Recent advances in the formulation of PLGA microparticles for controlled drug delivery

Progress in Biomaterials - Tập 9 - Trang 153-174 - 2020
Elena Lagreca1, Valentina Onesto1, Concetta Di Natale1,2, Sara La Manna3, Paolo Antonio Netti1,2,4, Raffaele Vecchione1,2
1Center for Advanced Biomaterials for HealthCare@CRIB, Istituto Italiano di Tecnologia, Naples, Italy
2Interdisciplinary Research Center of Biomaterials, CRIB, University Federico II, Naples, Italy
3Department of Pharmacy, CIRPEB: Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples “Federico II”, Naples, Italy
4Department of Chemical, Materials and Industrial Production Engineering (DICMaPI), University of Naples Federico II, Naples, Italy

Tóm tắt

Polymeric microparticles (MPs) are recognized as very popular carriers to increase the bioavailability and bio-distribution of both lipophilic and hydrophilic drugs. Among different kinds of polymers, poly-(lactic-co-glycolic acid) (PLGA) is one of the most accepted materials for this purpose, because of its biodegradability (due to the presence of ester linkages that are degraded by hydrolysis in aqueous environments) and safety (PLGA is a Food and Drug Administration (FDA)-approved compound). Moreover, its biodegradability depends on the number of glycolide units present in the structure, indeed, lower glycol content results in an increased degradation time and conversely a higher monomer unit number results in a decreased time. Due to this feature, it is possible to design and fabricate MPs with a programmable and time-controlled drug release. Many approaches and procedures can be used to prepare MPs. The chosen fabrication methodology influences size, stability, entrapment efficiency, and MPs release kinetics. For example, lipophilic drugs as chemotherapeutic agents (doxorubicin), anti-inflammatory non-steroidal (indomethacin), and nutraceuticals (curcumin) were successfully encapsulated in MPs prepared by single emulsion technique, while water-soluble compounds, such as aptamer, peptides and proteins, involved the use of double emulsion systems to provide a hydrophilic compartment and prevent molecular degradation. The purpose of this review is to provide an overview about the preparation and characterization of drug-loaded PLGA MPs obtained by single, double emulsion and microfluidic techniques, and their current applications in the pharmaceutical industry. Graphic abstract

Tài liệu tham khảo

Ali MY, Tariq I, Farhan Sohail M et al (2019) Selective anti-ErbB3 aptamer modified sorafenib microparticles: in vitro and in vivo toxicity assessment. Eur J Pharm Biopharm 145:42–53. https://doi.org/10.1016/j.ejpb.2019.10.003 Alkilani AZ, McCrudden MTC, Donnelly RF (2015) Transdermal drug delivery: innovative pharmaceutical developments based on disruption of the barrier properties of the stratum corneum. Pharmaceutics 7(4):438–470. https://doi.org/10.3390/pharmaceutics7040438 Allhenn D, Lamprecht A (2011) Microsphere preparation using the untoxic solvent glycofurol. Pharm Res 28(3):563–571. https://doi.org/10.1007/s11095-010-0304-6 Amini-Fazl MS, Mobedi H (2020) Investigation of mathematical models based on diffusion control release for paclitaxel from in-situ forming PLGA microspheres containing HSA microparticles. Mater Technol 35(1):50–59. https://doi.org/10.1080/10667857.2019.1651549 Amoyav B, Benny O, Amoyav B, Benny O (2019) Microfluidic based fabrication and characterization of highly porous polymeric microspheres. Polymers 11(3):419 Angkawinitwong U, Courtenay AJ, Rodgers AM et al (2020) A novel transdermal protein delivery strategy via electrohydrodynamic coating of PLGA microparticles onto microneedles. ACS Appl Mater Interfaces 12(11):12478–12488. https://doi.org/10.1021/acsami.9b22425 Ansary RH, Awang MB, Rahman MM (2014) Biodegradable poly(d, l-lactic-co-glycolic acid)-based micro/nanoparticles for sustained release of protein drugs—a review. Trop J Pharm Res 13(7):1179–1190 Azizi M, Farahmandghavi F, Joghataei MT et al (2020) ChABC-loaded PLGA nanoparticles: a comprehensive study on biocompatibility, functional recovery, and axonal regeneration in animal model of spinal cord injury. Int J Pharm 577:119037. https://doi.org/10.1016/j.ijpharm.2020.119037 Bao TQ, Hiep NT, Kim YH, Yang HM, Lee BT (2011) Fabrication and characterization of porous poly(lactic-co-glycolic acid) (PLGA) microspheres for use as a drug delivery system. J Mater Sci 46(8):2510–2517 Batista P, Castro P, Madureira A, Sarmento B, Pintado M (2019) Development and characterization of chitosan microparticles-in-films for buccal delivery of bioactive peptides. Pharmaceuticals 12(1):32 Battisti M, Vecchione R, Casale C et al (2019) Non-invasive production of multi-compartmental biodegradable polymer microneedles for