Recent advances in the use of ionic liquids in the CO2 conversion to CO and C2+ hydrocarbons

Magno F. Santos1, Murilo L. Alcantara1, Claudio Augusto O. Nascimento1, Gabriel S. Bassani2, Rita Maria B. Alves1
1Department of Chemical Engineering, Universidade de São Paulo, São Paulo, Brazil
2Repsol Sinopec Brasil, Rio de Janeiro, Brazil

Tóm tắt

Addressing industrial carbon dioxide (CO2) emissions is imperative due to its contribution to global warming. Transitioning toward more sustainable processes, CO2 conversion technologies hold promise in generating high-value chemicals. Notably, ionic liquids (ILs) have been reported to significantly boost CO2 conversion to CO and facilitate the production of C2+ hydrocarbons within a single reactor. This study delves into the recent advancements in employing ILs for converting CO2 into CO or into C2+ hydrocarbons. Performance metrics of various catalysts, both with and without ILs, involved in the reverse water–gas shift (RWGS) reaction, are presented. Detailed insights into the underlying reaction mechanisms and thermodynamics are shared. Further, the study elaborates on the experimental procedures adopted for synthesizing IL + metal catalysts, optimally suitable for producing CO or C2+ hydrocarbons. Additionally, we report the latest accomplishments in IL-based electrochemical CO2 reduction to CO. Despite the limited availability of studies, the use of IL + metal catalysts for CO2 reduction to CO or C2+ has shown considerable promise. These advancements predominantly involve lowering the operational temperature of the reactor and enabling the production of C2+ hydrocarbons in a single unit. However, this technology is still incipient. There are crucial areas that demand further exploration, such as understanding system kinetics, thermodynamics, and enhancing process modeling and simulation. As such, this study provides a comprehensive understanding of the potential and challenges of IL-enhanced CO2 conversion, propelling future research in this field.

Tài liệu tham khảo

Abbott AP, Capper G, Davies DL et al (2004a) Electrodeposition of chromium black from ionic liquids. Trans IMF 82:14–17. https://doi.org/10.1080/00202967.2004.11871547 Abbott AP, Capper G, Davies DL, Rasheed RK (2004b) Ionic liquid analogues formed from hydrated metal salts. Chem Eur J 10:3769–3774. https://doi.org/10.1002/chem.200400127 Adamu A, Russo-Abegão F, Boodhoo K (2020) Process intensification technologies for CO2 capture and conversion – a review. BMC Chem Eng 2:1–18. https://doi.org/10.1186/s42480-019-0026-4 Ahmad K, Upadhyayula S (2019) Greenhouse gas CO2 hydrogenation to fuels: a thermodynamic analysis. Environ Prog Sustain Energy 38:98–111. https://doi.org/10.1002/ep.13028 Alcantara ML, Pacheco KA, Bresciani AE, Brito Alves RM (2021) Thermodynamic analysis of carbon dioxide conversion reactions. Case studies: formic acid and acetic acid synthesis. Ind Eng Chem Res 60:9246–9258. https://doi.org/10.1021/acs.iecr.1c00989 Alcantara ML, Santos JP, Loreno M et al (2018) Low viscosity protic ionic liquid for CO2 /CH4 separation: thermophysical and high-pressure phase equilibria for diethylammonium butanoate. Fluid Phase Equilib 459:30–43. https://doi.org/10.1016/j.fluid.2017.12.001 Ali AM, Aqeel T, Ayyaz M et al (2021) Electrocatalytic hydrogenation of CO2 to hydrocarbons on gold catalyst in the presence of ionic liquid. J Chem Soc Pak 43:665–672 Ali M (2016) Catalytic carbon dioxide transformation catalysed ruthenium in ionic liquids. Doctoral thesis, Universidade Federal do Rio Grande