Recent advances of low-dimensional materials in lasing applications

FlatChem - Tập 10 - Trang 22-38 - 2018
Lai Liu1, Huizhen Yao1, Henan Li2, Zhongchang Wang3, Yumeng Shi1
1SZU-NUS Collaborative Innovation Center for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
2College of Electronic Science and Technology, Shenzhen University, Shenzhen 518060, China
3Quantum Materials, Science and Technology, International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, Braga 4715-330, Portugal

Tài liệu tham khảo

Huang, 2001, Room-temperature ultraviolet nanowire nanolasers, Science, 292, 1897, 10.1126/science.1060367 Johnson, 2002, Single gallium nitride nanowire lasers, Nat. Mater., 1, 106, 10.1038/nmat728 Vahala, 2003, Optical microcavities, Nature, 424, 839, 10.1038/nature01939 Johnson, 2003, Optical cavity effects in ZnO nanowire lasers and waveguides, J. Phys. Chem. B, 107, 8816, 10.1021/jp034482n Park, 2004, Electrically driven single-cell photonic crystal laser, Science, 305, 1444, 10.1126/science.1100968 Watanabe, 2004, Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal, Nat. Mater., 3, 404, 10.1038/nmat1134 Agarwal, 2005, Lasing in single cadmium sulfide nanowire optical cavities, Nano Lett., 5, 917, 10.1021/nl050440u Altug, 2006, Ultrafast photonic crystal nanocavity laser, Nat. Phys., 2, 484, 10.1038/nphys343 Wang, 2006, Lasing in whispering gallery mode in ZnO nanonails, J. Appl. Phys., 99 Van Vugt, 2006, Phase-correlated nondirectional laser emission from the end facets of a ZnO nanowire, Nano Lett., 6, 2707, 10.1021/nl0616227 Englund, 2008, Ultrafast photonic crystal lasers, Laser Photonics Rev., 2, 264, 10.1002/lpor.200710032 Li, 2009, Polarization, microscopic origin, and mode structure of luminescence and lasing from single ZnO nanowires, Nano Lett., 9, 3515, 10.1021/nl9017012 Mahler, 2009, Vertically emitting microdisk lasers, Nat. Photonics, 3, 46, 10.1038/nphoton.2008.248 Gargas, 2010, Whispering gallery mode lasing from zinc oxide hexagonal nanodisks, ACS Nano, 4, 3270, 10.1021/nn9018174 Chen, 2011, Excitonic properties and near-infrared coherent random lasing in vertically aligned CdSe nanowires, Adv. Mater., 23, 1404, 10.1002/adma.201003820 Witzany, 2011, Lasing properties of InP/(Ga0.51In0.49) P quantum dots in microdisk cavities, Phys. Rev. B, 83, 10.1103/PhysRevB.83.205305 Strauf, 2011, Single quantum dot nanolaser, Laser Photonics Rev., 5, 607, 10.1002/lpor.201000039 Vanmaekelbergh, 2011, ZnO nanowire lasers, Nanoscale, 3, 2783, 10.1039/c1nr00013f Harayama, 2011, Two-dimensional microcavity lasers, Laser Photonics Rev., 5, 247, 10.1002/lpor.200900057 Chen, 2011, Room temperature excitonic whispering gallery mode lasing from high-quality hexagonal ZnO microdisks, Adv. Mater., 23, 2199, 10.1002/adma.201100423 Chu, 2011, Electrically pumped waveguide lasing from ZnO nanowires, Nat. Nanotechnol., 6, 506, 10.1038/nnano.2011.97 Ding, 2012, Room-temperature continuous wave lasing in deep-subwavelength metallic cavities under electrical injection, Phys. Rev. B, 85, 10.1103/PhysRevB.85.041301 Mizuochi, 2012, Electrically driven single-photon source at room temperature in diamond, Nat. Photonics, 6, 299, 10.1038/nphoton.2012.75 Xu, 2012, Photoluminescence and low-threshold lasing