Recent advances in understanding secondary organic aerosol: Implications for global climate forcing

Reviews of Geophysics - Tập 55 Số 2 - Trang 509-559 - 2017
Manish Shrivastava1, Christopher D. Cappa2, Jiwen Fan1, A. H. Goldstein3, Alex Guenther4, J. L. Jiménez5, Alexander Laskin6, Scot T. Martin7, N. L. Ng8, Tuukka Petäjä9, Jeffrey R. Pierce10, Philip J. Rasch1, Pontus Roldin11, John H. Seinfeld12, B. Schmid1, James N. Smith4, Joel A. Thornton13, Rainer Volkamer5, Jian Wang6, Douglas R. Worsnop14, R. A. Zaveri1, Alla Zelenyuk1, Qi Zhang15
1Pacific Northwest National Laboratory, Richland, Washington, USA
2Department of Civil and Environmental Engineering, University of California Davis, California, USA
3Department of Environmental Science, Policy and Management and Department of Civil and Environmental Engineering, University of California, Berkeley, California, USA
4Department of Earth System Science, University of California, Irvine, California, USA
5Cooperative Institute for Research in Environmental Sciences and Department of Chemistry and Biochemistry, University of Colorado Boulder, Boulder, Colorado, USA
6Brookhaven National Laboratory, Upton, New York USA
7School of Engineering and Applied Sciences and Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts, USA
8School of Chemical and Biomolecular Engineering and School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
9Department of Physics, University of Helsinki, Helsinki, Finland
10Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado, USA
11Department of Physics, Lund University, Lund, Sweden
12Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, USA
13Department of Atmospheric sciences, University of Washington, Seattle, Washington, USA
14Aerodyne Research, Inc., Billerica, Massachusetts, USA
15Department of Environmental Toxicology, University of California, Davis, California, USA

Tóm tắt

AbstractAnthropogenic emissions and land use changes have modified atmospheric aerosol concentrations and size distributions over time. Understanding preindustrial conditions and changes in organic aerosol due to anthropogenic activities is important because these features (1) influence estimates of aerosol radiative forcing and (2) can confound estimates of the historical response of climate to increases in greenhouse gases. Secondary organic aerosol (SOA), formed in the atmosphere by oxidation of organic gases, represents a major fraction of global submicron‐sized atmospheric organic aerosol. Over the past decade, significant advances in understanding SOA properties and formation mechanisms have occurred through measurements, yet current climate models typically do not comprehensively include all important processes. This review summarizes some of the important developments during the past decade in understanding SOA formation. We highlight the importance of some processes that influence the growth of SOA particles to sizes relevant for clouds and radiative forcing, including formation of extremely low volatility organics in the gas phase, acid‐catalyzed multiphase chemistry of isoprene epoxydiols, particle‐phase oligomerization, and physical properties such as volatility and viscosity. Several SOA processes highlighted in this review are complex and interdependent and have nonlinear effects on the properties, formation, and evolution of SOA. Current global models neglect this complexity and nonlinearity and thus are less likely to accurately predict the climate forcing of SOA and project future climate sensitivity to greenhouse gases. Efforts are also needed to rank the most influential processes and nonlinear process‐related interactions, so that these processes can be accurately represented in atmospheric chemistry‐climate models.

Từ khóa


Tài liệu tham khảo

10.1039/c2cp44013j

10.1021/es703009q

10.5194/acp-11-4039-2011

10.5194/acp-12-1397-2012

10.5194/acp-14-11393-2014

10.1139/v83-043

10.1016/j.atmosenv.2007.11.015

10.5194/acp-6-3131-2006

10.1029/2000GB001382

10.1039/c3fd00044c

10.5194/acp-11-215-2011

10.1002/kin.550210709

10.1063/1.556012

10.1073/pnas.0912121107

10.1073/pnas.1205910109

10.1029/JD095iD10p16755

10.5194/acp-8-6665-2008

10.1016/j.atmosenv.2004.03.035

10.1016/j.atmosenv.2005.07.056

10.1016/j.atmosenv.2006.03.013

10.5194/acp-9-2949-2009

10.1016/j.atmosenv.2011.01.038

10.1021/jp508521c

10.1038/ngeo2599

10.5194/acp-17-1759-2017

10.1021/jp4107958

10.1021/acs.jpca.5b10335

10.5194/acp-12-5773-2012

10.1039/c6cp08839b

10.5194/acp-14-12513-2014

10.1007/s10874-012-9245-2

Berndt T., 2015, Gas‐phase ozonolysis of cycloalkenes: Formation of highly oxidized RO2 radicals and their reactions with NO, NO2, SO2, and other RO2 radicals, Chem. A Eur. J., 119, 10,336