controlled intradermal drug release of labile molecules. Front Bioeng Biotechnol. https://doi.org/10.3389/fbioe.2019.00296 Beck-Broichsitter M, Stoisiek K, Bohr A et al (2016) Potential of the isolated lung technique for the examination of sildenafil absorption from lung-delivered poly(lactide-co-glycolide) microparticles. J Control Release 226:15–20. https://doi.org/10.1016/J.JCONREL.2016.01.057 Behera A, Padhi S (2020) Passive and active targeting strategies for the delivery of the camptothecin anticancer drug: a review. Environ Chem Lett 18(5):1557–1567. https://doi.org/10.1007/s10311-020-01022-9 Bilati U, Allémann E, Doelker E (2005) Nanoprecipitation versus emulsion-based techniques or the encapsulation of proteins into biodegradable nanoparticles and process-related stability issues. AAPS PharmSciTech. https://doi.org/10.1208/pt060474 Biswal AK, Hariprasad P, Saha S (2020) Efficient and prolonged antibacterial activity from porous PLGA microparticles and their application in food preservation. Mater Sci Eng C 108:110496. https://doi.org/10.1016/J.MSEC.2019.110496 Brzeziński M, Socka M, Kost B (2019) Microfluidics for producing polylactide nanoparticles and microparticles and their drug delivery application. Polym Int 68(6):997–1014. https://doi.org/10.1002/pi.5753 Busatto C, Pesoa J, Helbling I, Luna J, Estenoz D (2018) Effect of particle size, polydispersity and polymer degradation on progesterone release from PLGA microparticles: experimental and mathematical modeling. Int J Pharm 536(1):360–369 Calderó G, Rodríguez-Abreu C, González A, Monge M, García-Celma MJ, Solans C (2020) Biomedical perfluorohexane-loaded nanocapsules prepared by low-energy emulsification and selective solvent diffusion. Mater Sci Eng 111:110838 Capan Y, Jiang G, Giovagnoli S, Na K-H, Deluca PP (2003) Preparation and characterization of poly(d, l-lactide-co-glycolide) micro-spheres for controlled release of human growth hormone. Aaps Pharmscitech 4(2):147–156 Casalini T, Rossi F, Lazzari S, Perale G, Masi M (2014) Mathematical modeling of PLGA microparticles: from polymer degradation to drug release. Mol Pharm 11(11):4036–4048. https://doi.org/10.1021/mp500078u Çetin Altındal D, Gümüşderelioğlu M (2019) Dual-functional melatonin releasing device loaded with PLGA microparticles and cyclodextrin inclusion complex for osteosarcoma therapy. J Drug Deliv Sci Technol 52:586–596. https://doi.org/10.1016/j.jddst.2019.05.027 Choi SH, Park TG (2006) G-CSF loaded biodegradable PLGA nanoparticles prepared by a single oil-in-water emulsion method. Int J Pharm 311(1–2):223–228. https://doi.org/10.1016/j.ijpharm.2005.12.023 Choi Y, Joo J-R, Hong A, Park J-S (2011) Development of drug-loaded PLGA microparticles with different release patterns for prolonged drug delivery. Bull Korean Chem Soc 32(3):867–872 Chong D, Liu X, Ma H et al (2015) Advances in fabricating double-emulsion droplets and their biomedical applications. Microfluid Nanofluid 19(5):1071–1090. https://doi.org/10.1007/s10404-015-1635-8 Chung CHY, Cui B, Song R, Liu X, Xu X, Yao S (2019) Scalable production of monodisperse functional microspheres by multilayer parallelization of high aspect ratio microfluidic channels. Micromachines 10(9):592 Cocks E, Somavarapu S, Alpar O, Greenleaf D (2014) Influence of suspension stabilisers on the delivery of protein-loaded porous poly (dl-lactide-co-glycolide) (PLGA) microparticles via pressurised metered dose inhaler (pMDI). Pharm Res 31(8):2000–2009. https://doi.org/10.1007/s11095-014-1302-x Cocks E, Alpar O, Somavarapu S, Greenleaf D (2015) Impact of surfactant selection on the formulation and characterization of microparticles for pulmonary drug delivery. Drug Dev Ind Pharm 41(3):522–528. https://doi.org/10.3109/03639045.2014.884117 Committee for Human Medicinal Products (2018) ICH guideline Q3C (R7) on impurities: guideline for residual solvents Cook RL, Householder KT, Chung EP, Prakapenka AV, Diperna DM, Sirianni RW (2015) A critical evaluation of drug delivery from ligand modified nanoparticles: confounding small molecule distribution and efficacy in the central nervous system. J Control Release 220:89–97. https://doi.org/10.1016/j.jconrel.2015.10.013 Costabile G, Gasteyer KI, Nadithe V et al (2018) Physicochemical and in vitro evaluation of drug delivery of an antibacterial synthetic benzophenone in biodegradable PLGA nanoparticles. AAPS PharmSciTech 19(8):3561–3570. https://doi.org/10.1208/s12249-018-1187-9 Cricchio V, Best M, Reverchon E et al (2017) Novel superparamagnetic microdevices based on magnetized PLGA/PLA microparticles obtained by supercritical fluid emulsion and coating by carboxybetaine-functionalized chitosan allowing the tuneable release of therapeutics. J Pharm Sci 106(8):2097–2105 da Silva MTS, Pinto JC (2019) Influence