of ZnO nanorod arrays, Opt. Express, 20, 14857, 10.1364/OE.20.014857 Liu, 2013, Tailoring the lasing modes in semiconductor nanowire cavities using intrinsic self-absorption, Nano Lett., 13, 1080, 10.1021/nl304362u Saxena, 2013, Optically pumped room-temperature GaAs nanowire lasers, Nat. Photonics, 7, 963, 10.1038/nphoton.2013.303 Attaccalite, 2013, Efficient gate-tunable light-emitting device made of defective boron nitride nanotubes: from ultraviolet to the visible, Sci. Rep., 3, 2698, 10.1038/srep02698 Gao, 2014, Selective-area epitaxy of pure wurtzite InP nanowires: high quantum efficiency and room-temperature lasing, Nano Lett., 14, 5206, 10.1021/nl5021409 Woolf, 2014, Distinctive signature of indium gallium nitride quantum dot lasing in microdisk cavities, PNAS, 111, 14042, 10.1073/pnas.1415464111 Tran, 2015, Quantum emission from hexagonal boron nitride monolayers, Nat. Nanotechnol., 11, 37, 10.1038/nnano.2015.242 Iyer, 2016, Low threshold quantum dot lasers, J. Phys. Chem. Lett., 7, 1244, 10.1021/acs.jpclett.6b00430 Dong, 2016, Dual-wavelength switchable vibronic lasing in single-crystal organic microdisks, Nano Lett., 17, 91, 10.1021/acs.nanolett.6b03499 Shi, 2016, Low threshold photonic crystal laser based on a Rhodamine dye doped high gain polymer, Phys. Chem. Chem. Phys., 18, 5306, 10.1039/C5CP06990D Wan, 2016, Sub-wavelength InAs quantum dot micro-disk lasers epitaxially grown on exact Si(001) substrates, Appl. Phys. Lett., 108, 10.1063/1.4952600 Zhu, 2017, 1.55 μm band low-threshold, continuous-wave lasing from InAs/InAlGaAs quantum dot microdisks, Opt. Lett., 42, 679, 10.1364/OL.42.000679 Zhu, 2017, A thresholdless tunable Raman nanolaser using a ZnO-graphene superlattice, Adv. Mater., 29, 1604351, 10.1002/adma.201604351 Wang, 2017, Robust whispering-gallery-mode microbubble lasers from colloidal quantum dots, Nano Lett., 17, 2640, 10.1021/acs.nanolett.7b00447 Mak, 2010, Atomically thin MoS2: a new direct-gap semiconductor, Phys. Rev. Lett., 105, 10.1103/PhysRevLett.105.136805 Splendiani, 2010, Emerging photoluminescence in monolayer MoS2, Nano Lett., 10, 1271, 10.1021/nl903868w Tongay, 2012, Thermally driven crossover from indirect toward direct bandgap in 2D semiconductors: MoSe2 versus MoS2, Nano Lett., 12, 5576, 10.1021/nl302584w Castellanos-Gomez, 2010, Optical identification of atomically thin dichalcogenide crystals, Appl. Phys. Lett., 96, 10.1063/1.3442495 Peimyoo, 2013, Nonblinking, intense two-dimensional light emitter: monolayer WS2 triangles, ACS Nano, 7, 10985, 10.1021/nn4046002 Wang, 2014, Chemical vapor deposition growth of crystalline monolayer MoSe2, ACS Nano, 8, 5125, 10.1021/nn501175k Gong, 2015, Two-step growth of two-dimensional WSe2/MoSe2 heterostructures, Nano Lett., 15, 6135, 10.1021/acs.nanolett.5b02423 Fang, 2012, High-performance single layered WSe2 p-FETs with chemically doped contacts, Nano Lett., 12, 3788, 10.1021/nl301702r Frindt, 1963, Physical properties of layer structures: optical properties and photoconductivity of thin crystals of molybdenum disulphide, 69 Bromley, 1972, The band structures of some transition metal dichalcogenides. III. Group VIA: trigonal prism materials, J. Phys. C: Solid State Phys., 5, 759, 10.1088/0022-3719/5/7/007 Lopez-Sanchez, 