalcogenides, Phys. Rev. B: Condens. Matter, 88, 10.1103/PhysRevB.88.045318
Liu, 2015, Strong light-matter coupling in two-dimensional atomic crystals, Nat. Photonics, 9, 30, 10.1038/nphoton.2014.304
Dhall, 2015, Direct bandgap transition in many-layer MoS2 by plasma-induced layer decoupling, Adv. Mater., 27, 1573, 10.1002/adma.201405259
Wang, 2016, Giant photoluminescence enhancement in tungsten-diselenide-gold plasmonic hybrid structures, Nat. Commun., 7, 11283, 10.1038/ncomms11283
Janisch, 2016, MoS2 monolayers on nanocavities: enhancement in light-matter interaction, 2D Mater., 3, 10.1088/2053-1583/3/2/025017
Schwarz, 2014, Two-dimensional metal-chalcogenide films in tunable optical microcavities, Nano Lett., 14, 7003, 10.1021/nl503312x
Reed, 2015, Wavelength tunable microdisk cavity light source with a chemically enhanced MoS2 emitter, Nano Lett., 15, 1967, 10.1021/nl5048303
Wu, 2015, Monolayer semiconductor nanocavity lasers with ultralow thresholds, Nature, 520, 69, 10.1038/nature14290
Ye, 2015, Monolayer excitonic laser, Nat. Photonics, 9, 733, 10.1038/nphoton.2015.197
Salehzadeh, 2015, Optically pumped two-dimensional MoS2 lasers operating at room-temperature, Nano Lett., 15, 5302, 10.1021/acs.nanolett.5b01665
Li, 2017, Room-temperature continuous-wave lasing from monolayer molybdenum ditelluride integrated with a silicon nanobeam cavity, Nat. Nanotechnol., 12, 987, 10.1038/nnano.2017.128
Dufferwiel, 2015, Exciton-polaritons in van der waals heterostructures embedded in tunable microcavities, Nat. Commun., 6, 8579, 10.1038/ncomms9579
Moody, 2015, Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides, Nat. Commun., 6, 8315, 10.1038/ncomms9315
Palummo, 2015, Exciton radiative lifetimes in two-dimensional transition metal dichalcogenides, Nano Lett., 15, 2794, 10.1021/nl503799t
Velický, 2016, Photoelectrochemistry of pristine mono-and few-layer MoS2, Nano Lett., 16, 2023, 10.1021/acs.nanolett.5b05317
Bernardi, 2013, Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials, Nano Lett., 13, 3664, 10.1021/nl401544y
Pospischil, 2014, Solar-energy conversion and light emission in an atomic monolayer p-n diode, Nat. Nanotechnol., 9, 257, 10.1038/nnano.2014.14
Zeng, 2012, Valley polarization in MoS2 monolayers by optical pumping, Nat. Nanotechnol., 7, 490, 10.1038/nnano.2012.95
Schaibley, 2016, Valleytronics in 2D materials, Nat. Rev. Mater., 1, 16055, 10.1038/natrevmats.2016.55
Wang, 2012, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nat. Nanotechnol., 7, 699, 10.1038/nnano.2012.193
Lu, 2016, Interactions between lasers and two-dimensional transition metal dichalcogenides, Chem. Soc. Rev., 45, 2494, 10.1039/C5CS00553A
Chhowalla, 2013, The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets, Nat. Chem., 5, 263, 10.1038/nchem.1589
Jariwala, 2014, Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides, ACS Nano, 8, 1102, 10.1021/nn500064s
Mak, 2016, Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides, Nat. Photonics, 10, 216, 10.1038/nphoton.2015.282
Pospischil, 2016, Optoelectronic devices based on atomically thin transition metal dichalcogenides, Appl. Sci., 6, 78, 10.3390/app6030078
Tian, 2016, Optoelectronic devices based on two-dimensional transition metal dichalcogenides, Nano Res., 9, 1543, 10.1007/s12274-016-1034-9
Kojima, 2009, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells, J. Am. Chem. Soc., 131, 6050, 10.1021/ja809598r
