Những tiến bộ gần đây trong việc điều hòa thần kinh hành vi ăn uống ở Drosophila trưởng thành

Journal of Zhejiang University-SCIENCE B - Tập 20 - Trang 541-549 - 2019
Gao-hang Wang1, Li-ming Wang1
1MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China

Tóm tắt

Khả năng duy trì cân bằng trao đổi chất là một khả năng quan trọng quyết định sự sống còn và phúc lợi của động vật sống trong các môi trường liên tục biến đổi. Cân bằng trao đổi chất phụ thuộc vào các chất điều biến thần kinh, chẳng hạn như amin sinh học, peptide thần kinh và hormone, để báo hiệu những thay đổi trong tình trạng trao đổi chất nội tại của động vật và điều phối hành vi của chúng tương ứng. Một ví dụ quan trọng là việc điều tiết hành vi ăn uống thông qua các cơ chế phân tử và tế bào đã được bảo tồn trong vương quốc động vật. Bộ não tương đối đơn giản của nó kết hợp với di truyền học và các mô hình hành vi đã được xác định rõ ràng khiến ruồi giấm Drosophila melanogaster trở thành một mô hình tuyệt vời để điều tra sự điều chỉnh của các chất điều biến thần kinh đối với hành vi ăn uống. Trong bài đánh giá này, chúng tôi thảo luận về các chất điều biến thần kinh và các mạch thần kinh tích hợp trạng thái sinh lý nội tại với các tín hiệu giác quan bên ngoài và điều chỉnh hành vi ăn uống ở ruồi giấm trưởng thành. Các nghiên cứu cho thấy rằng nhiều khía cạnh cụ thể của hành vi ăn uống bị ảnh hưởng bởi sự điều chỉnh độc nhất của các chất điều biến thần kinh, cho phép ruồi giấm duy trì cân bằng trao đổi chất một cách hiệu quả.

Từ khóa

#Drosophila #điều hòa hành vi ăn uống #chất điều biến thần kinh #cân bằng trao đổi chất #ruồi giấm trưởng thành

