Recent advances in optically induced di-electrophoresis and its biomedical applications
Tóm tắt
The development of the micro/nano science and technology has promoted the evolvement of human civilization tremendously. The advancement of the micro/nano science and technology highly depends on the progress of the micro/nano manipulation techniques, and the micro/nano-scaled manipulation level is the critical sign of the micro/nano science and technology. This review, aimed at the demand and the challenge of the micro/nano material and biomedical fields and related to the scientific issues and implementation techniques of the optically induced di-electrophoresis (ODEP). We explained its working principle, manipulating method, and influencing factors of ODEP force to a certain extent. A number of application fields based-ODEP technology and specific applications so far are summarized and reviewed. Finally, some perspectives are provided on current development trends, future research directions, and challenges of ODEP.
Tài liệu tham khảo
N. Aceto, A. Bardia, D.T. Miyamoto, M.C. Donaldson, B.S. Wittner, J.A. Spencer, M. Yu, A. Pely, A. Engstrom, H. Zhu et al., Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis. Cell. 158, 1110–1122 (2014). https://doi.org/10.1016/j.cell.2014.07.013
S. Adachi, Optical properties of crystalline and amorphous semiconductors: Materials and fundamental principles (Springer Science & Business Media, 2012)
E.M. Ahmed, Hydrogel: Preparation, characterization, and applications: A review. J. Adv. Res. 6, 105–121 (2015). https://doi.org/10.1016/j.jare.2013.07.006
T. Ashworth, A case of cancer in which cells similar to those in the tumours were seen in the blood after death. Aust Med J. 14, 146 (1869)
M.R. Ayatollahi, S. Shadlou, M.M. Shokrieh, M. Chitsazzadeh, Effect of multi-walled carbon nanotube aspect ratio on mechanical and electrical properties of epoxy-based nanocomposites. Polym. Test. 30, 548–556 (2011). https://doi.org/10.1016/j.polymertesting.2011.04.008
M.M. Browne, G.V. Lubarsky, M.R. Davidson, R.H. Bradley, Protein adsorption onto polystyrene surfaces studied by xps and afm. Surf. Sci. 553, 155–167 (2004). https://doi.org/10.1016/j.susc.2004.01.046
D. Burkitt, A sarcoma involving the jaws in african children. Br. J. Surg. 46, 218–223 (1958). https://doi.org/10.1002/bjs.18004619704
D.E. Carlson, C.R. Wronski, Amorphous silicon solar cell. Appl. Phys. Lett. 28, 671–673 (1976). https://doi.org/10.1063/1.88617
A. Castellanos, A. Ramos, A. González, N.G. Green, H. Morgan, Electrohydrodynamics and dielectrophoresis in microsystems: Scaling laws. J. Phys. D. Appl. Phys. 36, 2584–2597 (2003). https://doi.org/10.1088/0022-3727/36/20/023
B. Cetin, Microfluidic continuous separation of particles and cells by ac-dielectrophoresis (Vanderbilt University, 2009)
B. Çetin, D. Li, Dielectrophoresis in microfluidics technology. Electrophoresis. 32, 2410–2427 (2011). https://doi.org/10.1002/elps.201100167
L. Chau, M. Ouyang, W. Liang, G. Lee, W.J. Li, W.K. Liu, Inducing self-rotation of melan-a cells by odep. Presented at 2012 7th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS) (2012) pp. 195–199. https://doi.org/10.1109/NEMS.2012.6196755
Y.-S. Chen, C.P.-K. Lai, C. Chen, G.-B. Lee, Isolation and recovery of extracellular vesicles using optically-induced dielectrophoresis on an integrated microfluidic platform. Lab. Chip. 21, 1475–1483 (2021). https://doi.org/10.1039/D1LC00093D
J. Cheng, M.A. Rahman, A.T. Ohta, Optical manipulation of cells, in Microtechnology for cell manipulation and sorting. ed. by W. Lee, P. Tseng, D. Di Carlo (Springer International Publishing, Cham, 2017), pp. 93–128
P.Y. Chiou, A.T. Ohta, M.C. Wu, Massively parallel manipulation of single cells and microparticles using optical images. Nature. 436, 370–372 (2005). https://doi.org/10.1038/nature03831
T.-K. Chiu, A.C. Chao, W.-P. Chou, C.-J. Liao, H.-M. Wang, J.-H. Chang, P.-H. Chen, M.-H. Wu, Optically-induced-dielectrophoresis (odep)-based cell manipulation in a microfluidic system for high-purity isolation of integral circulating tumor cell (ctc) clusters based on their size characteristics. Sens. Actuators. B. Chem. 258, 1161–1173 (2018). https://doi.org/10.1016/j.snb.2017.12.003
T.-K. Chiu, W.-P. Chou, S.-B. Huang, H.-M. Wang, Y.-C. Lin, C.-H. Hsieh, M.-H. Wu, Application of optically-induced-dielectrophoresis in microfluidic system for purification of circulating tumour cells for gene expression analysis- cancer cell line model. Sci. Rep. 6, 32851 (2016). https://doi.org/10.1038/srep32851
