Recent advances in selective acetylene hydrogenation using palladium containing catalysts
Tóm tắt
Từ khóa
Tài liệu tham khảo
Tiedtke D B, Cheung T T P, Leger J, Zisman S A, Bergmeister J J, Delzer G A. In: 13th Ethylene Producers Conference, 2001, 10: 1–21
Borodziński A, Bond G C. Selective Hydrogenation of ethyne in ethene—rich streams on palladium catalysts. Part 1. Effect of changes to the catalyst during reaction. Catalysis Reviews, 2006, 48(2): 91–144
Borodziński A, Bond G C. Selective hydrogenation of ethyne in ethene—rich streams on palladium catalysts. Part 2: Steady—state kinetics and effects of palladium particle size, carbon monoxide, and promoters. Catalysis Reviews, 2008, 50(3): 379–469
Nikolaev S A, Zanaveskin I L N, Smirnov V V, Averyanov V A, Zanaveskin K I. Catalytic hydrogenation of alkyne and alkadiene impurities from alkenes. Practical and theoretical aspects. Russian Chemical Reviews, 2009, 78(3): 231–247
García-Mota M, Gómez-Díaz J, Novell-Leruth G, Vargas-Fuentes C, Bellarosa L, Bridier B, Pérez-Ramírez J, López N. A density functional theory study of the “mythic” Lindlar hydrogenation catalyst. Theoretical Chemistry Accounts, 2011, 128(4): 663–673
Bridier B, Lopez N, Pérez-Ramírez J. Molecular understanding of alkyne hydrogenation for the design of selective catalysts. Dalton Transactions, 2010, 39(36): 8412–8419
Segura Y, López N, Pérez-Ramírez J. Origin of the superior hydrogenation selectivity of gold nanoparticles in alkyne + alkene mixtures: Triple-versus double-bond activation. Journal of Catalysis, 2007, 247(2): 383–386
Vilé G, Baudouin D, Remediakis I N, Copéret C, López N, Pérez-Ramírez J. Silver nanoparticles for olefin production: New insights into the mechanistic description of propyne hydrogenation. ChemCatChem, 2013, 5(12): 3750–3759
Wehrli J T, Thomas D J, Wainwright M S, Trimm D L, Cant N W. Selective hydrogenation of propyne over supported copper catalysts: Influence of support. Applied Catalysis, 1991, 70(1): 253–262
Bridier B, López N, Pérez-Ramírez J. Partial hydrogenation of propyne over copper-based catalysts and comparison with nickelbased analogues. Journal of Catalysis, 2010, 269(1): 80–92
Abelló S, Verboekend D, Bridier B, Pérez-Ramírez J. Activated takovite catalysts for partial hydrogenation of ethyne, propyne, and propadiene. Journal of Catalysis, 2008, 259(1): 85–95
Trimm D L, Liu I O Y, Cant N W. The selective hydrogenation of acetylene over a Ni/SiO2 catalyst in the presence and absence of carbon monoxide. Applied Catalysis A, General, 2010, 374(1–2): 58–64
Trimm D L, Cant N W, Liu I O Y. The selective hydrogenation of acetylene in the presence of carbon monoxide over Ni and Ni-Zn supported on MgAl2O4. Catalysis Today, 2011, 178(1): 181–186
Lopez-Sanchez J A, Lennon D. The use of titania- and iron oxide-supported gold catalysts for the hydrogenation of propyne. Applied Catalysis A, General, 2005, 291(1–2): 230–237
García-Mota M, Bridier B, Pérez-Ramírez J, López N. Interplay between carbon monoxide, hydrides, and carbides in selective alkyne hydrogenation on palladium. Journal of Catalysis, 2010, 273(2): 92–102
Yang B, Burch R, Hardacre C, Headdock G, Hu P. Influence of surface structures, subsurface carbon and hydrogen, and surface alloying on the activity and selectivity of acetylene hydrogenation on Pd surfaces: A density functional theory study. Journal of Catalysis, 2013, 305: 264–276