2013, Ultrasensitive photodetectors based on monolayer MoS2, Nat. Nanotechnol., 8, 497, 10.1038/nnano.2013.100 Janisch, 2014, Ultrashort optical pulse characterization using WS2 monolayers, Opt. Lett., 39, 383, 10.1364/OL.39.000383 Xie, 2017, Ultrabroadband MoS2 photodetector with spectral response from 445 to 2717 nm, Adv. Mater., 29, 1605972, 10.1002/adma.201605972 Radisavljevic, 2011, Single-layer MoS2 transistors, Nat. Nanotechnol., 6, 147, 10.1038/nnano.2010.279 Yin, 2011, Single-layer MoS2 phototransistors, ACS Nano, 6, 74, 10.1021/nn2024557 Radisavljevic, 2011, Integrated circuits and logic operations based on single-layer MoS2, ACS Nano, 5, 9934, 10.1021/nn203715c Late, 2012, Hysteresis in single-layer MoS2 field effect transistors, ACS Nano, 6, 5635, 10.1021/nn301572c Roy, 2013, Graphene-MoS2 hybrid structures for multifunctional photoresponsive memory devices, Nat. Nanotechnol., 8, 826, 10.1038/nnano.2013.206 Bao, 2013, High mobility ambipolar MoS2 field-effect transistors: substrate and dielectric effects, Appl. Phys. Lett., 102, 10.1063/1.4789365 Radisavljevic, 2013, Mobility engineering and a metal-insulator transition in monolayer MoS2, Nat. Mater., 12, 815, 10.1038/nmat3687 Baugher, 2014, Optoelectronic devices based on electrically tunable p-n diodes in a monolayer dichalcogenide, Nat. Nanotechnol., 9, 262, 10.1038/nnano.2014.25 Cheng, 2014, Electroluminescence and photocurrent generation from atomically sharp WSe2/MoS2 heterojunction p-n diodes, Nano Lett., 14, 5590, 10.1021/nl502075n Ross, 2014, Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions, Nat. Nanotechnol., 9, 268, 10.1038/nnano.2014.26 Clark, 2016, Single defect light-emitting diode in a van der waals heterostructure, Nano Lett., 16, 3944, 10.1021/acs.nanolett.6b01580 Palacios-Berraquero, 2016, Atomically thin quantum light-emitting diodes, Nat. Commun., 7, 12978, 10.1038/ncomms12978 Schwarz, 2016, Electrically pumped single-defect light emitters in WSe2, 2D Mater., 3, 10.1088/2053-1583/3/2/025038 Liu, 2017, Nano-cavity integrated van der waals heterostructure light-emitting tunneling diode, Nano Lett., 17, 200, 10.1021/acs.nanolett.6b03801 Berkelbach, 2013, Theory of neutral and charged excitons in monolayer transition metal dichalcogenides, Phys. Rev. B: Condens. Matter, 88, 10.1103/PhysRevB.88.045318 Liu, 2015, Strong light-matter coupling in two-dimensional atomic crystals, Nat. Photonics, 9, 30, 10.1038/nphoton.2014.304 Dhall, 2015, Direct bandgap transition in many-layer MoS2 by plasma-induced layer decoupling, Adv. Mater., 27, 1573, 10.1002/adma.201405259 Wang, 2016, Giant photoluminescence enhancement in tungsten-diselenide-gold plasmonic hybrid structures, Nat. Commun., 7, 11283, 10.1038/ncomms11283 Janisch, 2016, MoS2 monolayers on nanocavities: enhancement in light-matter interaction, 2D Mater., 3, 10.1088/2053-1583/3/2/025017 Schwarz, 2014, Two-dimensional metal-chalcogenide films in tunable optical microcavities, Nano Lett., 14, 7003, 10.1021/nl503312x Reed, 2015, Wavelength tunable microdisk cavity light source with a chemically enhanced MoS2 emitter, Nano Lett., 15, 1967, 10.1021/nl5048303 Wu, 2015, Monolayer semiconductor nanocavity lasers with ultralow thresholds, Nature, 520, 69, 10.1038/nature14290 