Tài liệu tham khảo

Ahn JE, Chen Y, Amrein H, 2017. Molecular basis of fatty acid taste in Drosophila. eLife, 6:e30115. https://doi.org/10.7554/eLife.30115 Al-Anzi B, Armand E, Nagamei P, et al., 2010. The leucokinin pathway and its neurons regulate meal size in Drosophila. Curr Biol, 20(11):969–978. https://doi.org/10.1016/j.cub.2010.04.039 Bharucha KN, Tarr P, Zipursky SL, 2008. A glucagon-like endocrine pathway in Drosophila modulates both lipid and carbohydrate homeostasis. J Exp Biol, 211:3103–3110. https://doi.org/10.1242/jeb.016451 Bjordal M, Arquier N, Kniazeff J, et al., 2014. Sensing of amino acids in a dopaminergic circuitry promotes rejection of an incomplete diet in Drosophila. Cell, 156(3): 510–521. https://doi.org/10.1016/j.cell.2013.12.024 Carvalho GB, Kapahi P, Anderson DJ, et al., 2006. Allocrine modulation of feeding behavior by the sex peptide of Drosophila. Curr Biol, 16(7):692–696. https://doi.org/10.1016/j.cub.2006.02.064 Chen YCD, Dahanukar A, 2017. Molecular and cellular organization of taste neurons in adult Drosophila pharynx. Cell Rep, 21(10):2978–2991. https://doi.org/10.1016/j.celrep.2017.11.041 Dahanukar A, Foster K, van der Goes van Naters WM, et al., 2001. A Gr receptor is required for response to the sugar trehalose in taste neurons of Drosophila. Nat Neurosci, 4(12):1182–1186. https://doi.org/10.1038/nn765 Dahanukar A, Lei YT, Kwon JY, et al., 2007. Two Gr genes underlie sugar reception in Drosophila. Neuron, 56(3): 503–516. https://doi.org/10.1016/j.neuron.2007.10.024 Dethier VG, 1976. The Hungry Fly. Harvard University Press, Cambridge, p.4–118. Dus M, Min S, Keene AC, et al., 2011. Taste-independent detection of the caloric content of sugar in Drosophila. Proc Natl Acad Sci USA, 108(28):11644–11649.https://doi.org/10.1073/pnas.1017096108 Dus M, Ai MR, Suh GSB, 2013. Taste-independent nutrient selection is mediated by a brain-specific Na+/solute cotransporter in Drosophila. Nat Neurosci, 16(5):526–528. https://doi.org/10.1038/Nn.3372 Dus M, Lai JSY, Gunapala KM, et al., 2015. Nutrient sensor in the brain directs the action of the brain-gut axis in Drosophila. Neuron, 87(1):139–151. https://doi.org/10.1016/j.neuron.2015.05.032 Edgecomb RS, Harth CE, Schneiderman AM, 1994. Regulation of feeding behavior in adult Drosophila melanogaster varies with feeding regime and nutritional state. J Exp Biol, 197:215–235. Freeman EG, Dahanukar A, 2015. Molecular neurobiology of Drosophila taste. Curr Opin Neurobiol, 34:140–148. https://doi.org/10.1016/j.conb.2015.06.001 Fujii S, Yavuz A, Slone J, et al., 2015. Drosophila sugar receptors in sweet taste perception, olfaction, and internal nutrient sensing. Curr Biol, 25(5):621–627. https://doi.org/10.1016/j.cub.2014.12.058 Ganguly A, Pang LS, Duong VK, et al., 2017. A molecular and cellular context-dependent role for Ir76b in detection of amino acid taste. Cell Rep, 18(3):737–750. https://doi.org/10.1016/j.celrep.2016.12.071 Géminard C, Rulifson EJ, Léopold P, 2009. Remote control of insulin secretion by fat cells in Drosophila. Cell Metab, 10(3):199–207. https://doi.org/10.1016/j.cmet.2009.08.002 Grönke S, Müller G, Hirsch J, et al., 2007. Dual lipolytic control of body fat storage and mobilization in Drosophila. PLoS Biol, 5(6):e137. https://doi.org/10.1371/journal.pbio.0050137 Hergarden AC, Tayler TD, Anderson DJ, 2012. Allatostatin-A neurons inhibit feeding behavior in adult Drosophila. Proc Natl Acad Sci USA, 109(10):3967–3972. https://doi.org/10.1073/pnas.1200778109 Inagaki HK, De-Leon SBT, Wong AM, et al., 2012. Visualizing neuromodulation in vivo: TANGO-mapping of dopamine signaling reveals appetite control of sugar sensing. Cell, 148(3):583–595. https://doi.org/10.1016/j.cell.2011.12.022 Inagaki HK, Panse KM, Anderson DJ, 2014. Independent, reciprocal neuromodulatory control of sweet and bitter taste sensitivity during starvation in Drosophila. Neuron, 84(4):806–820. https://doi.org/10.1016/j.neuron.2014.09.032 Isabel G, Martin JR, Chidami S, et al., 2005. AKH-producing neuroendocrine cell ablation decreases trehalose and induces behavioral changes in Drosophila. Am J Physiol Regul Integr Comp Physiol, 