do Sul. Instituto de Química Ali M, Gual A, Ebeling G, Dupont J (2014) Ruthenium-catalyzed hydroformylation of alkenes by using carbon dioxide as the carbon monoxide source in the presence of ionic liquids. ChemCatChem 6:2224–2228. https://doi.org/10.1002/cctc.201402226 Ali M, Gual A, Ebeling G, Dupont J (2016) Carbon Dioxide transformation in imidazolium salts: hydroaminomethylation catalyzed by ru-complexes. Chemsuschem 9:2129–2134. https://doi.org/10.1002/cssc.201600385 Allahyari S, Haghighi M, Ebadi A et al (2014) The beneficial use of ultrasound irradiation and nitrate/acetate metal precursors in the co-precipitation synthesis and characterization of nanostructured CuO–ZnO–Al2O3 catalyst for methanol synthesis. React Kinet Mech Catal 112:101–116. https://doi.org/10.1007/s11144-014-0677-3 Aresta M (2010) Carbon dioxide as chemical feedstock. Wiley Bartholomew CH (2001) Mechanisms of catalyst deactivation. Appl Catal A Gen 212:17–60. https://doi.org/10.1016/S0926-860X(00)00843-7 Bello TO, Bresciani AE, Nascimento CAO, Alves RMB (2021a) Thermodynamic analysis of carbon dioxide hydrogenation to formic acid and methanol. Chem Eng Sci 242:116731. https://doi.org/10.1016/j.ces.2021.116731 Bello TO, Bresciani AE, Oller Nascimento CA, Brito Alves RM (2021b) Systematic screening of ionic liquids for the hydrogenation of carbon dioxide to formic acid and methanol. Ind Eng Chem Res 60:17195–17206. https://doi.org/10.1021/acs.iecr.1c02910 Blunt JW, Copp BR, Keyzers RA et al (2017) Marine natural products. Nat Prod Rep 34:235–294. https://doi.org/10.1039/C6NP00124F Cao Y, Mu T (2014) Comprehensive investigation on the thermal stability of 66 ionic liquids by thermogravimetric analysis. Ind Eng Chem Res 53:8651–8664. https://doi.org/10.1021/ie5009597 Chang F, Zhan G, Wu Z et al (2021) Technoeconomic analysis and process design for CO 2 electroreduction to CO in ionic liquid electrolyte. ACS Sustain Chem Eng 9:9045–9052. https://doi.org/10.1021/acssuschemeng.1c02065 Chen Y, Cao Y, Shi Y et al (2012) Quantitative research on the vaporization and decomposition of [EMIM][Tf 2 N] by thermogravimetric analysis-mass spectrometry. Ind Eng Chem Res 51:7418–7427. https://doi.org/10.1021/ie300247v Chong FK, Chemmangattuvalappil NG, Eljack FT et al (2016) Designing ionic liquid solvents for carbon capture using property-based visual approach. Clean Technol Environ Policy 18:1177–1188. https://doi.org/10.1007/s10098-016-1111-5 Chong FK, Foo DCY, Eljack FT et al (2015) Ionic liquid design for enhanced carbon dioxide capture by computer-aided molecular design approach. Clean Technol Environ Policy 17:1301–1312. https://doi.org/10.1007/s10098-015-0938-5 Corvo MC, Sardinha J, Menezes SC et al (2013) Solvation of carbon dioxide in [C4mim][BF4] and [C4mim][PF6] ionic liquids revealed by high-pressure NMR spectroscopy. Angew Chem 125:13262–13265. https://doi.org/10.1002/ange.201305630 Dasireddy VDBC, Vengust D, Likozar B et al (2021) Production of syngas by CO2 reduction through reverse water-gas shift (RWGS) over catalytically-active molybdenum-based carbide, nitride and composite nanowires. Renew Energy 176:251–261. https://doi.org/10.1016/j.renene.2021.05.051 Delmo EP, Wang Y, Wang J et al (2022) Metal organic framework-ionic liquid hybrid catalysts for the selective electrochemical reduction of CO2 to CH4. Chin J Catal 43:1687–1696. https://doi.org/10.1016/S1872-2067(21)63970-0 Dong Q, Muzny CD, Kazakov A et al (2007) ILThermo: a free-access web database for thermodynamic properties of ionic liquids. J Chem Eng Data 