of encapsulated aroma compounds on the formation and morphology of gelatin microparticles. Macromol Symp 383(1):1800061 da Silva-Junior AA, de Matos JR, Formariz TP et al (2009) Thermal behavior and stability of biodegradable spray-dried microparticles containing triamcinolone. Int J Pharm 368(1–2):45–55. https://doi.org/10.1016/j.ijpharm.2008.09.054 Dash S, Murthy PN, Nath L, Chowdhury P (2010) Kinetic modeling on drug release from controlled drug delivery systems. Acta Polon Pharm Drug Res 67(3):217–223 De Alteriis R, Vecchione R, Attanasio C, De Gregorio M, Porzio M, Battista E, Netti PA (2015) A method to tune the shape of protein-encapsulated polymeric microspheres. Sci Rep 5(1):1–9 De Rosa G, Larobina D, Immacolata-La-Rotonda M, Musto P, Quaglia F, Ungaro F (2005) How cyclodextrin incorporation affects the properties of protein-loaded PLGA-based microspheres: the case of insulin/hydroxypropyl-β-cyclodextrin system. J Control Release 102(1):71–83. https://doi.org/10.1016/J.JCONREL.2004.09.030 Di Natale C, Monaco A, Pedone C et al (2018) The level of 24-hydroxycholesteryl esters decreases in plasma of patients with Parkinson’s disease. Neurosci Lett 672:108–112. https://doi.org/10.1016/j.neulet.2018.02.041 Di Natale C, Onesto V, Lagreca E, Vecchione R, Netti PA (2020) Tunable release of curcumin with an in silico-supported approach from mixtures of highly porous PLGA microparticles. Materials 13(8):1807. https://doi.org/10.3390/ma13081807 Ding D, Kundukad B, Somasundar A, Vijayan S, Khan SA, Doyle PS (2018) Design of mucoadhesive PLGA microparticles for ocular drug delivery. ACS Appl Bio Mater 1(3):561–571. https://doi.org/10.1021/acsabm.8b00041 Dong N, Zhu C, Jiang J et al (2019) Development of composite PLGA microspheres containing exenatide-encapsulated lecithin nanoparticles for sustained drug release. Asian J Pharm Sci. https://doi.org/10.1016/J.AJPS.2019.01.002 Dwivedi P, Yuan S, Han S et al (2018) Core–shell microencapsulation of curcumin in PLGA microparticles: programmed for application in ovarian cancer therapy. Artif Cells Nanomed Biotechnol 46(sup3):S481–S491. https://doi.org/10.1080/21691401.2018.1499664 Esposito E, Ruggiero F, Vecchione R, Netti P (2016) Room temperature consolidation of a porous poly(lactic-co-glycolic acid) matrix by the addition of maltose to the water-in-oil emulsion. Materials 9(6):420. https://doi.org/10.3390/ma9060420 Fan Y, Zheng X, Ali Y, Berggren PO, Loo SCJ (2019) Local release of rapamycin by microparticles delays islet rejection within the anterior chamber of the eye. Sci Rep 9(1):1–9 Fenaroli F, Repnik U, Xu Y et al (2018) Enhanced permeability and retention-like extravasation of nanoparticles from the vasculature into tuberculosis granulomas in zebrafish and mouse models. ACS Nano 12(8):8646–8661. https://doi.org/10.1021/acsnano.8b04433 Fernández M, Barcia E, Fernández-Carballido A, Garcia L, Slowing K, Negro S (2012) Controlled release of rasagiline mesylate promotes neuroprotection in a rotenone-induced advanced model of Parkinson’s disease. Int J Pharm 438(1–2):266–278. https://doi.org/10.1016/j.ijpharm.2012.09.024 Field RW, Bekassy-Molnar E, Lipnizki F, Vatai G (2017) Engineering aspects of membrane separation and application in food processing Ford Versypt AN, Pack DW, Braatz RD (2013) Mathematical modeling of drug delivery from autocatalytically degradable PLGA microspheres—a review. J Control Release 165(1):29–37. https://doi.org/10.1016/j.jconrel.2012.10.015 Formiga FR, Pelacho B, Garbayo E et al (2010) Sustained release of VEGF through PLGA microparticles improves vasculogenesis and tissue remodeling in an acute myocardial ischemia–reperfusion model. J Control Release 147(1):30–37. https://doi.org/10.1016/j.jconrel.2010.07.097 Fotticchia T, Vecchione R, Scognamiglio PL et al (2017) Enhanced drug delivery into cell cytosol via glycoprotein H-derived peptide conjugated nanoemulsions. ACS Nano. https://doi.org/10.1021/acsnano.7b03058 Garbayo E, Ansorena E, Blanco-Prieto MJ (2012) Brain drug delivery systems for neurodegenerative disorders. Curr Pharm Biotechnol 13(12):2388–2402. https://doi.org/10.2174/138920112803341761 Gentile P, Nandagiri VK, Daly J et al (2016) Localised controlled release of simvastatin from porous chitosan–gelatin scaffolds engrafted with simvastatin loaded PLGA-microparticles for bone tissue engineering application. Mater Sci Eng C 59:249–257. https://doi.org/10.1016/J.MSEC.2015.10.014 Grizić D, Lamprecht A (2018) Microparticle preparation by a propylene carbonate emulsification-extraction method. Int J Pharm 544(1):213–221. https://doi.org/10.1016/j.ijpharm.2018.03.062 Grizić D, Lamprecht A (2020) Predictability of drug encapsulation and release from propylene carbonate/PLGA microparticles. Int J Pharm 586:119601 Guo