Lee, 2012, Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites, Science, 338, 643, 10.1126/science.1228604
Liu, 2013, Efficient planar heterojunction perovskite solar cells by vapour deposition, Nature, 501, 395, 10.1038/nature12509
Burschka, 2013, Sequential deposition as a route to high-performance perovskite-sensitized solar cells, Nature, 499, 316, 10.1038/nature12340
Zhou, 2014, Interface engineering of highly efficient perovskite solar cells, Science, 345, 542, 10.1126/science.1254050
Snaith, 2014, Anomalous hysteresis in perovskite solar cells, J. Phys. Chem. Lett., 5, 1511, 10.1021/jz500113x
Jeon, 2014, Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells, Nat. Mater., 13, 897, 10.1038/nmat4014
Jeon, 2014, o-Methoxy substituents in spiro-OMeTAD for efficient inorganic-organic hybrid perovskite solar cells, J. Am. Chem. Soc., 136, 7837, 10.1021/ja502824c
Green, 2014, The emergence of perovskite solar cells, Nat. Photonics, 8, 506, 10.1038/nphoton.2014.134
Haruyama, 2014, Termination dependence of tetragonal CH3NH3PbI3 surfaces for perovskite solar cells, J. Phys. Chem. Lett., 5, 2903, 10.1021/jz501510v
Grätzel, 2014, The light and shade of perovskite solar cells, Nat. Mater., 13, 838, 10.1038/nmat4065
Kulbak, 2015, How important is the organic part of lead halide perovskite photovoltaic cells? Efficient CsPbBr 3 cells, J. Phys. Chem. Lett., 6, 2452, 10.1021/acs.jpclett.5b00968
Jeon, 2015, Compositional engineering of perovskite materials for high-performance solar cells, Nature, 517, 476, 10.1038/nature14133
Yang, 2015, High-performance photovoltaic perovskite layers fabricated through intramolecular exchange, Science, 348, 1234, 10.1126/science.aaa9272
Bi, 2016, Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%, Nat. Energy, 1, 16142, 10.1038/nenergy.2016.142
Yang, 2017, Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells, Science, 356, 1376, 10.1126/science.aan2301
Lin, 2016, Near infrared photodetectors based on sub-gap absorption in organohalide perovskite single crystals, Laser Photonics Rev., 10, 1047, 10.1002/lpor.201600215
Zhang, 2017, Embedding perovskite nanocrystals into a polymer matrix for tunable luminescence probes in cell imaging, Adv. Funct. Mater., 27, 1604382, 10.1002/adfm.201604382
Ishihara, 1990, Optical properties due to electronic transitions in two-dimensional semiconductors (CnH2n+1NH3)2PbI4, Phys. Rev. B: Condens. Matter, 42, 11099, 10.1103/PhysRevB.42.11099
Brehier, 2006, Strong exciton-photon coupling in a microcavity containing layered perovskite semiconductors, Appl. Phys. Lett., 89, 10.1063/1.2369533
Lanty, 2008, Strong exciton-photon coupling at room temperature in microcavities containing two-dimensional layered perovskite compounds, New J. Phys., 10, 10.1088/1367-2630/10/6/065007
Wei, 2012, Strong exciton-photon coupling in microcavities containing new fluorophenethylamine based perovskite compounds, Opt. Express, 20, 10399, 10.1364/OE.20.010399
Saba, 2014, Correlated electron-hole plasma in organometal perovskites, Nat. Commun., 5, 5049, 10.1038/ncomms6049
Li, 2017, 2D behaviors of excitons in cesium lead halide perovskite nanoplatelets, J. Phys. Chem. Lett., 8, 1161, 10.1021/acs.jpclett.7b00017
Stranks, 2013, Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber, Science, 342, 341, 10.1126/science.1243982
Xing, 2013, Long-range balanced electron-and hole-transport lengths in organic-inorganic CH3NH3PbI3, Science, 342, 344, 10.1126/science.1243167