52:1151–1159. https://doi.org/10.1021/je700171f Earle MJ, Esperança JMSS, Gilea MA et al (2006) The distillation and volatility of ionic liquids. Nature 439:831–834. https://doi.org/10.1038/nature04451 Erdmenger T, Vitz J, Wiesbrock F, Schubert US (2008) Influence of different branched alkyl side chains on the properties of imidazolium-based ionic liquids. J Mater Chem 18:5267. https://doi.org/10.1039/b807119e Freemantle M (2003) Chemistry basf’s smart ionic liquid. Chem Eng News Archive 81:9. https://doi.org/10.1021/cen-v081n013.p009 Friess K, Izák P, Kárászová M et al (2021) A Review on ionic liquid gas separation membranes. Membranes (basel) 11:97. https://doi.org/10.3390/membranes11020097 García-Verdugo E, Altava B, Burguete MI et al (2015) Ionic liquids and continuous flow processes: a good marriage to design sustainable processes. Green Chem 17:2693–2713. https://doi.org/10.1039/C4GC02388A Ghaib K, Nitz K, Ben-Fares F-Z (2016) Chemical methanation of CO2: a review. ChemBioEng Rev 3:266–275. https://doi.org/10.1002/cben.201600022 Ghiat I, Al-ansari T (2021) A review of carbon capture and utilisation as a CO2 abatement opportunity within the EWF nexus. J CO2 Util 45:101432. https://doi.org/10.1016/j.jcou.2020.101432 Greer AJ, Jacquemin J, Hardacre C (2020) Industrial applications of ionic liquids. Molecules 25:5207. https://doi.org/10.3390/molecules25215207 Grim RG, Huang Z, Guarnieri MT et al (2020) Transforming the carbon economy: challenges and opportunities in the convergence of low-cost electricity and reductive CO2 utilization. Energy Environ Sci 13:472–494. https://doi.org/10.1039/C9EE02410G Guo X, Peng Z, Traitangwong A et al (2018) Ru nanoparticles stabilized by ionic liquids supported onto silica: highly active catalysts for low-temperature CO2 methanation. Green Chem 20:4932–4945. https://doi.org/10.1039/C8GC02337A Hatanaka M, Uchiage E, Nishida M, Tominaga K (2021) Low-temperature reverse water-gas shift reaction using SILP ru catalysts under continuous-flow conditions. Chem Lett 50:1586–1588. https://doi.org/10.1246/cl.210184 Haumann M (2020) Continuous Catalytic Processes with Supported Ionic Liquid Phase (SILP) Materials. pp 49–67 Haumann M, Riisager A (2008) Hydroformylation in room temperature ionic liquids (RTILs): catalyst and process developments. Chem Rev 108:1474–1497. https://doi.org/10.1021/cr078374z Holbrey JD, Plechkova NV, Seddon KR (2006) Recalling coil. Green Chem 8:411. https://doi.org/10.1039/b605378p Hospital-Benito D, Lemus J, Moya C et al (2020) Process analysis overview of ionic liquids on CO2 chemical capture. Chem Eng J 390:124509. https://doi.org/10.1016/j.cej.2020.124509 Huang K, Han X, Zhang X, Armstrong DW (2007) PEG-linked geminal dicationic ionic liquids as selective, high-stability gas chromatographic stationary phases. Anal Bioanal Chem 389:2265–2275. https://doi.org/10.1007/s00216-007-1625-0 Jin S, Hao Z, Zhang K et al (2021) Advances and challenges for the electrochemical reduction of CO2 to CO: from fundamentals to industrialization. Angew Chem Int Ed 60:20627–20648. https://doi.org/10.1002/anie.202101818 Kalb RS (2020) Toward industrialization of ionic liquids. pp 261–282 Kattel S, Yu W, Yang X et al (2016) CO2 hydrogenation over oxide-supported PtCo catalysts: the role of the oxide support in determining the product selectivity. Angew Chem Int Ed 55:7968–7973. https://doi.org/10.1002/anie.201601661 Kildahl H, Wang L, Tong L et al (2022) Industrial carbon monoxide production by thermochemical CO2 splitting A techno-economic assessment. J CO2 Util 