Ye, 2015, Monolayer excitonic laser, Nat. Photonics, 9, 733, 10.1038/nphoton.2015.197 Salehzadeh, 2015, Optically pumped two-dimensional MoS2 lasers operating at room-temperature, Nano Lett., 15, 5302, 10.1021/acs.nanolett.5b01665 Li, 2017, Room-temperature continuous-wave lasing from monolayer molybdenum ditelluride integrated with a silicon nanobeam cavity, Nat. Nanotechnol., 12, 987, 10.1038/nnano.2017.128 Dufferwiel, 2015, Exciton-polaritons in van der waals heterostructures embedded in tunable microcavities, Nat. Commun., 6, 8579, 10.1038/ncomms9579 Moody, 2015, Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides, Nat. Commun., 6, 8315, 10.1038/ncomms9315 Palummo, 2015, Exciton radiative lifetimes in two-dimensional transition metal dichalcogenides, Nano Lett., 15, 2794, 10.1021/nl503799t Velický, 2016, Photoelectrochemistry of pristine mono-and few-layer MoS2, Nano Lett., 16, 2023, 10.1021/acs.nanolett.5b05317 Bernardi, 2013, Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials, Nano Lett., 13, 3664, 10.1021/nl401544y Pospischil, 2014, Solar-energy conversion and light emission in an atomic monolayer p-n diode, Nat. Nanotechnol., 9, 257, 10.1038/nnano.2014.14 Zeng, 2012, Valley polarization in MoS2 monolayers by optical pumping, Nat. Nanotechnol., 7, 490, 10.1038/nnano.2012.95 Schaibley, 2016, Valleytronics in 2D materials, Nat. Rev. Mater., 1, 16055, 10.1038/natrevmats.2016.55 Wang, 2012, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nat. Nanotechnol., 7, 699, 10.1038/nnano.2012.193 Lu, 2016, Interactions between lasers and two-dimensional transition metal dichalcogenides, Chem. Soc. Rev., 45, 2494, 10.1039/C5CS00553A Chhowalla, 2013, The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets, Nat. Chem., 5, 263, 10.1038/nchem.1589 Jariwala, 2014, Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides, ACS Nano, 8, 1102, 10.1021/nn500064s Mak, 2016, Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides, Nat. Photonics, 10, 216, 10.1038/nphoton.2015.282 Pospischil, 2016, Optoelectronic devices based on atomically thin transition metal dichalcogenides, Appl. Sci., 6, 78, 10.3390/app6030078 Tian, 2016, Optoelectronic devices based on two-dimensional transition metal dichalcogenides, Nano Res., 9, 1543, 10.1007/s12274-016-1034-9 Kojima, 2009, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells, J. Am. Chem. Soc., 131, 6050, 10.1021/ja809598r Lee, 2012, Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites, Science, 338, 643, 10.1126/science.1228604 Liu, 2013, Efficient planar heterojunction perovskite solar cells by vapour deposition, Nature, 501, 395, 10.1038/nature12509 Burschka, 2013, Sequential deposition as a route to high-performance perovskite-sensitized solar cells, Nature, 499, 316, 10.1038/nature12340 Zhou, 2014, Interface engineering of highly efficient perovskite solar cells, Science, 345, 542, 10.1126/science.1254050 Snaith, 2014, Anomalous hysteresis in perovskite solar cells, J. Phys. Chem. Lett., 5, 1511, 10.1021/jz500113x Jeon, 2014, Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells, Nat. Mater., 13, 897, 10.1038/nmat4014 Jeon, 2014, o-Methoxy substituents in spiro-OMeTAD for efficient inorganic-organic hybrid perovskite solar cells, J. Am. Chem. Soc., 