10.5194/acp-16-215-2016

10.1016/S1352-2310(99)00392-1

10.1080/02786820500421521

10.1002/jgrd.50171

10.1021/acs.est.5b01639

10.1007/s40641-015-0010-x

10.5194/acp-15-7497-2015

10.5194/acp-15-2953-2015

10.5194/acp-16-1747-2016

10.5194/acp-9-3027-2009

10.5194/acp-13-11317-2013

10.1038/srep27881

10.5194/acp-15-8871-2015

10.5194/acp-16-5171-2016

10.1021/es400023n

10.1021/ac100856j

10.1029/2008JD009845

10.5194/acp-10-5409-2010

10.5194/acp-11-1895-2011

10.5194/acp-12-9505-2012

10.5194/acp-16-3041-2016

10.5194/acp-9-4987-2009

10.1021/es903506b

10.1016/j.atmosenv.2007.05.035

10.1021/es801192n

10.1038/nature12674

10.5194/acp-15-8679-2015

10.5194/acp-11-10553-2011

10.5194/acp-10-6363-2010

10.5194/acp-10-7169-2010

10.1021/es100596b

10.5194/acp-10-5047-2010

10.1021/es104398s

10.5194/acp-15-3687-2015

10.5194/acp-11-8827-2011

10.1073/pnas.1203707109

10.1029/2001JD001397

10.1126/science.1092805

10.1021/es9007596

10.1021/es0019169

10.1021/acs.est.6b01617

10.1256/qj.05.86

10.1039/c1cp21330j

10.1021/jp211560u

10.1021/jz4019207

10.1016/0021-8502(81)90036-7

10.5194/acp-11-12049-2011

10.5194/acp-2016-686

10.5194/acp-13-11519-2013

10.1021/es900924d

10.1021/es103797z

10.5194/acp-14-10773-2014

10.1016/j.atmosenv.2010.02.045

10.1021/es9006004

10.1029/2004JD005623

10.1073/pnas.0910818107

10.1016/j.atmosenv.2016.11.047

10.1080/02786820300930

10.1029/2006GL026523

10.1021/es052297c

10.5194/acp-11-3303-2011

10.5194/acp-12-615-2012

10.1073/pnas.1115186109

10.1021/jp103907c

10.5194/acp-7-677-2007

10.5194/acp-12-5113-2012

10.1038/nature13032

10.5194/acp-10-8219-2010

10.5194/acp-11-11069-2011

10.5194/acp-14-81-2014

10.1073/pnas.1316830110

10.5194/acp-13-8607-2013

10.1029/98JD01886

10.1002/2015GL063897

10.1029/2011JD016401

10.1073/pnas.1012561107

10.5194/acp-13-8585-2013

10.1021/es502204x

10.1038/ngeo1964

10.1029/2011GL048514

10.1021/es049125k

10.1029/2000GB001349

10.1021/es5034266

10.1021/acs.est.6b04509

10.1021/cr500648z

Ghan S. J., 2011, Droplet nucleation: Physically‐based parameterizations and comparative evaluation, J. Adv. Model. Earth Syst., 3