288(2):R531–R538. https://doi.org/10.1152/ajpregu.00158.2004 Jiao YC, Moon SJ, Montell C, 2007. A Drosophila gustatory receptor required for the responses to sucrose, glucose, and maltose identified by mRNA tagging. Proc Natl Acad Sci USA, 104(35):14110–14115. https://doi.org/10.1073/pnas.0702421104 Jiao YC, Moon SJ, Wang XY, et al., 2008. Gr64f is required in combination with other gustatory receptors for sugar detection in Drosophila. Curr Biol, 18(22):1797–1801. https://doi.org/10.1016/j.cub.2008.10.009 Joseph RM, Carlson JR, 2015. Drosophila chemoreceptors: a molecular interface between the chemical world and the brain. Trends Genet, 31(12):683–695. https://doi.org/10.1016/j.tig.2015.09.005 Joseph RM, Sun JS, Tam E, et al., 2017. A receptor and neuron that activate a circuit limiting sucrose consumption. eLife, 6:e24992. https://doi.org/10.7554/eLife.24992 Kim SK, Rulifson EJ, 2004. Conserved mechanisms of glucose sensing and regulation by Drosophila corpora cardiaca cells. Nature, 431(7006):316–320. https://doi.org/10.1038/nature02897 Kim SM, Su CY, Wang JW, 2017. Neuromodulation of innate behaviors in Drosophila. Annu Rev Neurosci, 40:327–348. https://doi.org/10.1146/annurev-neuro-072116-031558 Ko KI, Root CM, Lindsay SA, et al., 2015. Starvation promotes concerted modulation of appetitive olfactory behavior via parallel neuromodulatory circuits. eLife, 4:e08298. https://doi.org/10.7554/eLife.08298 Koç H, Vinyard CJ, Essick GK, et al., 2013. Food oral processing: conversion of food structure to textural perception. Annu Rev Food Sci Technol, 4:237–266. https://doi.org/10.1146/annurev-food-030212-182637 LeDue EE, Chen YC, Jung AY, et al., 2015. Pharyngeal sense organs drive robust sugar consumption in Drosophila. Nat Commun, 6:6667. https://doi.org/10.1038/ncomms7667 LeDue EE, Mann K, Koch E, et al., 2016. Starvation-induced depotentiation of bitter taste in Drosophila. Curr Biol, 26(21):2854–2861. https://doi.org/10.1016/j.cub.2016.08.028 Lee G, Park JH, 2004. Hemolymph sugar homeostasis and starvation-induced hyperactivity affected by genetic manipulations of the adipokinetic hormone-encoding gene in Drosophila melanogaster. Genetics, 167(1):311–323. https://doi.org/10.1534/genetics.167.1.311 Lee Y, Moon SJ, Montell C, 2009. Multiple gustatory receptors required for the caffeine response in Drosophila. Proc Natl Acad Sci USA, 106(11):4495–4500. https://doi.org/10.1073/pnas.0811744106 Lee Y, Kim SH, Montell C, 2010. Avoiding DEET through insect gustatory receptors. Neuron, 67(4):555–561. https://doi.org/10.1016/j.neuron.2010.07.006 Lee Y, Kang MJ, Shim J, et al., 2012. Gustatory receptors required for avoiding the insecticide L-canavanine. J Neurosci, 32(4):1429–1435.https://doi.org/10.1523/JNEUROSCI.4630-11.2012 Liu QL, Tabuchi M, Liu S, et al., 2017. Branch-specific plasticity of a bifunctional dopamine circuit encodes protein hunger. Science, 356(6337):534–539. https://doi.org/10.1126/science.aal3245 Marella S, Mann K, Scott K, 2012. Dopaminergic modulation of sucrose acceptance behavior in Drosophila. Neuron, 73(5):941–950. https://doi.org/10.1016/j.neuron.2011.12.032 Miyamoto T, Slone J, Song XY, et al., 2012. A fructose receptor functions as a nutrient sensor in the Drosophila brain. Cell, 151(5):1113–1125. https://doi.org/10.1016/j.cell.2012.10.024 Moon SJ, Lee Y, Jiao YC, et al., 2009. A Drosophila gustatory receptor essential for aversive taste and inhibiting male-to-male courtship. Curr Biol, 19(19):1623–1627. https://doi.org/10.1016/j.cub.2009.07.061 Murata S, Brockmann A, Tanimura T, 2017. Pharyngeal stimulation with sugar triggers local searching behavior in Drosophila. J Exp Biol, 220:3231–3237. https://doi.org/10.1242/jeb.161646 Olds WH, Xu T, 2014. Regulation of food intake by mechanosensory ion channels in enteric neurons. eLife, 3:e04402. https://doi.org/10.7554/Elife.04402 Park JY, Dus M, Kim S, et al., 2016. Drosophila SLC5A11 mediates hunger by regulating K+ channel activity. Curr Biol, 26(15):1965–1974. https://doi.org/10.1016/j.cub.2016.05.076 Piper MDW, Blanc E, Leitão-Goncalves R, et al., 2014. A holidic medium for Drosophila melanogaster. Nat Methods, 