65:102181. https://doi.org/10.1016/j.jcou.2022.102181 Kirichenko O, Kapustin G, Nissenbaum V et al (2018) Thermal decomposition and reducibility of silica-supported precursors of Cu, Fe and Cu–Fe nanoparticles. J Therm Anal Calorim 134:233–251. https://doi.org/10.1007/s10973-018-7122-1 Krylova AY (2014) Products of the Fischer-Tropsch synthesis (a review). Solid Fuel Chem 48:22–35. https://doi.org/10.3103/S0361521914010030 Kustov LM, Tarasov AL (2016) Fischer-Tropsch synthesis in a slurry mode using ionic liquids. Catal Commun 75:42–44. https://doi.org/10.1016/j.catcom.2015.12.003 Lazar MD, Dan M, Mihet M, et al (2011) Hydrogen production by low temperature methane steam reforming using Ag and Au modified alumina supported nickel catalysts Li S, Xu Y, Chen Y et al (2017) Tuning the selectivity of catalytic carbon dioxide hydrogenation over iridium/cerium oxide catalysts with a strong metal-support interaction. Angew Chem Int Ed 56:10761–10765. https://doi.org/10.1002/anie.201705002 Lima EC, Gomes AA, Nguyen H (2020) Comparison of the nonlinear and linear forms of the van ’ t Hoff equation for calculation of adsorption thermodynamic parameters ( Δ S ° and Δ H ° ). J Mol Liq 311:113315. https://doi.org/10.1016/j.molliq.2020.113315 Liu S, Tao H, Liu Q et al (2018) Rational design of silver sulfide nanowires for efficient CO2 electroreduction in ionic liquid. ACS Catal 8:1469–1475. https://doi.org/10.1021/acscatal.7b03619 Maase M, Massonne K, Halbritter K, et al (2008) Method for the separation of acids from chemical reaction mixtures by means of ionic fluids Maitlis PM (2013) What is Fischer–Tropsch? Greener Fischer-Tropsch processes for fuels and feedstocks, 1st edn. John Wiley & Sons, Weinheim, pp 1–15 Marsh KN, Boxall JA, Lichtenthaler R (2004) Room temperature ionic liquids and their mixtures - a review. Fluid Phase Equilib 219:93–98. https://doi.org/10.1016/j.fluid.2004.02.003 Maton C, De Vos N, Stevens CV (2013) Ionic liquid thermal stabilities: decomposition mechanisms and analysis tools. Chem Soc Rev 42:5963. https://doi.org/10.1039/c3cs60071h Messias S, Sousa MM, Nunes da Ponte M et al (2019) Electrochemical production of syngas from CO2 at pressures up to 30 bar in electrolytes containing ionic liquid. React Chem Eng 4:1982–1990. https://doi.org/10.1039/C9RE00271E Miao W, Tak HC (2006) Ionic-liquid-supported synthesis: a novel liquid-phase strategy for organic synthesis. Acc Chem Res 39:897–908. https://doi.org/10.1021/ar030252f Moganty SS, Lee J (2016) Hybrid ionic liquid electrolytes Mota-Lima A, Alcantara ML, Pérez-Sanz FJ et al (2021) Review - high-pressure carbon dioxide separation using ionic liquids: a CO2-electrocatalysis perspective. J Electrochem Soc 168:086502. https://doi.org/10.1149/1945-7111/ac085d National Oceanic and Atmospheric Administration (2023) Carbon dioxide now more than 50% higher than pre-industrial levels. In: U. S. Department of Commerce. https://www.noaa.gov/news-release/carbon-dioxide-now-more-than-50-higher-than-pre-industrial-levels#:~:text=Carbon%20dioxide%20measured%20at%20NOAA’s,of%20California%20San%20Diego%20announced. Accessed 16 Jan 2023 Ngo HL, LeCompte K, Hargens L, McEwen AB (2000) Thermal properties of imidazolium ionic liquids. Thermochim Acta 357–358:97–102. https://doi.org/10.1016/S0040-6031(00)00373-7 Osaki T, Narita N, Horiuchi T et al (1997) Kinetics of reverse water gas shift (RWGS) reaction on metal disulfide catalysts. J Mol Catal A Chem 125:63–71. https://doi.org/10.1016/S1381-1169(97)00080-0 Otto A, Grube T, Schiebahn S, Stolten D (2015) Closing the loop: captured CO2 as a feedstock in the chemical industry. Energy Environ Sci 8:3283–3297. https://doi.org/10.1039/C5EE02591E Qadir MI, Bernardi F, Scholten JD et al (2019a) Synergistic CO2 hydrogenation over bimetallic Ru/Ni nanoparticles in ionic liquids. Appl Catal B 252:10–17. https://doi.org/10.1016/j.apcatb.2019.04.005 Qadir MI, Webber R, Dupont J (2019b) Transition metal-catalyzed hydrogenation of carbon dioxide in ionic liquids. In: Advances in organometallic chemistry. Elsevier, pp 259–274 Qadir MI, Weilhard A, Fernandes JA et al (2018) Selective carbon dioxide hydrogenation driven by ferromagnetic RuFe nanoparticles in ionic liquids. ACS Catal 8:1621–1627. https://doi.org/10.1021/acscatal.7b03804 Qadir MI, Zanatta M, Gil ES et al (2019c) Photocatalytic reverse semi-combustion driven by ionic liquids. Chemsuschem 12:1011–1016. https://doi.org/10.1002/cssc.201802974 Ratti R (2014) Ionic liquids: synthesis and applications in catalysis. Adv Chem 2014:1–16. https://doi.org/10.1155/2014/729842 Riedel T, Claeys M, Schulz H et al (1999) Comparative study of Fischer-Tropsch synthesis with H2/CO and H2/CO2 syngas using Fe- and Co-based catalysts. Appl Catal A Gen 186:201–213. https://doi.org/10.1016/S0926-860X(99)00173-8 Rostrup-Nielsen JR (1984) Catalytic steam reforming. pp 1–117 Runge W (2014) Supplement to the treatise. Technology entrepreneurship: a treatise on entrepreneurs and entrepreneurship for and in technology Ventures. KIT Scientific Publishing, Karlsrue, Germany Saeidi S, Najari S, Fazlollahi F et al (2017) Mechanisms and kinetics of CO2 hydrogenation to value-added products: a detailed review on current status and future trends. Renew Sustain Energy Rev 80:1292–1311. https://doi.org/10.1016/j.rser.2017.05.204 Sandler SI (1989) Chemical and engineering thermodynamics, 2nd edn. John Wiley & Sons, New York Sasaki T (2022) CO2 hydrogenation in ionic liquids: recent update. Curr Opin Green Sustain Chem 36:100633. https://doi.org/10.1016/j.cogsc.2022.100633 Scripps Institution of Oceanography (2023) The Keeling Curve. In: University of California San Diego. https://keelingcurve.ucsd.edu/. Accessed 16 Jan 2023 Shen X, Meng Q, Dong M et al (2019) Low-Temperature reverse water-gas shift process and transformation of renewable carbon resources to value-added chemicals. Chemsuschem 12:5149–5156. https://doi.org/10.1002/cssc.201902404 Shirota H, Mandai T, Fukazawa H, Kato T (2011) Comparison between Dicationic and monocationic ionic liquids: liquid density, thermal properties, surface tension, and shear viscosity. J Chem Eng Data 56:2453–2459. https://doi.org/10.1021/je2000183 Shukla SK, Kumar A (2015) Polarity issues in room temperature ionic liquids. Clean Technol Environ Policy 17:1111–1116. https://doi.org/10.1007/s10098-014-0864-y Simon NM, Zanatta M, dos Santos FP et al (2017) Carbon dioxide capture by aqueous ionic liquid solutions. Chemsuschem 10:4927–4933. https://doi.org/10.1002/cssc.201701044 Solvay, SA (2015) Press release: solvay successfully completes the acquisition of cytec and launches integration plans. Belgium, Brussels Tullo AH (2017) Batteries that breathe air. C&EN Global Enterprise 95:21–22. https://doi.org/10.1021/cen-09509-bus1 Vagt U (2018) Ionic liquids unique materials with multiple prospects. CHEManager Eur 11 Varvoutis G, Lykaki M, Papista E et al (2021) Effect of alkali (Cs) doping on the surface chemistry and CO2 hydrogenation performance of CuO/CeO2 catalysts. J CO2 Utiliz 44:101408. https://doi.org/10.1016/j.jcou.2020.101408 Vollmer C, Janiak C (2011) Naked metal nanoparticles