Gabasch H, Hayek K, Klötzer B, Knop-Gericke A, Schlögl R. Carbon incorporation in Pd(111) by adsorption and dehydrogenation of ethene. Journal of Physical Chemistry B, 2006, 110(10): 4947–4952
Teschner D, Borsodi J, Wootsch A, Révay Z, Hävecker M, Knop-Gericke A, Jackson S D, Schlögl R. The roles of subsurface carbon and hydrogen in palladium-catalyzed alkyne hydrogenation. Science, 2008, 320(5872): 86–89
Teschner D, Borsodi J, Kis Z, Szentmiklósi L, Révay Z, Knop-Gericke A, Schlögl R, Torres D, Sautet P. Role of hydrogen species in palladium-catalyzed alkyne hydrogenation. Journal of Physical Chemistry C, 2010, 114(5): 2293–2299
Sá J, Arteaga G D, Daley R A, Bernardi J, Anderson J A. Factors influencing hydride formation in a Pd/TiO2 catalyst. Journal of Physical Chemistry B, 2006, 110(34): 17090–17095
Schauermann S, Nilius N, Shaikhutdinov S, Freund H J. Nanoparticles for heterogeneous catalysis: New mechanistic insights. Accounts of Chemical Research, 2013, 46(8): 1673–1681
Ludwig W, Savara A, Madix R J, Schauermann S, Freund H J. Subsurface hydrogen diffusion into Pd nanoparticles: Role of lowcoordinated surface sites and facilitation by carbon. Journal of Physical Chemistry C, 2012, 116(5): 3539–3544
Ludwig W, Savara A, Dostert K H, Schauermann S. Olefin hydrogenation on Pd model supported catalysts: New mechanistic insights. Journal of Catalysis, 2011, 284(2): 148–156
Wilde M, Fukutani K, Ludwig W, Brandt B, Fischer J H, Schauermann S, Freund H J. Influence of carbon deposition on the hydrogen distribution in Pd nanoparticles and their reactivity in olefin hydrogenation. Angewandte Chemie International Edition, 2008, 47(48): 9289–9293
Armbrüster M, Behrens M, Cinquini F, Föttinger K, Grin Y, Haghofer A, Klötzer B, Knop-Gericke A, Lorenz H, Ota A, Penner S, Prinz J, Rameshan C, Révay Z, Rosenthal D, Rupprechter G, Teschner D, Torres D, Wagner R, Widmer R, Wowsnick G. How to control the selectivity of palladium-based catalysts in hydrogenation reactions: The role of subsurface chemistry. ChemCatChem, 2012, 4(8): 1048–1063
Khan N A, Shaikhutdinov S, Freund H J. Acetylene and ethylene hydrogenation on alumina supported Pd-Ag model catalysts. Catalysis Letters, 2006, 108(3‐4): 159–164
Johnson M M, Walker D W, Nowack G P. U S Patent, 4404124A, 1983-09-13
Lim B, Jiang M, Tao J, Camargo P H C, Zhu Y, Xia Y. Shapecontrolled synthesis of Pd nanocrystals in aqueous solutions. Advanced Functional Materials, 2009, 19(2): 189–200
Yarulin A E, Crespo-Quesada R M, Egorova E V, Kiwi-Minsker L L. Structure sensitivity of selective acetylene hydrogenation over the catalysts with shape-controlled palladium nanoparticles. Kinetics and Catalysis, 2012, 53(2): 253–261
Crespo-Quesada M, Andanson J M, Yarulin A, Lim B, Xia Y, Kiwi-Minsker L. UV-ozone cleaning of supported poly(vinylpyrrolidone)-stabilized palladium nanocubes: Effect of stabilizer removal on morphology and catalytic behavior. Langmuir, 2011, 27(12): 7909–7916
Kim S K, Kim C, Lee J H, Kim J, Lee H, Moon S H. Performance of shape-controlled Pd nanoparticles in the selective hydrogenation of acetylene. Journal of Catalysis, 2013, 306: 146–150