W, Quan P, Fang L, Cun D, Yang M (2015) Sustained release donepezil loaded PLGA microspheres for injection: preparation, in vitro and in vivo study. Asian J Pharm Sci 10(5):405–414 Gupta V, Davis M, Hope-Weeks LJ, Ahsan F (2011) PLGA microparticles encapsulating prostaglandin E1-hydroxypropyl-β-cyclodextrin (PGE1-HPβCD) complex for the treatment of pulmonary arterial hypertension (PAH). Pharm Res 28(7):1733–1749. https://doi.org/10.1007/s11095-011-0409-6 Hajavi J, Ebrahimian M, Sankian M, Khakzad MR, Hashemi M (2018) Optimization of PLGA formulation containing protein or peptide-based antigen: Recent advances. J Biomed Mater Res Part A 106(9):2540–2551 Haji Mansor M, Najberg M, Contini A et al (2018) Development of a non-toxic and non-denaturing formulation process for encapsulation of SDF-1α into PLGA/PEG-PLGA nanoparticles to achieve sustained release. Eur J Pharm Biopharm 125:38–50. https://doi.org/10.1016/j.ejpb.2017.12.020 Han FY, Thurecht KJ, Whittaker AK, Smith MT (2016) Bioerodable PLGA-based microparticles for producing sustained-release drug formulations and strategies for improving drug loading. Front Pharmacol 7:1–11. https://doi.org/10.3389/fphar.2016.00185 Hasan AS, Sapin A, Damg C, Leroy P, Socha M, Maincent P (2015) Reduction of the in vivo burst release of insulin-loaded microparticles. J Drug Deliv Sci Technol 30:486–493. https://doi.org/10.1016/j.jddst.2015.06.020 He F, Zhang M, Wang W et al (2019) Designable polymeric microparticles from droplet microfluidics for controlled drug release. Adv Mater Technol 4(6):1800687. https://doi.org/10.1002/admt.201800687 Hernández-Giottonini KY, Rodríguez-Córdova RJ, Gutiérrez-Valenzuela CA et al (2020) PLGA nanoparticle preparations by emulsification and nanoprecipitation techniques: Effects of formulation parameters. RSC Adv 10(8):4218–4231 Herrmann J (1995) Somatostatin containing biodegradable microspheres prepared by a modified solvent evaporation method based on W/O/W-multiple emulsions. Int J Pharm 126(1–2):129–138. https://doi.org/10.1016/0378-5173(95)04106-0 Hussain M, Xie J, Hou Z, Shezad K, Xu J, Wang K, Gao Y, Shen L, Zhu J (2017) Regulation of drug release by tuning surface textures of biodegradable polymer microparticles. ACS Appl Mater Interfaces 9(16):14391–14400 Ito F, Makino K (2004) Preparation and properties of monodispersed rifampicin-loaded poly(lactide-co-glycolide) microspheres. Colloids Surf B Biointerfaces 39(1):17–21. https://doi.org/10.1016/j.colsurfb.2004.08.016 Jafari-Nodoushan M, Barzin J, Mobedi H (2015) Size and morphology controlling of PLGA microparticles produced by electro hydrodynamic atomization. Polym Adv Technol 26(5):502–513 Jain S, Patel N, Shah MK, Khatri P, Vora N (2017) Recent advances in lipid-based vesicles and particulate carriers for topical and transdermal application. J Pharm Sci 106(2):423–445. https://doi.org/10.1016/J.XPHS.2016.10.001 Jakhmola A, Vecchione R, Gentile F et al (2019) Experimental and theoretical study of biodirected green synthesis of gold nanoflowers. Mater Today Chem 14:100203. https://doi.org/10.1016/J.MTCHEM.2019.100203 Jamaledin R, Di Natale C, Onesto V et al (2020a) Progress in microneedle-mediated protein delivery. J Clin Med 9(2):542. https://doi.org/10.3390/jcm9020542 Jamaledin R, Sartorius R, Di Natale C, Vecchione R, De Berardinis P, Netti PA (2020b) Recombinant filamentous bacteriophages encapsulated in biodegradable polymeric microparticles for stimulation of innate and adaptive immune responses. Microorganisms 8(5):650. https://doi.org/10.3390/microorganisms8050650 Jiang T, Singh B, Li HS et al (2014) Targeted oral delivery of BmpB vaccine using porous PLGA microparticles coated with M cell homing peptide-coupled chitosan. Biomaterials 35(7):2365–2373. https://doi.org/10.1016/j.biomaterials.2013.11.073 Kamaly N, Xiao Z, Valencia PM, Radovic-Moreno AF, Farokhzad OC (2012) Targeted polymeric therapeutic nanoparticles: design, development and clinical translation. Chem Soc Rev 41(7):2971–3010. https://doi.org/10.1039/c2cs15344k Kang J, Sah E, Sah H (2014) Applicability of non-halogenated methyl propionate to microencapsulation. J Microencapsul 31(4):323–332. https://doi.org/10.3109/02652048.2013.843729 Kapoor DN, Bhatia A, Kaur R, Sharma R, Kaur G, Dhawan S (2015) PLGA: a unique polymer for drug delivery. Ther Deliv 6(1):41–58 Karp F, Busatto C, Turino L, Luna J, Estenoz D (2019) PLGA nano-and microparticles for the controlled release of florfenicol: experimental and theoretical study. J Appl Polym Sci 136(12):47248 Keles H, Naylor A, Clegg F, Sammon C (2014) Studying the release of hGH from gamma-irradiated PLGA microparticles using ATR-FTIR imaging. Vib Spectrosc 71:76–84 Keles H, Naylor A, Clegg F, Sammon C (2015) Investigation of factors influencing the hydrolytic