10.1021/acs.est.5b05105

10.1021/es072476p

10.1073/pnas.0904128106

10.5194/acp-2016-67

10.5194/acp-16-6027-2016

10.5194/acp-9-1263-2009

10.1029/1998JD100049

10.1021/es60139a005

10.5194/acp-6-3181-2006

10.5194/gmd-5-1471-2012

10.5194/acp-15-5211-2015

10.5194/acp-12-10771-2012

10.1080/02786826.2010.517580

10.1007/s13361-012-0362-6

10.5194/acp-9-5155-2009

10.1021/es050446l

10.1002/jgrd.50530

10.5194/acp-15-5773-2015

10.1029/2005GL023831

10.5194/acp-11-12673-2011

10.5194/acp-11-7669-2011

10.5194/acp-8-2405-2008

10.1021/cr500447k

10.1073/pnas.0907541106

10.5194/acp-9-2973-2009

10.1021/es00019a014

10.1039/C5CP05226B

10.1029/2002JD002352

10.1002/grl.50611

10.5194/acp-16-7917-2016

10.5194/acp-9-2715-2009

10.5194/acp-16-1693-2016

10.5194/acp-11-8307-2011

10.5194/acp-16-11563-2016

10.5194/acp-15-11807-2015

10.1016/j.atmosenv.2014.03.045

10.1021/acs.est.6b01674

10.5194/amt-7-4417-2014

10.1021/es010790s

10.1126/science.1075798

10.5194/acp-16-4423-2016

10.1073/pnas.1323740111

10.5194/acp-11-10541-2011

10.1126/science.1180353

10.1073/pnas.1423977112

10.1021/es302386v

10.5194/acp-15-3077-2015

10.1126/science.1092185

10.1002/kin.550140902

10.1029/2009JD012447

10.1021/es400083d

10.5194/amt-7-689-2014

10.1175/JAS-D-13-054.1

10.1002/2015GL066641

10.1063/1.4803260

10.5194/acp-10-3953-2010

10.1038/nature17953

10.5194/acpd-14-13731-2014

10.5194/acp-14-6213-2014

10.5194/acp-14-1689-2014

10.1021/acs.est.5b03038

10.5194/acp-15-9327-2015

10.1039/c1cp22617g

10.1021/acs.est.5b02031

10.1021/acs.est.6b00606

10.5194/amt-9-3245-2016

10.5194/acp-14-4201-2014

10.1021/acs.estlett.6b00152

10.1016/j.atmosenv.2008.01.003

10.1029/2005GL023637

10.1029/2005JD006004

10.1021/es0524301

10.1021/es062059x

10.1038/NCHEM.948

10.1029/2009GL037584

10.5194/acp-10-8469-2010

10.1034/j.1600-0889.1998.t01-4-00004.x

10.1126/science.1144124

10.1126/science.1227385

10.1021/acs.jpca.5b08948

Kurtén T., 2015, Computational study of the effect of glyoxal–sulfate clustering on the Henry's law coefficient of glyoxal, Chem. A Eur. J., 119, 4509

Kurtén T., 2016, α‐pinene autoxidation products may not have extremely low saturation vapor pressures despite high O:C ratios, Chem. A Eur. J., 120, 2569

10.1073/pnas.1209071109

10.1039/C4CP04942J

10.1021/es00009a046

10.5194/acp-16-1417-2016

10.1073/pnas.1206575109

10.5194/acp-11-8913-2011

10.1021/es300274t

10.5194/acp-15-3063-2015

10.1021/es703225a

10.1071/EN12052

10.1021/cr5006167

10.1080/0144235X.2012.752904

10.5194/acp-12-7103-2012

10.1021/es402687w

10.1073/pnas.1508108113

10.1021/es502515r

10.1021/es7023059

10.5194/acp-14-2657-2014

10.1016/j.atmosenv.2015.08.010

10.5194/acp-16-3327-2016

10.1021/acs.est.5b03392

10.1002/2015RG000500

10.1002/2014JD022378

10.1029/2006GL026079

10.1021/es048375y

10.5194/acp-13-8651-2013

10.5194/acp-12-4743-2012

10.1002/2013JD021186

10.1002/2015GL067137

10.1016/j.jaerosci.2009.09.001

10.1039/C5CP02563J

10.1021/es202554c

10.5194/acp-13-8457-2013

10.1073/pnas.1221150110

10.1021/es503142b

10.1021/acs.est.6b01872

10.1021/es403411e

10.5194/acp-15-1435-2015

10.1073/pnas.1603138113

10.5194/acp-16-675-2016

10.5194/gmd-5-709-2012

10.1002/2016JD025040

10.1088/1748-9326/5/4/044010

10.1016/j.atmosenv.2011.12.012

10.5194/acp-13-5715-2013

10.1039/C5CP04551G

10.5194/acp-10-6169-2010

10.1021/es060810w

10.5194/amt-7-983-2014

10.5194/acp-15-7765-2015

10.1021/acs.est.5b04769

10.1021/es100727v

10.5194/acp-12-151-2012

10.1021/es400979k

10.5194/acp-14-1423-2014

10.1021/acs.est.5b02587

10.5194/acp-16-1603-2016

10.1029/2008RG000280

10.5194/acp-16-4785-2016

10.1029/2010GL045258

10.1080/02786826.2010.501044

10.5194/acp-15-6323-2015

10.5194/acp-6-2593-2006

10.1080/02786828508959054

10.1021/es00142a006

10.1021/es502170j

10.5194/acp-13-12155-2013

10.1002/jgrd.50285

10.5194/acp-9-8601-2009

10.5194/acp-2016-130

10.1029/94JD01334

10.1088/1748-9326/3/2/025007

10.1021/cr5005259

10.1029/2006JD007340

10.5194/acp-13-1853-2013

10.1021/acs.est.5b04594

Nah T., 2016, Constraining uncertainties in particle wall‐deposition correction during SOA formation in chamber experiments, Atmos. Chem. Phys. Discuss., 2016, 1