Zheng, 2016, Crystalline mixed halide halobismuthates and their induced second harmonic generation, Chem. Mater., 28, 4421, 10.1021/acs.chemmater.6b01622
Kim, 2015, Second-harmonic generation (SHG) and photoluminescence properties of noncentrosymmetric (NCS) layered perovskite solid solutions, CsBi1−x EuxNb2O7 (x= 0, 0.1, and 0.2), J. Mater. Chem. C, 3, 5625, 10.1039/C5TC00328H
Zhang, 2016, Nonlinear optical response of organic-inorganic halide perovskites, ACS Photon., 3, 371, 10.1021/acsphotonics.5b00563
Wen, 2014, Morphology and carrier extraction study of organic-inorganic metal halide perovskite by one-and two-photon fluorescence microscopy, J. Phys. Chem. Lett., 5, 3849, 10.1021/jz502014r
Walters, 2015, Two-photon absorption in organometallic bromide perovskites, ACS Nano, 9, 9340, 10.1021/acsnano.5b03308
Clark, 2016, Polarization-selective three-photon absorption and subsequent photoluminescence in CsPbBr 3 single crystal at room temperature, Phys. Rev. B, 93, 10.1103/PhysRevB.93.195202
Liu, 2017, Giant two-photon absorption and its saturation in 2D organic-inorganic perovskite, Adv. Opt. Mater., 5, 1601045, 10.1002/adom.201601045
Wang, 2016, Photon transport in one-dimensional incommensurately epitaxial CsPbX3 arrays, Nano Lett., 16, 7974, 10.1021/acs.nanolett.6b04297
Palazon, 2015, X-ray lithography on perovskite nanocrystals films: from patterning with anion-exchange reactions to enhanced stability in air and water, ACS Nano, 10, 1224, 10.1021/acsnano.5b06536
Tan, 2014, Bright light-emitting diodes based on organometal halide perovskite, Nat. Nanotechnol., 9, 687, 10.1038/nnano.2014.149
Xing, 2014, Low-temperature solution-processed wavelength-tunable perovskites for lasing, Nat. Mater., 13, 476, 10.1038/nmat3911
Wang, 2015, All-inorganic colloidal perovskite quantum dots: a new class of lasing materials with favorable characteristics, Adv. Mater., 27, 7101, 10.1002/adma.201503573
Protesescu, 2015, Nanocrystals of cesium lead halide perovskites (CsPbX3, X= Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut, Nano Lett., 15, 3692, 10.1021/nl5048779
Ha, 2014, Synthesis of organic-inorganic lead halide perovskite nanoplatelets: towards high-performance perovskite solar cells and optoelectronic devices, Adv. Opt. Mater., 2, 838, 10.1002/adom.201400106
Sutherland, 2016, Perovskite photonic sources, Nat. Photonics, 10, 295, 10.1038/nphoton.2016.62
Zhang, 2017, Low-dimensional halide perovskites and their advanced optoelectronic applications, Nano-Micro Lett., 9, 36, 10.1007/s40820-017-0137-5
Zhang, 2016, Improving the performance of a CH3NH3PbBr 3 perovskite microrod laser through hybridization with few-layered graphene, Adv. Opt. Mater., 4, 2057, 10.1002/adom.201600209
Deschler, 2014, High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors, J. Phys. Chem. Lett., 5, 1421, 10.1021/jz5005285
Zhang, 2014, Room-temperature near-infrared high-Q perovskite whispering-gallery planar nanolasers, Nano Lett., 14, 5995, 10.1021/nl503057g
Sutherland, 2014, Conformal organohalide perovskites enable lasing on spherical resonators, ACS Nano, 8, 10947, 10.1021/nn504856g
Zhu, 2015, Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors, Nat. Mater., 14, 636, 10.1038/nmat4271
Liao, 2015, Perovskite microdisk microlasers self-assembled from solution, Adv. Mater., 27, 3405, 10.1002/adma.201500449
Xing, 2015, Vapor phase synthesis of organometal halide perovskite nanowires for tunable room-temperature nanolasers, Nano Lett., 15, 4571, 10.1021/acs.nanolett.5b01166