degradation of single PLGA microparticles. Polym Degrad Stab 119:228–241. https://doi.org/10.1016/j.polymdegradstab.2015.04.025 Kim HK, Chung HJ, Park TG (2006) Biodegradable polymeric microspheres with “open/closed” pores for sustained release of human growth hormone. J Control Release 112(2):167–174. https://doi.org/10.1016/j.jconrel.2006.02.004 Kim H, Park H, Lee J et al (2010) Pharmaceutical potential of gelatin as a pH-responsive porogen for manufacturing porous poly(d, l-lactic-co-glycolic acid) microspheres. J Pharm Investig 40(4):245–250. https://doi.org/10.4333/kps.2010.40.4.245 Kim H, Park H, Lee J et al (2011) Highly porous large poly(lactic-co-glycolic acid) microspheres adsorbed with palmityl-acylated exendin-4 as a long-acting inhalation system for treating diabetes. Biomaterials 32(6):1685–1693. https://doi.org/10.1016/J.BIOMATERIALS.2010.10.045 Kim HY, Kim HN, Lee SJ et al (2017) Effect of pore sizes of PLGA scaffolds on mechanical properties and cell behaviour for nucleus pulposus regeneration in vivo. J Tissue Eng Regen Med 11(1):44–57. https://doi.org/10.1002/term.1856 Kim S-N, Choi BH, Kim HK, Choy YB (2019a) Poly(lactic-co-glycolic acid) microparticles in fibrin glue for local, sustained delivery of bupivacaine. J Ind Eng Chem 75:86–92. https://doi.org/10.1016/J.JIEC.2019.02.028 Kim SR, Ho MJ, Choi YW, Kang MJ (2019b) Improved drug loading and sustained release of entecavir-loaded PLGA microsphere prepared by spray drying technique. Bull Korean Chem Soc 40(4):306–312 Klose D, Siepmann F, Elkharraz K, Krenzlin S, Siepmann J (2006) How porosity and size affect the drug release mechanisms from PLGA-based microparticles. Int J Pharm 314(2):198–206. https://doi.org/10.1016/j.ijpharm.2005.07.031 Koushik K, Kompella UB (2004) Preparation of large porous deslorelin-PLGA microparticles with reduced residual solvent and cellular uptake using a supercritical carbon dioxide process. Pharm Res 21(3):524–535. https://doi.org/10.1023/B:PHAM.0000019308.25479.a4 Larrañeta E, McCrudden MTC, Courtenay AJ, Donnelly RF (2016) Microneedles: a new frontier in nanomedicine delivery. Pharm Res 33(5):1055–1073. https://doi.org/10.1007/s11095-016-1885-5 Lee ES, Kwon MJ, Na K, Bae JH (2007) Protein release behavior from porous microparticle with lysozyme/hyaluronate ionic complex. Colloids Surf B Biointerfaces 55(1):125–130. https://doi.org/10.1016/j.colsurfb.2006.11.024 Lee J, Oh YJ, Lee SK, Lee KY (2010) Facile control of porous structures of polymer microspheres using an osmotic agent for pulmonary delivery. J Control Release 146(1):61–67. https://doi.org/10.1016/J.JCONREL.2010.05.026 Li Z, Xiong F, He J, Dai X, Wang G (2016) Surface-functionalized, pH-responsive poly(lactic-co-glycolic acid)-based microparticles for intranasal vaccine delivery: effect of surface modification with chitosan and mannan. Eur J Pharm Biopharm 109:24–34. https://doi.org/10.1016/j.ejpb.2016.08.012 Li Y, Yan D, Fu F et al (2017) Composite core-shell microparticles from microfluidics for synergistic drug delivery. Sci China Mater 60(6):543–553. https://doi.org/10.1007/s40843-016-5151-6 Li G, Yao L, Li J, Qin X, Qiu Z, Chen W (2018) Preparation of poly(lactide-co-glycolide) microspheres and evaluation of pharmacokinetics and tissue distribution of BDMC-PLGA-MS in rats. Asian J Pharm Sci 13(1):82–90. https://doi.org/10.1016/J.AJPS.2017.09.002 Liang C, Yang Y, Ling Y, Huang Y, Li T, Li X (2011) Improved therapeutic effect of folate-decorated PLGA-PEG nanoparticles for endometrial carcinoma. Bioorg Med Chem 19(13):4057–4066. https://doi.org/10.1016/j.bmc.2011.05.016 Ma G (2014) Microencapsulation of protein drugs for drug delivery: strategy, preparation, and applications. J Control Release 193:324–340 Maeda H, Khatami M (2018) Analyses of repeated failures in cancer therapy for solid tumors: poor tumor-selective drug delivery, low therapeutic efficacy and unsustainable costs. Clin Transl Med 7(1):11. https://doi.org/10.1186/s40169-018-0185-6 Makadia HK, Siegel SJ (2011) Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers 3(3):1377–1397 Mao S, Xu J, Cai C, Germershaus O, Schaper A, Kissel T (2007) Effect of WOW process parameters on morphology and burst release of FITC-dextran loaded PLGA microspheres. Int J Pharm 334(1):137–148. https://doi.org/10.1016/j.ijpharm.2006.10.036 Martins C, Sousa F, Araújo F, Sarmento B (2018) Functionalizing PLGA and PLGA derivatives for drug delivery and tissue regeneration applications. Adv Healthc Mater 7(1):1701035 Mazzara JM, Ochyl LJ, Hong JKY, Moon JJ, Prausnitz MR, Schwendeman SP (2019) Self-healing encapsulation and controlled release of vaccine antigens from PLGA microparticles delivered by microneedle patches. Bioeng Transl Med 4(1):116–128. https://doi.org/10.1002/btm2.10103 McKiernan P, Lynch