136, 7837, 10.1021/ja502824c Green, 2014, The emergence of perovskite solar cells, Nat. Photonics, 8, 506, 10.1038/nphoton.2014.134 Haruyama, 2014, Termination dependence of tetragonal CH3NH3PbI3 surfaces for perovskite solar cells, J. Phys. Chem. Lett., 5, 2903, 10.1021/jz501510v Grätzel, 2014, The light and shade of perovskite solar cells, Nat. Mater., 13, 838, 10.1038/nmat4065 Kulbak, 2015, How important is the organic part of lead halide perovskite photovoltaic cells? Efficient CsPbBr 3 cells, J. Phys. Chem. Lett., 6, 2452, 10.1021/acs.jpclett.5b00968 Jeon, 2015, Compositional engineering of perovskite materials for high-performance solar cells, Nature, 517, 476, 10.1038/nature14133 Yang, 2015, High-performance photovoltaic perovskite layers fabricated through intramolecular exchange, Science, 348, 1234, 10.1126/science.aaa9272 Bi, 2016, Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%, Nat. Energy, 1, 16142, 10.1038/nenergy.2016.142 Yang, 2017, Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells, Science, 356, 1376, 10.1126/science.aan2301 Lin, 2016, Near infrared photodetectors based on sub-gap absorption in organohalide perovskite single crystals, Laser Photonics Rev., 10, 1047, 10.1002/lpor.201600215 Zhang, 2017, Embedding perovskite nanocrystals into a polymer matrix for tunable luminescence probes in cell imaging, Adv. Funct. Mater., 27, 1604382, 10.1002/adfm.201604382 Ishihara, 1990, Optical properties due to electronic transitions in two-dimensional semiconductors (CnH2n+1NH3)2PbI4, Phys. Rev. B: Condens. Matter, 42, 11099, 10.1103/PhysRevB.42.11099 Brehier, 2006, Strong exciton-photon coupling in a microcavity containing layered perovskite semiconductors, Appl. Phys. Lett., 89, 10.1063/1.2369533 Lanty, 2008, Strong exciton-photon coupling at room temperature in microcavities containing two-dimensional layered perovskite compounds, New J. Phys., 10, 10.1088/1367-2630/10/6/065007 Wei, 2012, Strong exciton-photon coupling in microcavities containing new fluorophenethylamine based perovskite compounds, Opt. Express, 20, 10399, 10.1364/OE.20.010399 Saba, 2014, Correlated electron-hole plasma in organometal perovskites, Nat. Commun., 5, 5049, 10.1038/ncomms6049 Li, 2017, 2D behaviors of excitons in cesium lead halide perovskite nanoplatelets, J. Phys. Chem. Lett., 8, 1161, 10.1021/acs.jpclett.7b00017 Stranks, 2013, Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber, Science, 342, 341, 10.1126/science.1243982 Xing, 2013, Long-range balanced electron-and hole-transport lengths in organic-inorganic CH3NH3PbI3, Science, 342, 344, 10.1126/science.1243167 Zheng, 2016, Crystalline mixed halide halobismuthates and their induced second harmonic generation, Chem. Mater., 28, 4421, 10.1021/acs.chemmater.6b01622 Kim, 2015, Second-harmonic generation (SHG) and photoluminescence properties of noncentrosymmetric (NCS) layered perovskite solid solutions, CsBi1−x EuxNb2O7 (x= 0, 0.1, and 0.2), J. Mater. Chem. C, 3, 5625, 10.1039/C5TC00328H Zhang, 2016, Nonlinear optical response of organic-inorganic halide perovskites, ACS Photon., 3, 371, 10.1021/acsphotonics.5b00563 Wen, 2014, Morphology and carrier extraction study of organic-inorganic metal halide perovskite by one-and two-photon