11(1):100–105. https://doi.org/10.1038/nmeth.2731 Pool AH, Scott K, 2014. Feeding regulation in Drosophila. Curr Opin Neurobiol, 29:57–63. https://doi.org/10.1016/j.conb.2014.05.008 Pool AH, Kvello P, Mann K, et al., 2014. Four gabaergic interneurons impose feeding restraint in Drosophila. Neuron, 83(1):164–177. https://doi.org/10.1016/j.neuron.2014.05.006 Rajan A, Perrimon N, 2012. Drosophila cytokine Unpaired 2 regulates physiological homeostasis by remotely controlling insulin secretion. Cell, 151(1):123–137. https://doi.org/10.1016/j.cell.2012.08.019 Ribeiro C, Dickson BJ, 2010. Sex peptide receptor and neuronal TOR/S6K signaling modulate nutrient balancing in Drosophila. Curr Biol, 20(11):1000–1005. https://doi.org/10.1016/j.cub.2010.03.061 Root CM, Ko KI, Jafari A, et al., 2011. Presynaptic facilitation by neuropeptide signaling mediates odor-driven food search. Cell, 145(1):133–144. https://doi.org/10.1016/j.cell.2011.02.008 Sánchez-Alcañiz JA, Zappia G, Marion-Poll F, et al., 2017. A mechanosensory receptor required for food texture detection in Drosophila. Nat Commun, 8:14192. https://doi.org/10.1038/ncomms14192 Scott K, 2018. Gustatory processing in Drosophila melanogaster. Annu Rev Entomol, 63:15–30. https://doi.org/10.1146/annurev-ento-020117-043331 Slone J, Daniels J, Amrein H, 2007. Sugar receptors in Drosophila. Curr Biol, 17(20):1809–1816. https://doi.org/10.1016/j.cub.2007.09.027 Steck K, Walker SJ, Itskov PM, et al., 2018. Internal amino acid state modulates yeast taste neurons to support protein homeostasis in Drosophila. eLife, 7:e31625. https://doi.org/10.7554/eLife.31625 Stocker RF, 1994. The organization of the chemosensory system in Drosophila melanogaster: a review. Cell Tissue Res, 275(1):3–26. https://doi.org/10.1007/BF00305372. Sun JH, Liu C, Bai XB, et al., 2017. Drosophila FIT is a protein-specific satiety hormone essential for feeding control. Nat Commun, 8:14161. https://doi.org/10.1038/ncomms14161 Thorne N, Chromey C, Bray S, et al., 2004. Taste perception and coding in Drosophila. Curr Biol, 14(12):1065–1079. https://doi.org/10.1016/j.cub.2004.05.019 Tian YJ, Wang LM, 2018. Octopamine mediates proteinseeking behavior in mated female Drosophila. Cell Discov, 4:66. https://doi.org/10.1038/s41421-018-0063-9 Ueno K, Ohta M, Morita H, et al., 2001. Trehalose sensitivity in Drosophila correlates with mutations in and expression of the gustatory receptor gene Gr5a. Curr Biol, 11(18): 1451–1455. https://doi.org/10.1016/S0960-9822(01)00450-X Vargas MA, Luo NG, Yamaguchi A, et al., 2010. A role for S6 kinase and serotonin in postmating dietary switch and balance of nutrients in D. melanogaster. Curr Biol, 20(11):1006–1011. https://doi.org/10.1016/j.cub.2010.04.009 Walker SJ, Corrales-Carvajal VM, Ribeiro C, 2015. Postmating circuitry modulates salt taste processing to increase reproductive output in Drosophila. Curr Biol, 25(20): 2621–2630. https://doi.org/10.1016/j.cub.2015.08.043 Weiss LA, Dahanukar A, Kwon JY, et al., 2011. The molecular and cellular basis of bitter taste in Drosophila. Neuron, 69(2):258–272. https://doi.org/10.1016/j.neuron.2011.01.001 Yang Z, Yu Y, Zhang V, et al., 2015. Octopamine mediates starvation-induced hyperactivity in adult Drosophila. Proc Natl Acad Sci USA, 112(16):5219–5224. https://doi.org/10.1073/pnas.1417838112 Yang Z, Huang R, Fu X, et al., 2018. A post-ingestive amino acid sensor promotes food consumption in Drosophila. Cell Res, 28(10):1013–1025. https://doi.org/10.1038/s41422-018-0084-9 Yapici N, Cohn R, Schusterreiter C, et al., 2016. A taste circuit that regulates ingestion by integrating food and hunger signals. Cell, 165(3):715–729. https://doi.org/10.1016/j.cell.2016.02.061 Yu Y, Huang R, Ye J, et al., 2016. Regulation of starvation-induced hyperactivity by insulin and glucagon signaling in adult Drosophila. eLife, 5:e15693. https://doi.org/10.7554/eLife.15693 Zhan YP, Liu L, Zhu Y, 2016. Taotie neurons regulate appetite in Drosophila. Nat Commun, 7:13633. https://doi.org/10.1038/ncomms13633 Zhang YV, Aikin TJ, Li ZZ, et al., 2016. The basis of food texture sensation in Drosophila. Neuron, 91(4):863–877. https://doi.org/10.1016/j.neuron.2016.07.013