P, Ramsey J, Cryan S, Greene C (2018) Knockdown of gene expression in macrophages by microRNA mimic-containing poly (lactic-co-glycolic acid) microparticles. Medicines 5(4):133 Montazeri L, Bonakdar S, Taghipour M, Renaud P, Baharvand H (2016) Modification of PDMS to fabricate PLGA microparticles by a double emulsion method in a single microfluidic device. Lab Chip 16(14):2596–2600. https://doi.org/10.1039/C6LC00437G Morales-Cruz M, Flores-Fernández GM, Morales-Cruz M et al (2012) Two-step nanoprecipitation for the production of protein-loaded PLGA nanospheres. Results Pharma Sci 2(1):79–85. https://doi.org/10.1016/j.rinphs.2012.11.001 Murzin DY, Heikkilä T (2014) Modeling of drug dissolution kinetics with sigmoidal behavior from ordered mesoporous silica. Chem Eng Commun 201(5):579–592. https://doi.org/10.1080/00986445.2013.782290 Mylonaki I, Allémann E, Delie F, Jordan O (2018) Imaging the porous structure in the core of degrading PLGA microparticles: the effect of molecular weight. J Control Release 286:231–239. https://doi.org/10.1016/j.jconrel.2018.07.044 Nasr M, Awad GAS, Mansour S, Al SA, Mortada ND (2013) Hydrophilic versus hydrophobic porogens for engineering of poly(lactide-co-glycolide) microparticles containing risedronate sodium. Pharm Dev Technol 18(5):1078–1088. https://doi.org/10.3109/10837450.2012.693507 Ni R, Muenster U, Zhao J et al (2017) Exploring polyvinylpyrrolidone in the engineering of large porous PLGA microparticles via single emulsion method with tunable sustained release in the lung: in vitro and in vivo characterization. J Control Release 249:11–22. https://doi.org/10.1016/J.JCONREL.2017.01.023 Nishimura S, Takami T, Murakami Y (2017) Porous PLGA microparticles formed by “one-step” emulsification for pulmonary drug delivery: the surface morphology and the aerodynamic properties. Colloids Surf B Biointerfaces 159:318–326. https://doi.org/10.1016/j.colsurfb.2017.08.004 Noviendri D, Jaswir I, Taher M et al (2016) Fabrication of fucoxanthin-loaded microsphere(F-LM) by two steps double-emulsion solvent evaporation method and characterization of fucoxanthin before and after microencapsulation. J Oleo Sci 65(8):641–653. https://doi.org/10.5650/jos.ess16018 Nunes AVM, Duarte CMM (2011) Dense CO2 as a solute, co-solute or co-solvent in particle formation processes: a review. Materials 4(11):2017–2041. https://doi.org/10.3390/ma4112017 O’Connor G, Krishnan N, Fagan-Murphy A et al (2019) Inhalable poly(lactic-co-glycolic acid) (PLGA) microparticles encapsulating all-trans-retinoic acid (ATRA) as a host-directed, adjunctive treatment for Mycobacterium tuberculosis infection. Eur J Pharm Biopharm 134:153–165. https://doi.org/10.1016/j.ejpb.2018.10.020 Oh YJ, Lee J, Seo JY et al (2011) Preparation of budesonide-loaded porous PLGA microparticles and their therapeutic efficacy in a murine asthma model. J Control Release 150(1):56–62. https://doi.org/10.1016/j.jconrel.2010.11.001 Osman R, Al Jamal KT, Kan PL et al (2013) Inhalable DNase I microparticles engineered with biologically active excipients. Pulm Pharmacol Ther 26(6):700–709. https://doi.org/10.1016/j.pupt.2013.07.010 Ospina-Villa JD, Gómez-Hoyos C, Zuluaga-Gallego R, Triana-Chávez O (2019) Encapsulation of proteins from Leishmania panamensis into PLGA particles by a single emulsion-solvent evaporation method. J Microbiol Methods 162:1–7 Panyam J, Manisha MD, Sanjeeb KS, Wenxue M, Sudhir SK, Gordon LA, Robert JL, Vinod L (2003) Polymer degradation and in vitro release of a model protein from poly(d, l-lactide-co-glycolide) nano- and microparticles. J Control Release 92(1–2):173–87 Park JY, Park S, Lee TS et al (2019a) Biodegradable micro-sized discoidal polymeric particles for lung-targeted delivery system. Biomaterials 218:119331. https://doi.org/10.1016/j.biomaterials.2019.119331 Park K, Skidmore S, Hadar J et al (2019b) Injectable, long-acting PLGA formulations: analyzing PLGA and understanding microparticle formation. J Control Release 304:125–134. https://doi.org/10.1016/j.jconrel.2019.05.003 Patel B, Gupta V, Ahsan F (2012) PEG–PLGA based large porous particles for pulmonary delivery of a highly soluble drug, low molecular weight heparin. J Control Release 162(2):310–320 Patel A, Ansari T, Vimal P, Goyani M, Deshmukh A, Akbari B (2015) Review on PLGA based solvent induced in-situ forming implant. Res J Pharm Dos Forms Technol 8:127 Peppas NA, Narasimhan B (2014) Mathematical models in drug delivery: how modeling has shaped the way we design new drug delivery systems. J Control Release 190:75–81. https://doi.org/10.1016/J.JCONREL.2014.06.041 Perry JL, Herlihy KP, Napier ME, DeSimone JM (2011) PRINT: a novel platform toward shape and size specific nanoparticle theranostics. Acc Chem Res 44(10):990–998 Qodratnama R, Serino LP, Cox