fluorescence microscopy, J. Phys. Chem. Lett., 5, 3849, 10.1021/jz502014r Walters, 2015, Two-photon absorption in organometallic bromide perovskites, ACS Nano, 9, 9340, 10.1021/acsnano.5b03308 Clark, 2016, Polarization-selective three-photon absorption and subsequent photoluminescence in CsPbBr 3 single crystal at room temperature, Phys. Rev. B, 93, 10.1103/PhysRevB.93.195202 Liu, 2017, Giant two-photon absorption and its saturation in 2D organic-inorganic perovskite, Adv. Opt. Mater., 5, 1601045, 10.1002/adom.201601045 Wang, 2016, Photon transport in one-dimensional incommensurately epitaxial CsPbX3 arrays, Nano Lett., 16, 7974, 10.1021/acs.nanolett.6b04297 Palazon, 2015, X-ray lithography on perovskite nanocrystals films: from patterning with anion-exchange reactions to enhanced stability in air and water, ACS Nano, 10, 1224, 10.1021/acsnano.5b06536 Tan, 2014, Bright light-emitting diodes based on organometal halide perovskite, Nat. Nanotechnol., 9, 687, 10.1038/nnano.2014.149 Xing, 2014, Low-temperature solution-processed wavelength-tunable perovskites for lasing, Nat. Mater., 13, 476, 10.1038/nmat3911 Wang, 2015, All-inorganic colloidal perovskite quantum dots: a new class of lasing materials with favorable characteristics, Adv. Mater., 27, 7101, 10.1002/adma.201503573 Protesescu, 2015, Nanocrystals of cesium lead halide perovskites (CsPbX3, X= Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut, Nano Lett., 15, 3692, 10.1021/nl5048779 Ha, 2014, Synthesis of organic-inorganic lead halide perovskite nanoplatelets: towards high-performance perovskite solar cells and optoelectronic devices, Adv. Opt. Mater., 2, 838, 10.1002/adom.201400106 Sutherland, 2016, Perovskite photonic sources, Nat. Photonics, 10, 295, 10.1038/nphoton.2016.62 Zhang, 2017, Low-dimensional halide perovskites and their advanced optoelectronic applications, Nano-Micro Lett., 9, 36, 10.1007/s40820-017-0137-5 Zhang, 2016, Improving the performance of a CH3NH3PbBr 3 perovskite microrod laser through hybridization with few-layered graphene, Adv. Opt. Mater., 4, 2057, 10.1002/adom.201600209 Deschler, 2014, High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors, J. Phys. Chem. Lett., 5, 1421, 10.1021/jz5005285 Zhang, 2014, Room-temperature near-infrared high-Q perovskite whispering-gallery planar nanolasers, Nano Lett., 14, 5995, 10.1021/nl503057g Sutherland, 2014, Conformal organohalide perovskites enable lasing on spherical resonators, ACS Nano, 8, 10947, 10.1021/nn504856g Zhu, 2015, Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors, Nat. Mater., 14, 636, 10.1038/nmat4271 Liao, 2015, Perovskite microdisk microlasers self-assembled from solution, Adv. Mater., 27, 3405, 10.1002/adma.201500449 Xing, 2015, Vapor phase synthesis of organometal halide perovskite nanowires for tunable room-temperature nanolasers, Nano Lett., 15, 4571, 10.1021/acs.nanolett.5b01166 Yakunin, 2015, Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites, Nat. Commun., 6, 8056, 10.1038/ncomms9056 Gu, 2016, Two-photon pumped CH3NH3PbBr 3 perovskite microwire lasers, Adv. Opt. Mater., 4, 472, 10.1002/adom.201500597 Fu, 2016, Nanowire lasers of formamidinium lead halide perovskites and their stabilized alloys with improved stability, Nano Lett., 16, 1000, 