Yakunin, 2015, Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites, Nat. Commun., 6, 8056, 10.1038/ncomms9056
Gu, 2016, Two-photon pumped CH3NH3PbBr 3 perovskite microwire lasers, Adv. Opt. Mater., 4, 472, 10.1002/adom.201500597
Fu, 2016, Nanowire lasers of formamidinium lead halide perovskites and their stabilized alloys with improved stability, Nano Lett., 16, 1000, 10.1021/acs.nanolett.5b04053
Eaton, 2016, Lasing in robust cesium lead halide perovskite nanowires, PNAS, 113, 1993, 10.1073/pnas.1600789113
Xu, 2016, Two-photon-pumped perovskite semiconductor nanocrystal lasers, J. Am. Chem. Soc., 138, 3761, 10.1021/jacs.5b12662
Zhang, 2016, Controlling the cavity structures of two-photon-pumped perovskite microlasers, Adv. Mater., 28, 4040, 10.1002/adma.201505927
Cha, 2016, Two-dimensional photonic crystal bandedge laser with hybrid perovskite thin film for optical gain, Appl. Phys. Lett., 108, 10.1063/1.4948681
Zhang, 2016, High-quality whispering-gallery-mode lasing from cesium lead halide perovskite nanoplatelets, Adv. Funct. Mater., 26, 6238, 10.1002/adfm.201601690
Xing, 2016, Solution-processed Tin-based perovskite for near-infrared lasing, Adv. Mater., 28, 8191, 10.1002/adma.201601418
Fu, 2016, Broad wavelength tunable robust lasing from single-crystal nanowires of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I), ACS Nano, 10, 7963, 10.1021/acsnano.6b03916
Park, 2016, Light-matter interactions in cesium lead halide perovskite nanowire lasers, J. Phys. Chem. Lett., 7, 3703, 10.1021/acs.jpclett.6b01821
Wang, 2017, Chemical vapor deposition growth of single-crystalline cesium lead halide microplatelets and heterostructures for optoelectronic applications, Nano Res., 10, 1223, 10.1007/s12274-016-1317-1
Perumal, 2017, Whispering gallery mode lasing from self-assembled hexagonal perovskite single crystals and porous thin films decorated by dielectric spherical resonators, ACS Photon., 4, 146, 10.1021/acsphotonics.6b00725
Zhou, 2017, Vapor growth and tunable lasing of band gap engineered cesium lead halide perovskite micro/nanorods with triangular cross section, ACS Nano, 11, 1189, 10.1021/acsnano.6b07374
Wang, 2017, Solution-processed low threshold vertical cavity surface emitting lasers from all-inorganic perovskite nanocrystals, Adv. Funct. Mater., 27, 1605088, 10.1002/adfm.201605088
Wang, 2017, Solution-phase synthesis of cesium lead halide perovskite microrods for high-quality microlasers and photodetectors, Adv. Opt. Mater., 5, 1700023, 10.1002/adom.201700023
Huang, 2017, Up-conversion perovskite nanolaser with single mode and low threshold, J. Phys. Chem. C., 121, 10071, 10.1021/acs.jpcc.7b00875
Siu, 2017, Lasing characteristics of single-crystalline CsPbCl3 perovskite microcavities under multiphoton excitation, J. Phys. D: Appl. Phys., 50, 10.1088/1361-6463/aa6cf5
Su, 2017, Room temperature polariton lasing in all-inorganic perovskite nanoplatelets, Nano Lett., 17, 3982, 10.1021/acs.nanolett.7b01956
Wang, 2017, Cesium lead halide perovskite triangular nanorods as high-gain medium and effective cavities for multiphoton-pumped lasing, Nano Res., 10, 3385, 10.1007/s12274-017-1551-1
Novoselov, 2004, Electric field effect in atomically thin carbon films, Science, 306, 666, 10.1126/science.1102896
Bao, 2009, Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers, Adv. Funct. Mater., 19, 3077, 10.1002/adfm.200901007
Sun, 2010, Graphene mode-locked ultrafast laser, ACS Nano, 4, 803, 10.1021/nn901703e