10.5194/acp-16-9361-2016

10.5194/acp-12-3927-2012

10.17226/23573

10.1021/es052269u

10.5194/acp-7-3909-2007

10.5194/acp-7-5159-2007

10.5194/acp-8-4117-2008

10.5194/acp-2016-734

10.5194/acp-17-2103-2017

10.1016/j.atmosenv.2009.12.019

10.1021/es201611n

10.5194/acp-11-6931-2011

10.1039/c2cp40944e

10.01029/02011JD016944

10.5194/acp-14-3497-2014

10.5194/acp-14-13531-2014

10.1039/C5CP02001H

10.1039/c0cp02032j

10.1002/2014GL060219

10.1039/C4CP00857J

10.5194/acp-16-5299-2016

10.1021/es950943

10.1126/science.276.5309.96

10.1021/es960535l

10.1039/c2cs35166h

10.5194/acp-13-11551-2013

10.1021/es4035667

10.1016/j.atmosenv.2015.12.013

10.1002/2015GL063142

10.1016/0960-1686(91)90141-S

10.1016/1352-2310(94)90094-9

10.1002/kin.20248

10.5194/acp-7-3811-2007

10.5194/acp-9-1479-2009

10.1126/science.1172910

10.1029/92JD01914

10.1021/jp211447q

10.1039/b908511d

10.1021/jp5033146

10.5194/amt-8-4863-2015

10.1073/pnas.1119909109

10.1016/j.atmosenv.2008.11.037

10.1103/PhysRevLett.106.228302

10.5194/acp-7-1961-2007

10.5194/gmd-9-111-2016

10.5194/acp-11-7343-2011

10.5194/acp-9-1339-2009

10.1080/02786820802389251

10.5194/acp-11-9019-2011

10.5194/acp-13-3163-2013

10.5194/acp-7-5989-2007

10.1126/science.1191056

10.1038/ngeo521

10.1021/es050400s

10.1021/es050400s

10.1039/C5SC00685F

10.5194/acp-10-11261-2010

10.1021/es402106h

10.5194/acp-9-8697-2009

10.5194/acp-16-4897-2016

10.1021/jp502186q

10.1073/pnas.1219548110

10.1126/science.1243527

10.1021/ez500406f

10.5194/acp-11-3865-2011

10.1038/ngeo1499

10.1016/j.atmosenv.2014.11.010

10.1021/ja507146s

10.1021/jp510966g

10.1016/j.atmosenv.2015.06.027

10.1021/acs.est.5b06050

10.1021/acs.est.6b02511

10.1016/j.atmosenv.2016.12.040

10.1126/science.1133061

Robinson E. S., 2013, Organic aerosol mixing observed by single‐particle mass spectrometry, Chem. A Eur. J., 117, 13,935

10.5194/acp-11-1039-2011

10.5194/acp-14-7953-2014

10.5194/acp-15-10777-2015

10.1126/science.1221520

Romonosky D. E., 2015, High‐resolution mass spectrometry and molecular characterization of aqueous photochemistry products of common types of secondary organic aerosols, Chem. A Eur. J., 119, 2594