HC, Qutachi O, White LJ (2015) Formulations for modulation of protein release from large-size PLGA microparticles for tissue engineering. Mat Sci Eng C 47:230–236 Rezvantalab S, Keshavarz Moraveji M (2019) Microfluidic assisted synthesis of PLGA drug delivery systems. RSC Adv 9(4):2055–2072. https://doi.org/10.1039/C8RA08972H Ritger PL, Peppas NA (1987) A simple equation for description of solute release I. Fickian and non-Fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. J Control Release 5(1):23–36. https://doi.org/10.1016/0168-3659(87)90034-4 Rodriguez de Anda DA, Ohannesian N, Martirosyan KS, Chew SA (2019) Effects of solvent used for fabrication on drug loading and release kinetics of electrosprayed temozolomide-loaded PLGA microparticles for the treatment of glioblastoma. J Biomed Mater Res B Appl Biomater 107(7):2317–2324. https://doi.org/10.1002/jbm.b.34324 Ruoslahti E (2017) Tumor penetrating peptides for improved drug delivery. Adv Drug Deliv Rev 110–111:3–12. https://doi.org/10.1016/j.addr.2016.03.008 Sah H (2000) Ethyl formate—alternative dispersed solvent useful in preparing PLGA microspheres. Int J Pharm 195(1–2):103–113. https://doi.org/10.1016/S0378-5173(99)00379-8 Sah H, Smith MS, Chern RT (1996) A novel method of preparing PLGA microcapsules utilizing methylethyl ketone. Pharm Res 13(3):360–367. https://doi.org/10.1023/A:1016080123176 Salem AK (2008) Comparative study of poly (lactic-co-glycolic acid)-poly ethyleneimine-plasmid DNA microparticles prepared using double emulsion methods. J Microencapsul. https://doi.org/10.1080/02652040701659347 Samadi N, Abbadessa A, Di Stefano A et al (2013) The effect of lauryl capping group on protein release and degradation of poly(d, l-lactic-co-glycolic acid) particles. J Control Release 172(2):436–443. https://doi.org/10.1016/j.jconrel.2013.05.034 Shah NK, Wang Z, Gupta SK, Le Campion A, Meenach SA (2019) Sustained release of a model water-soluble compound via dry powder aerosolizable acetalated dextran microparticles. Pharm Dev Technol 24(9):1133–1143. https://doi.org/10.1080/10837450.2019.1641727 Shiehzadeh F, Tafaghodi M, Laal-Dehghani M, Mashhoori F, Fazly Bazzaz BS, Imenshahidi M (2019) Preparation and characterization of a dry powder inhaler composed of PLGA large porous particles encapsulating gentamicin sulfate. Adv Pharm Bull 9(2):255–261. https://doi.org/10.15171/apb.2019.029 Singhvi G, Rapalli VK, Nagpal S, Dubey SK, Saha RN (2020) Nanocarriers as potential targeted drug delivery for cancer therapy. Nanosci Med 1:51–88. https://doi.org/10.1007/978-3-030-29207-2_2 Strobel SA, Hudnall K, Arbaugh B, Cunniffe JC, Scher HB, Jeoh T (2020) Stability of fish oil in calcium alginate microcapsules cross-linked by in situ internal gelation during spray drying. Food Bioprocess Technol 13(2):275–287 Microfluidic Systems (2020) Dolomite Microfluidics. https://www.dolomite-microfluidics.com/ Takami T, Murakami Y (2014) Unexpected and successful “one-step” formation of porous polymeric particles only by mixing organic solvent and water under “low-energy-input” conditions. Langmuir 30(12):3329–3336. https://doi.org/10.1021/la500324j Takeuchi I, Tomoda K, Hamano A, Makino K (2017) Effects of physicochemical properties of poly(lactide-co-glycolide) on drug release behavior of hydrophobic drug-loaded nanoparticles. Colloids Surf A 520:771–778 Takeuchi I, Taniguchi Y, Tamura Y, Ochiai K, Makino K (2018) Effects of l-leucine on PLGA microparticles for pulmonary administration prepared using spray drying: fine particle fraction and phagocytotic ratio of alveolar macrophages. Colloids Surf A 537:411–417. https://doi.org/10.1016/J.COLSURFA.2017.10.047 Tan MXL, Danquah MK (2012) Drug and protein encapsulation by emulsification: technology enhancement using foam formulations. Chem Eng Technol 35(4):618–626. https://doi.org/10.1002/ceat.201100358 Tang L, Azzi J, Kwon M et al (2012) Immunosuppressive activity of size-controlled PEG-PLGA nanoparticles containing encapsulated cyclosporine A. J Transplant 2012:1–9. https://doi.org/10.1155/2012/896141 Tomic I, Vidis-Millward A, Mueller-Zsigmondy M, Cardot J-M (2016) Setting accelerated dissolution test for PLGA microspheres containing peptide, investigation of critical parameters affecting drug release rate and mechanism. Int J Pharm 505(1–2):42–51. https://doi.org/10.1016/j.ijpharm.2016.03.048 Tran V-T, Karam J-P, Garric X et al (2011) Protein-loaded PLGA-PEG-PLGA microspheres: a tool for cell therapy. Eur J Pharm Sci. https://doi.org/10.1016/j.ejps.2011.10.030 Tran M-K, Swed A, Boury F (2012) Preparation of polymeric particles in CO2 medium using non-toxic solvents: formulation and comparisons with a phase separation method. Eur J Pharm Biopharm 82(3):498–507. https://doi.org/10.1016/j.ejpb.2012.08.005 Tran