He Y F, Feng J T, Du Y Y, Li D Q. Controllable synthesis and acetylene hydrogenation performance of supported pd nanowire and cuboctahedron catalysts. ACS Catalysis, 2012, 2(8): 1703–1710
Benavidez A D, Burton P D, Nogales J L, Jenkins A R, Ivanov S A, Miller J T, Karim A M, Datye A K. Improved selectivity of carbonsupported palladium catalysts for the hydrogenaiton of acetylene in excess ethylene. Applied Catalysis A, General, 2014, 482: 108–115
Burton P D, Boyle T J, Datye A K. Facile. Surfactant-free synthesis of Pd nanoparticles for heterogeneous catalysts. Journal of Catalysis, 2011, 280(2): 145–149
Boudart M, Hwang H S. Solubility of hydrogen in small particles of palladium. Journal of Catalysis, 1975, 39(1): 44–52
Gulyaeva Y K, Kaichev V V, Zaikovskii V I, Kovalyov E V, Suknev A P, Bal’zhinimaev B S. Selective hydrogenation of acetylene over novel Pd/fiberglass catalysts. Catalysis Today, 2015, 245: 139–146
Riyapan S, Boonyongmaneerat Y, Mekasuwandumrong O, Yoshida H, Fujita S I, Arai M, Panpranot J. Improved catalytic performance of Pd/TiO2 in the selective hydrogenation of acetylene by using H2-treated sol-gel TiO2. Journal of Molecular Catalysis A Chemical, 2014, 383–384: 182–187
Riyapan S, Boonyongmaneerat Y, Mekasuwandumrong O, Praserthdam P, Panpranot J. Effect of surface Ti3+ on the sol-gel derived TiO2 in the selective acetylene hydrogenation on Pd/TiO2 catalysts. Catalysis Today, 2014, 245: 134–138
Li Y, Jang B W L. Non-thermal RF plasma effects on surface properties of Pd/TiO2 catalysts for selective hydrogenation of acetylene. Applied Catalysis A, General, 2011, 392(1–2): 173–179
Zhu B, Jang B W L. Insights into surface properties of non-thermal RF plasmas treated Pd/TiO2 in acetylene hydrogenation. Journal of Molecular Catalysis A, Chemical, 2014, 395: 137–144
Kim W J, Moon S H. Modified Pd catalysts for the selective hydrogenation of acetylene. Catalysis Today, 2012, 185(1): 2–16
Shin E W, Choi C H, Chang K S, Na Y H, Moon S H. Properties of Si-modified Pd catalyst for selective hydrogenation of acetylene. Catalysis Today, 1998, 44(3): 137–143
Shin EW, Kang J H, Kim WJ, Park J D, Moon S H. Performance of Si-modified Pd catalyst in acetylene hydrogenation: The origin of the ethylene selectivity improvement. Applied Catalysis A, General, 2002, 223(1–2): 161–172
Ahn I Y, Kim W J, Moon S H. Performance of La2O3- or Nb2O5-added Pd/SiO2 catalysts in acetylene hydrogenation. Applied Catalysis A, General, 2006, 308: 75–81
Kim W J, Ahn I Y, Lee J H, Moon S H. Properties of Pd/SiO2 catalyst doubly promoted with La oxide and Si for acetylene hydrogenation. Catalysis Communications, 2012, 24: 52–55
McKenna F M, Anderson J A. Selectivity enhancement in acetylene hydrogenation over diphenyl sulphide-modified Pd/TiO2 catalysts. Journal of Catalysis, 2011, 281(2): 231–240
McCue A J, Anderson J A. Sulfur as a catalyst promoter or selectivity modifier in heterogeneous catalysis. Catalysis Science & Technology, 2014, 4(2): 272–294
McKenna F M, Wells R P K, Anderson J A. Enhanced selectivity in acetylene hydrogenation by ligand modified Pd/TiO2 catalysts. Chemical Communications, 2011, 47(8): 2351–2353
McKenna F M, Mantarosie L, Wells R P K, Hardacre C, Anderson J A. Selective hydrogenation of acetylene in ethylene rich feed streams at high pressure over ligand modified Pd/TiO2. Catalysis Science & Technology, 2012, 2(3): 632–638