10.1021/acs.nanolett.5b04053 Eaton, 2016, Lasing in robust cesium lead halide perovskite nanowires, PNAS, 113, 1993, 10.1073/pnas.1600789113 Xu, 2016, Two-photon-pumped perovskite semiconductor nanocrystal lasers, J. Am. Chem. Soc., 138, 3761, 10.1021/jacs.5b12662 Zhang, 2016, Controlling the cavity structures of two-photon-pumped perovskite microlasers, Adv. Mater., 28, 4040, 10.1002/adma.201505927 Cha, 2016, Two-dimensional photonic crystal bandedge laser with hybrid perovskite thin film for optical gain, Appl. Phys. Lett., 108, 10.1063/1.4948681 Zhang, 2016, High-quality whispering-gallery-mode lasing from cesium lead halide perovskite nanoplatelets, Adv. Funct. Mater., 26, 6238, 10.1002/adfm.201601690 Xing, 2016, Solution-processed Tin-based perovskite for near-infrared lasing, Adv. Mater., 28, 8191, 10.1002/adma.201601418 Fu, 2016, Broad wavelength tunable robust lasing from single-crystal nanowires of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I), ACS Nano, 10, 7963, 10.1021/acsnano.6b03916 Park, 2016, Light-matter interactions in cesium lead halide perovskite nanowire lasers, J. Phys. Chem. Lett., 7, 3703, 10.1021/acs.jpclett.6b01821 Wang, 2017, Chemical vapor deposition growth of single-crystalline cesium lead halide microplatelets and heterostructures for optoelectronic applications, Nano Res., 10, 1223, 10.1007/s12274-016-1317-1 Perumal, 2017, Whispering gallery mode lasing from self-assembled hexagonal perovskite single crystals and porous thin films decorated by dielectric spherical resonators, ACS Photon., 4, 146, 10.1021/acsphotonics.6b00725 Zhou, 2017, Vapor growth and tunable lasing of band gap engineered cesium lead halide perovskite micro/nanorods with triangular cross section, ACS Nano, 11, 1189, 10.1021/acsnano.6b07374 Wang, 2017, Solution-processed low threshold vertical cavity surface emitting lasers from all-inorganic perovskite nanocrystals, Adv. Funct. Mater., 27, 1605088, 10.1002/adfm.201605088 Wang, 2017, Solution-phase synthesis of cesium lead halide perovskite microrods for high-quality microlasers and photodetectors, Adv. Opt. Mater., 5, 1700023, 10.1002/adom.201700023 Huang, 2017, Up-conversion perovskite nanolaser with single mode and low threshold, J. Phys. Chem. C., 121, 10071, 10.1021/acs.jpcc.7b00875 Siu, 2017, Lasing characteristics of single-crystalline CsPbCl3 perovskite microcavities under multiphoton excitation, J. Phys. D: Appl. Phys., 50, 10.1088/1361-6463/aa6cf5 Su, 2017, Room temperature polariton lasing in all-inorganic perovskite nanoplatelets, Nano Lett., 17, 3982, 10.1021/acs.nanolett.7b01956 Wang, 2017, Cesium lead halide perovskite triangular nanorods as high-gain medium and effective cavities for multiphoton-pumped lasing, Nano Res., 10, 3385, 10.1007/s12274-017-1551-1 Novoselov, 2004, Electric field effect in atomically thin carbon films, Science, 306, 666, 10.1126/science.1102896 Bao, 2009, Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers, Adv. Funct. Mater., 19, 3077, 10.1002/adfm.200901007 Sun, 2010, Graphene mode-locked ultrafast laser, ACS Nano, 4, 803, 10.1021/nn901703e Xia, 2009, Ultrafast graphene photodetector, Nat. Nanotechnol., 4, 839, 10.1038/nnano.2009.292 Bonaccorso, 2010, Graphene photonics and optoelectronics, Nat. Photonics, 