MK, Hassani LN, Calvignac B, Beuvier T, Hindré F, Boury F (2013) Lysozyme encapsulation within PLGA and CaCO3 microparticles using supercritical CO2 medium. J Supercrit Fluids 79:159–169. https://doi.org/10.1016/j.supflu.2013.02.024 Ungaro F, di Villa D, Bianca R, Giovino C et al (2009) Insulin-loaded PLGA/cyclodextrin large porous particles with improved aerosolization properties: in vivo deposition and hypoglycaemic activity after delivery to rat lungs. J Control Release 135(1):25–34. https://doi.org/10.1016/j.jconrel.2008.12.011 Ungaro F, Giovino C, Coletta C, Sorrentino R, Miro A, Quaglia F (2010) Engineering gas-foamed large porous particles for efficient local delivery of macromolecules to the lung. Eur J Pharm Sci 41(1):60–70. https://doi.org/10.1016/j.ejps.2010.05.011 Van De Weert M, Hennink WE, Jiskoot W (2000) Protein instability in poly(lactic-co-glycolic acid) microparticles. Pharm Res 17:1159–1167 Vilos C, Velasquez LA, Rodas PI et al (2015) Preclinical development and in vivo efficacy of ceftiofur-PLGA microparticles. PLoS ONE. https://doi.org/10.1371/journal.pone.0123335 Vladisavljević GT, Shahmohamadi H, Das DB, Ekanem EE, Tauanov Z, Sharma L (2014) Glass capillary microfluidics for production of monodispersed poly (dl-lactic acid) and polycaprolactone microparticles: experiments and numerical simulations. J Colloid Interface Sci 418:163–170. https://doi.org/10.1016/j.jcis.2013.12.002 Vora LK, Donnelly RF, Larrañeta E, González-Vázquez P, Thakur RRS, Vavia PR (2017) Novel bilayer dissolving microneedle arrays with concentrated PLGA nano-microparticles for targeted intradermal delivery: proof of concept. J Control Release 265:93–101. https://doi.org/10.1016/J.JCONREL.2017.10.005 Wan F, Yang M (2016) Design of PLGA-based depot delivery systems for biopharmaceuticals prepared by spray drying. Int J Pharm 498(1–2):82–95 Wang H, Zhang G, Sui H, Liu Y, Park K, Wang W (2015) Comparative studies on the properties of glycyrrhetinic acid-loaded PLGA microparticles prepared by emulsion and template methods. Int J Pharm 496(2):723–731 Wang H, Zhang G, Ma X et al (2017) Enhanced encapsulation and bioavailability of breviscapine in PLGA microparticles by nanocrystal and water-soluble polymer template techniques. Eur J Pharm Biopharm 115:177–185. https://doi.org/10.1016/j.ejpb.2017.02.021 Wang J, Helder L, Shao J, Jansen JA, Yang M, Yang F (2019) Encapsulation and release of doxycycline from electrospray-generated PLGA microspheres: effect of polymer end groups. Int J Pharm 564:1–9. https://doi.org/10.1016/J.IJPHARM.2019.04.023 Washington MA, Balmert SC, Fedorchak MV, Little SR, Watkins SC, Meyer TY (2018) Monomer sequence in PLGA microparticles: effects on acidic microclimates and in vivo inflammatory response. Acta Biomater 65:259–271. https://doi.org/10.1016/j.actbio.2017.10.043 Webster DM, Sundaram P, Byrne ME (2013) Injectable nanomaterials for drug delivery: carriers, targeting moieties, and therapeutics. Eur J Pharm Biopharm 84(1):1–20. https://doi.org/10.1016/j.ejpb.2012.12.009 Wischke C, Schwendeman SP (2008) Principles of encapsulating hydrophobic drugs in PLA/PLGA microparticles. Int J Pharm 364(2):298–327 Wise DL (2000) Handbook of pharmaceutical controlled release technology. CRC Press, Boca Raton.https://doi.org/10.1201/9781482289985 Wu J, Deng C, Meng F, Zhang J, Sun H, Zhong Z (2017) Hyaluronic acid coated PLGA nanoparticulate docetaxel effectively targets and suppresses orthotopic human lung cancer. J Control Release 259:76–82. https://doi.org/10.1016/j.jconrel.2016.12.024 Xia H, Li B-Z, Gao Q (2017) Effect of molecular weight of starch on the properties of cassava starch microspheres prepared in aqueous two-phase system. Carbohydr Polym 177:334–340. https://doi.org/10.1016/j.carbpol.2017.08.074 Yang A, Yang L, Liu W, Li Z, Xu H, Yang X (2007) Tumor necrosis factor alpha blocking peptide loaded PEG-PLGA nanoparticles: preparation and in vitro evaluation. Int J Pharm 331(1):123–132. https://doi.org/10.1016/j.ijpharm.2006.09.015 Yang Y, Bajaj N, Xu P, Ohn K, Tsifansky MD, Yeo Y (2009) Development of highly porous large PLGA microparticles for pulmonary drug delivery. Biomaterials 30(10):1947–1953. https://doi.org/10.1016/j.biomaterials.2008.12.044 Yeo Y, Park K (2004) Control of encapsulation efficiency and initial burst in polymeric microparticle systems. Arch Pharm Res 27(1):1 Zhang X, Qin L, Su J et al (2020) Engineering large porous microparticles with tailored porosity and sustained drug release behavior for inhalation. Eur J Pharm Biopharm 155:139–146. https://doi.org/10.1016/j.ejpb.2020.08.021 Zhu Z, Min T, Zhang X, Wen Y (2019) Microencapsulation of thymol in poly(lactide-co-glycolide) (PLGA): physical and antibacterial properties. Materials 12(7):1133. https://doi.org/10.3390/ma12071133