from metal carbonyls in ionic liquids: easy synthesis and stabilization. Coord Chem Rev 255:2039–2057. https://doi.org/10.1016/j.ccr.2011.03.005 Wang H, Wu Y, Zhao Y, Liu Z (2020) Recent progress on ionic liquid-mediated CO2 conversion. Acta Physico Chimica Sinica. https://doi.org/10.3866/PKU.WHXB202010022 Wang H, Zhao Y, Wu Y et al (2019) Hydrogenation of carbon dioxide to C2–C4 hydrocarbons catalyzed by Pd(PtBu3)2–FeCl2 with ionic liquid as cocatalyst. Chemsuschem 12:4390–4394. https://doi.org/10.1002/cssc.201901820 Webb PB, Sellin MF, Kunene TE et al (2003) Continuous flow hydroformylation of alkenes in supercritical fluid−ionic liquid biphasic systems. J Am Chem Soc 125:15577–15588. https://doi.org/10.1021/ja035967s Weilhard A, Qadir MI, Sans V, Dupont J (2018) Selective CO2 hydrogenation to formic acid with multifunctional ionic liquids. ACS Catal 8:1628–1634. https://doi.org/10.1021/acscatal.7b03931 Wenzel M, Rihko-Struckmann L, Sundmacher K (2018) Continuous production of CO from CO2 by RWGS chemical looping in fixed and fluidized bed reactors. Chem Eng J 336:278–296. https://doi.org/10.1016/j.cej.2017.12.031 Werner S, Szesni N, Bittermann A et al (2010a) Screening of supported ionic liquid phase (SILP) catalysts for the very low temperature water–gas-shift reaction. Appl Catal A Gen 377:70–75. https://doi.org/10.1016/j.apcata.2010.01.019 Werner S, Szesni N, Fischer RW et al (2009a) Homogeneous ruthenium-based water–gas shift catalysts via supported ionic liquid phase (SILP) technology at low temperature and ambient pressure. Phys Chem Chem Phys 11:10817. https://doi.org/10.1039/b912688k Werner S, Szesni N, Kaiser M, et al (2009b) Catalyst composition for converting carbon monoxide into gas flows Werner S, Szesni N, Kaiser M et al (2012) A scalable preparation method for SILP and SCILL ionic liquid thin-film materials. Chem Eng Technol 35:1962–1967. https://doi.org/10.1002/ceat.201200210 Werner S, Szesni N, Kaiser M et al (2010b) Ultra-low-temperature water-gas shift catalysis using supported ionic liquid phase (SILP) materials*. ChemCatChem 2:1399–1402. https://doi.org/10.1002/cctc.201000245 Werner S, Weiss T, Haumann M et al (2008) Supported ionic liquid phase (SILP) catalyzed water-gas-shift reaction. Chem Ing Tec 80:1259–1260. https://doi.org/10.1002/cite.200750471 Wu T-Y, Chen B-K, Hao L et al (2011) Physicochemical properties of glycine-based ionic liquid [QuatGly-OEt][EtOSO3] (2-Ethoxy-1-ethyl-1,1-dimethyl-2-oxoethanaminium ethyl sulfate) and its binary mixtures with poly(ethylene glycol) (Mw = 200) at various temperatures. Int J Mol Sci 12:8750–8772. https://doi.org/10.3390/ijms12128750 Yasuda T, Uchiage E, Fujitani T et al (2018) Reverse water gas shift reaction using supported ionic liquid phase catalysts. Appl Catal B 232:299–305. https://doi.org/10.1016/j.apcatb.2018.03.057 Yu M, Zhai LY, Zhou Q et al (2012) Ionic liquids as novel catalysts for methane conversion under a DC discharge plasma. Appl Catal A Gen 419–420:53–57. https://doi.org/10.1016/j.apcata.2012.01.010 Yu S, Jain PK (2019) Plasmonic photosynthesis of C1–C3 hydrocarbons from carbon dioxide assisted by an ionic liquid. Nat Commun 10:2022. https://doi.org/10.1038/s41467-019-10084-5 Zhang G, Straub S, Shen L et al (2020) Probing CO2 reduction pathways for copper catalysis using an ionic liquid as a chemical trapping agent. Angew Chem Int Ed 59:18095–18102. https://doi.org/10.1002/anie.202009498 Zohuri B, McDaniel P (2021) Population growth driving energy demand. In: Introduction to energy essentials. Elsevier, pp 1–42