4, 611, 10.1038/nphoton.2010.186 Lin, 2010, 100-GHz transistors from wafer-scale epitaxial graphene, Science, 327, 662, 10.1126/science.1184289 Yoo, 2008, Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries, Nano Lett., 8, 2277, 10.1021/nl800957b Sun, 2010, Enhanced dye-sensitized solar cell using graphene-TiO2 photoanode prepared by heterogeneous coagulation, Appl. Phys. Lett., 96, 10.1063/1.3318466 Miao, 2012, High efficiency graphene solar cells by chemical doping, Nano Lett., 12, 2745, 10.1021/nl204414u Zhang, 2009, P25-graphene composite as a high performance photocatalyst, ACS Nano, 4, 380, 10.1021/nn901221k Xiang, 2012, Graphene-based semiconductor photocatalysts, Chem. Soc. Rev., 41, 782, 10.1039/C1CS15172J Chow, 1999 Milonni, 2010 Dausinger, 2004 Mandel, 1995 Purcell, 1946, Spontaneous emission probabilities at radio frequencies, Phys. Rev., 69, 681 Oraevsky, 2002, Whispering-gallery waves, Quantum Electron., 32, 377, 10.1070/QE2002v032n05ABEH002205 Yablonovitch, 1987, Inhibited spontaneous emission in solid-state physics and electronics, Phys. Rev. Lett., 58, 2059, 10.1103/PhysRevLett.58.2059 John, 1987, Strong localization of photons in certain disordered dielectric superlattices, Phys. Rev. Lett., 58, 2486, 10.1103/PhysRevLett.58.2486 Krauss, 1996, Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths, Nature, 383, 699, 10.1038/383699a0 Krauss, 1999, Photonic crystals in the optical regime—past, present and future, Prog. Quantum Electron., 23, 51, 10.1016/S0079-6727(99)00004-X Imamog, 1996, Nonequilibrium condensates and lasers without inversion: exciton-polariton lasers, Phys. Rev. A, 53, 4250, 10.1103/PhysRevA.53.4250 Lidzey, 1999, Room temperature polariton emission from strongly coupled organic semiconductor microcavities, Phys. Rev. Lett., 82, 3316, 10.1103/PhysRevLett.82.3316 Christopoulos, 2007, Room-temperature polariton lasing in semiconductor microcavities, Phys. Rev. Lett., 98, 10.1103/PhysRevLett.98.126405 Bajoni, 2008, Polariton laser using single micropillar GaAs− GaAlAs semiconductor cavities, Phys. Rev. Lett., 100, 10.1103/PhysRevLett.100.047401 Kéna-Cohen, 2010, Room-temperature polariton lasing in an organic single-crystal microcavity, Nat. Photonics, 4, 371, 10.1038/nphoton.2010.86 Azzini, 2011, Ultra-low threshold polariton lasing in photonic crystal cavities, Appl. Phys. Lett., 99, 10.1063/1.3638469 Guillet, 2011, Polariton lasing in a hybrid bulk ZnO microcavity, Appl. Phys. Lett., 99, 10.1063/1.3650268 Schneider, 2013, An electrically pumped polariton laser, Nature, 497, 348, 10.1038/nature12036 Bhattacharya, 2013, Solid state electrically injected exciton-polariton laser, Phys. Rev. Lett., 110, 10.1103/PhysRevLett.110.206403 Byrnes, 2014, Exciton-polariton condensates, Nat. Phys., 10, 803, 10.1038/nphys3143 Sanvitto, 2016, The road towards polaritonic devices, Nat. Mater., 15, 1061, 10.1038/nmat4668 Lin, 2016, Defect engineering of two-dimensional transition metal dichalcogenides, 2D Mater., 3, 10.1088/2053-1583/3/2/022002 Ball, 2016, Defects in perovskite-halides and their effects in solar cells, Nat. Energy, 1, 16149, 10.1038/nenergy.2016.149 Amani, 2015, Near-unity photoluminescence quantum yield in MoS2, Science, 350, 1065, 10.1126/science.aad2114