McCue A J, McKenna F M, Anderson J A. Triphenylphosphine: A ligand for heterogeneous catalysis too? Selectivity enhancement in acetylene hydrogenation over modified Pd/TiO2 catalyst. Catalysis Science & Technology, 2015, 5(4): 2449–2459
Han Y, Peng D, Xu Z, Wan H, Zheng S, Zhu D. TiO2 supported Pd@Ag as highly selective catalysts for hydrogenation of acetylene in excess ethylene. Chemical Communications, 2013, 49(75): 8350–8352
Zhang Y, Diao W, Williams C T, Monnier J R. Selective hydrogenation of acetylene in excess ethylene using Ag- and Au-Pd/SiO2 bimetallic catalysts prepared by electroless deposition. Applied Catalysis A, General, 2014, 469: 419–426
Ma C, Du Y, Feng J, Cao X, Yang J, Li D. Fabrication of supported PdAu nanoflower catalyst for partial hydrogenation of acetylene. Journal of Catalysis, 2014, 317: 263–271
Cherkasov N, Ibhadon A O, McCue A J, Anderson J A, Johnston S K. Palladium-bismuth intermetallic and surface-poisoned catalysts for the semi-hydrogenation of 2-methyl-3-butyn-2-ol. Applied Catalysis A, General, 2015, 497: 22–30
Osswald J, Giedigkeit R, Jentoft R E, Armbrüster M, Girgsdies F, Kovnir K, Ressler T, Grin Y, Schlögl R. Palladium-gallium intermetallic compounds for the selective hydrogenation of acetylene Part 1: Preparation and structural investigation under reaction conditions. Journal of Catalysis, 2008, 258(1): 210–218
Osswald J, Kovnir K, Armbrüster M, Giedigkeit R, Jentoft R E, Wild U, Grin Y, Schlögl R. Palladium-gallium intermetallic compounds for the selective hydrogenation of acetylene. Part II: Surface characterization and catalytic performance. Journal of Catalysis, 2008, 258(1): 219–227
Friedrich M, Villaseca S A, Szentmiklósi L, Teschner D, Armbrüster M. Order-induced selectivity increase of Cu60Pd40 in the semihydrogenation of acetylene. Materials, 2013, 6(7): 2958–2977
Kim S K, Lee J H, Ahn I Y, Kim W J, Moon S H. Performance of Cu-promoted Pd catalysts prepared by adding Cu using a surface redox method in acetylene hydrogenation. Applied Catalysis A, General, 2011, 401(1–2): 12–19
Tierney H L, Baber A E, Kitchin J R, Sykes E C H. Hydrogen dissociation and spillover on individual isolated palladium atoms. Physical Review Letters, 2009, 103(24): 246102–246104
Kyriakou G, Boucher M B, Jewell A D, Lewis E A, Lawton T J, Baber A E, Tierney H L, Flytzani-Stephanopoulos M, Sykes E C H. Isolated metal atom geomretries as a strategy for selective heterogeneous hydrogenations. Science, 2012, 335(6073): 1209–1212
Boucher M B, Zugic B, Cladaras G, Kammert J, Marcinkowski M D, Lawton T J, Sykes E C H, Flytzani-Stephanopoulos M. Single atom alloy surface analogs in Pd0.18Cu15 nanoparticles for selective hydrogenation reactions. Physical Chemistry Chemical Physics, 2013, 15(29): 12187–12196
McCue A J, McRitchie C J, Shepherd A M, Anderson J A. Cu/Al2O3 catalysts modified with Pd for selective acetylene hydrogenation. Journal of Catalysis, 2014, 319: 127–135
Fu Q, Luo Y. Active sites of Pd-doped flat and stepped Cu(111) surfaces for H2 dissociation in heterogeneous catalytic hydrogenation. ACS Catalysis, 2013, 3(6): 1245–1252
McCue A J, Shepherd A M, Anderson J A. Optimisation of preparation method for Pd coped Cu/Al2O3 catalysts for selective acetylene hydrogenation. Catalysis Science & Technology, 2015, 5(5): 2880–2890