Xia, 2009, Ultrafast graphene photodetector, Nat. Nanotechnol., 4, 839, 10.1038/nnano.2009.292
Bonaccorso, 2010, Graphene photonics and optoelectronics, Nat. Photonics, 4, 611, 10.1038/nphoton.2010.186
Lin, 2010, 100-GHz transistors from wafer-scale epitaxial graphene, Science, 327, 662, 10.1126/science.1184289
Yoo, 2008, Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries, Nano Lett., 8, 2277, 10.1021/nl800957b
Sun, 2010, Enhanced dye-sensitized solar cell using graphene-TiO2 photoanode prepared by heterogeneous coagulation, Appl. Phys. Lett., 96, 10.1063/1.3318466
Miao, 2012, High efficiency graphene solar cells by chemical doping, Nano Lett., 12, 2745, 10.1021/nl204414u
Zhang, 2009, P25-graphene composite as a high performance photocatalyst, ACS Nano, 4, 380, 10.1021/nn901221k
Xiang, 2012, Graphene-based semiconductor photocatalysts, Chem. Soc. Rev., 41, 782, 10.1039/C1CS15172J
Chow, 1999
Milonni, 2010
Dausinger, 2004
Mandel, 1995
Purcell, 1946, Spontaneous emission probabilities at radio frequencies, Phys. Rev., 69, 681
Oraevsky, 2002, Whispering-gallery waves, Quantum Electron., 32, 377, 10.1070/QE2002v032n05ABEH002205
Yablonovitch, 1987, Inhibited spontaneous emission in solid-state physics and electronics, Phys. Rev. Lett., 58, 2059, 10.1103/PhysRevLett.58.2059
John, 1987, Strong localization of photons in certain disordered dielectric superlattices, Phys. Rev. Lett., 58, 2486, 10.1103/PhysRevLett.58.2486
Krauss, 1996, Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths, Nature, 383, 699, 10.1038/383699a0
Krauss, 1999, Photonic crystals in the optical regime—past, present and future, Prog. Quantum Electron., 23, 51, 10.1016/S0079-6727(99)00004-X
Imamog, 1996, Nonequilibrium condensates and lasers without inversion: exciton-polariton lasers, Phys. Rev. A, 53, 4250, 10.1103/PhysRevA.53.4250
Lidzey, 1999, Room temperature polariton emission from strongly coupled organic semiconductor microcavities, Phys. Rev. Lett., 82, 3316, 10.1103/PhysRevLett.82.3316
Christopoulos, 2007, Room-temperature polariton lasing in semiconductor microcavities, Phys. Rev. Lett., 98, 10.1103/PhysRevLett.98.126405
Bajoni, 2008, Polariton laser using single micropillar GaAs− GaAlAs semiconductor cavities, Phys. Rev. Lett., 100, 10.1103/PhysRevLett.100.047401
Kéna-Cohen, 2010, Room-temperature polariton lasing in an organic single-crystal microcavity, Nat. Photonics, 4, 371, 10.1038/nphoton.2010.86
Azzini, 2011, Ultra-low threshold polariton lasing in photonic crystal cavities, Appl. Phys. Lett., 99, 10.1063/1.3638469
Guillet, 2011, Polariton lasing in a hybrid bulk ZnO microcavity, Appl. Phys. Lett., 99, 10.1063/1.3650268
Schneider, 2013, An electrically pumped polariton laser, Nature, 497, 348, 10.1038/nature12036
Bhattacharya, 2013, Solid state electrically injected exciton-polariton laser, Phys. Rev. Lett., 110, 10.1103/PhysRevLett.110.206403
Byrnes, 2014, Exciton-polariton condensates, Nat. Phys., 10, 803, 10.1038/nphys3143
Sanvitto, 2016, The road towards polaritonic devices, Nat. Mater., 15, 1061, 10.1038/nmat4668
Lin, 2016, Defect engineering of two-dimensional transition metal dichalcogenides, 2D Mater., 3, 10.1088/2053-1583/3/2/022002
Ball, 2016, Defects in perovskite-halides and their effects in solar cells, Nat. Energy, 1, 16149, 10.1038/nenergy.2016.149
Amani, 2015, Near-unity photoluminescence quantum yield in MoS2, Science, 350, 1065, 10.1126/science.aad2114