10.1002/2013RG000441

10.1021/es405581g

10.1029/2012GL053706

10.1126/science.aad4889

10.1016/S1352-2310(99)00408-2

10.1002/etc.5620120504

10.1002/2015GL063737

10.5194/amt-9-3851-2016

10.1023/A:1006501706704

10.1021/jp309413j

10.5194/acp-16-14409-2016

10.1021/es001331e

10.1029/2007JD008605

10.5194/acp-14-447-2014

Seinfeld J. H., 1998, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 656

10.1073/pnas.1514043113

10.1515/zpch-1889-0109

10.5194/acp-13-2091-2013

10.1029/2012GL054008

10.5194/acp-10-3673-2010

10.5194/acp-12-2777-2012

10.1039/c3cp51595h

10.1073/pnas.1307501110

10.1002/jgrd.50160

10.1029/2012JD018218

10.1002/2014JD022563

10.1002/2015MS000554

10.1073/pnas.1618475114

10.1126/science.1180315

10.5194/acp-11-2991-2011

10.1021/es4045715

10.1039/C4CP06095D

10.1016/j.atmosenv.2015.11.035

10.1029/2007GL032523

10.1073/pnas.0912127107

10.1021/es0493244

10.5194/acp-15-5145-2015

10.5194/acp-16-8817-2016

10.1021/es0630442

10.1029/2010GL044951

10.5194/acp-10-4775-2010

10.5194/acp-11-12109-2011

St. Clair J. M., 2016, Kinetics and products of the reaction of the first‐generation Isoprene Hydroxy Hydroperoxide (ISOPOOH) with OH, Chem. A Eur. J., 120, 1441

10.5194/acp-10-9863-2010

10.1038/nature08281

Stocker T. F. D.Qin G.‐K.Plattner M.Tignor S. K.Allen J.Boschung A.Nauels Y.Xia V.Bex andP. M.Midgley(2013) IPCC 2013: Climate Change 2013—The Physical Sciences Basis Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Cambridge Univ. Press Cambridge U. K. and New York.

10.5194/acp-15-845-2015

10.1021/i160054a017

10.5194/acp-16-8095-2016

10.5194/acp-10-4809-2010

10.1021/jp061734m

10.1021/es0704176

10.1021/es062081q

10.1021/jp802310p

10.1073/pnas.0911114107

10.1002/jms.1146

10.5194/acp-12-801-2012

10.1021/es9907156

10.1021/es035030r

10.1039/c3fd00047h

10.1021/jp2104837

10.1038/nature18271

10.5194/acp-14-3691-2014

10.5194/acp-3-1849-2003

10.5194/acp-14-10845-2014

10.1002/kin.550221202

10.1016/j.atmosenv.2012.09.012

10.1073/pnas.0911206107

10.1073/pnas.1013391108

10.1002/2014GL059396

10.5194/acp-11-6895-2011

10.5194/acp-10-11707-2010

10.1038/nature09455

10.1029/2006GL026899

10.5194/acp-9-1907-2009

10.5194/acp-15-7085-2015

10.1021/es5035602

10.5194/acp-8-6325-2008

10.1038/ngeo778

10.1002/jgrd.50356

10.1002/rcm.1940

10.5194/acp-14-10989-2014

10.5194/acp-16-12733-2016

10.5194/acp-14-13189-2014

10.5194/acp-10-5435-2010

10.1016/S1352-2310(03)00136-5

10.1029/2009JD012445

10.1002/2014GL062444

10.1021/acs.est.5b02782

10.1029/2007JD008408

10.1029/2005GL023827

10.1021/es070193r

Wennberg P.(2013) Let's abandon the “high NOX” and “low NOX” terminology IGAC News(50) 3‐4.

10.5194/acp-14-5577-2014

10.1080/02786820600754631

10.1021/es505331d

10.1029/2012GL053253

10.1039/c2cp40388a

10.1175/JCLI-D-12-00517.1

10.1021/es404842g

10.5194/acp-15-7307-2015

10.1073/pnas.1417609112

10.1002/2016JD025156

10.1080/02786826.2016.1195905

10.1073/pnas.1604536113

10.5194/acp-13-8019-2013

10.1021/jp500631v

10.1080/02786826.2015.1068427

10.5194/acp-13-12507-2013

10.5194/acp-8-3509-2008

10.5194/acp-13-89-2013

10.5194/acp-14-13801-2014

10.5194/acp-16-4511-2016

10.1029/2011JD016506

10.1021/es2040152

10.1029/2007JD008782

10.1029/2009JD013250

10.5194/acp-14-5153-2014

10.1021/ac1013892

10.1021/es302743z

10.1039/C7FD00032D

10.5194/acp-11-6411-2011

10.1029/2007GL029979

10.1021/cr2001756

10.1126/science.1095139

10.1073/pnas.1404727111

10.5194/acp-15-4197-2015

10.1021/acs.est.5b04134

10.1029/2011GL049385

10.5194/acp-15-7819-2015

10.5194/acp-16-1105-2016

10.5194/acp-15-6087-2015

10.1039/C3FD00030C

10.5194/acp-17-2477-2017

10.1080/0144235X.2010.550728

10.1039/c2cs35122f

10.1039/c0cp01273d

10.1002/2013JD021114