D.-S. Choi, J. Lee, G. Go, Y.-K. Kim, Y.S. Gho, Circulating extracellular vesicles in cancer diagnosis and monitoring. Mol. Diagn. Ther. 17, 265–271 (2013). https://doi.org/10.1007/s40291-013-0042-7
W.-P. Chou, H.-M. Wang, J.-H. Chang, T.-K. Chiu, C.-H. Hsieh, C.-J. Liao, M.-H. Wu, The utilization of optically-induced-dielectrophoresis (odep)-based virtual cell filters in a microfluidic system for continuous isolation and purification of circulating tumour cells (ctcs) based on their size characteristics. Sens. Actuators. B. Chem. 241, 245–254 (2017). https://doi.org/10.1016/j.snb.2016.10.075
P.-Y. Chu, C.-H. Hsieh, M.-H. Wu, The combination of immunomagnetic bead-based cell isolation and optically induced dielectrophoresis (odep)-based microfluidic device for the negative selection-based isolation of circulating tumor cells (ctcs). Front. Bioeng. Biotechnol. 8, 921 (2020). https://doi.org/10.3389/fbioe.2020.00921
P.-Y. Chu, C.-J. Liao, H.-M. Wang, M.-H. Wu, The influence of electric parameters on the manipulation of biological cells in a microfluidic system using optically induced dielectrophoresis. Int. J. Electrochem. Sci 14, 905–918 (2019a)
P.-Y. Chu, C.-J. Liao, C.-H. Hsieh, H.-M. Wang, W.-P. Chou, P.-H. Chen, M.-H. Wu, Utilization of optically induced dielectrophoresis in a microfluidic system for sorting and isolation of cells with varied degree of viability: Demonstration of the sorting and isolation of drug-treated cancer cells with various degrees of anti-cancer drug resistance gene expression. Sens. Actuators. B. Chem. 283, 621–631 (2019b). https://doi.org/10.1016/j.snb.2018.12.047
J.L. Curley, S.R. Jennings, M.J. Moore, Fabrication of micropatterned hydrogels for neural culture systems using dynamic mask projection photolithography. J. Vis. Exp. 48, e2636 (2011). https://doi.org/10.3791/2636
C. DeForest, K. Anseth, Bioactive hydrogels for regenerative medicine. Annu. Rev. Chem. Biomol. Eng. 3, 421–444 (2012)
G. Deng, M. Herrler, D. Burgess, E. Manna, D. Krag, J.F. Burke, Enrichment with anti-cytokeratin alone or combined with anti-epcam antibodies significantly increases the sensitivity for circulating tumor cell detection in metastatic breast cancer patients. Breast. Cancer. Res. 10, R69 (2008). https://doi.org/10.1186/bcr2131
E. Donnarumma, D. Fiore, M. Nappa, G. Roscigno, A. Adamo, M. Iaboni, V. Russo, A. Affinito, I. Puoti, C. Quintavalle et al., Cancer-associated fibroblasts release exosomal micrornas that dictate an aggressive phenotype in breast cancer. Oncotarget. 8, 19592–19608 (2017). https://doi.org/10.18632/oncotarget.14752
S. Gabriel, R. Jérôme, C. Jérôme, Cathodic electrografting of acrylics: From fundamentals to functional coatings. Prog. Polym. Sci. 35, 113–140 (2010). https://doi.org/10.1016/j.progpolymsci.2009.11.003
Z.R. Gagnon, Cellular dielectrophoresis: Applications to the characterization, manipulation, separation and patterning of cells. Electrophoresis. 32, 2466–2487 (2011). https://doi.org/10.1002/elps.201100060
P. Gascoyne, C. Mahidol, M. Ruchirawat, J. Satayavivad, P. Watcharasit, F.F. Becker, Microsample preparation by dielectrophoresis: Isolation of malaria. Lab. Chip. 2, 70–75 (2002)
V. Gill, P.R. Guduru, B.W. Sheldon, Electric field induced surface diffusion and micro/nano-scale island growth. Int. J. Solids. Struct. 45, 943–958 (2008). https://doi.org/10.1016/j.ijsolstr.2007.09.010
J.S. Go, S. Shoji, A disposable, dead volume-free and leak-free in-plane pdms microvalve. Sens. Actuators. A. Phys. 114, 438–444 (2004). https://doi.org/10.1016/j.sna.2003.12.028
D.R. Gossett, W.M. Weaver, A.J. Mach, S.C. Hur, H.T.K. Tse, W. Lee, H. Amini, D. Di Carlo, Label-free cell separation and sorting in microfluidic systems. Anal. Bioanal. Chem. 397, 3249–3267 (2010). https://doi.org/10.1007/s00216-010-3721-9
N.G. Green, T.B. Jones, Numerical determination of the effective moments of non-spherical particles. J. Phys. D Appl. Phys. 40, 78–85 (2006). https://doi.org/10.1088/0022-3727/40/1/s12
S. Grilli, V. Vespini, P. Ferraro, Surface-charge lithography for direct pdms micro-patterning. Langmuir. 24, 13262–13265 (2008). https://doi.org/10.1021/la803046j
R.A. Harouaka, M.-D. Zhou, Y.-T. Yeh, W.J. Khan, A. Das, X. Liu, C.C. Christ, D.T. Dicker, T.S. Baney, J.T. Kaifi et al., Flexible micro spring array device for high-throughput enrichment of viable circulating tumor cells. Clin. Chem. 60, 323–333 (2014). https://doi.org/10.1373/clinchem.2013.206805
Y. Hishikawa, N. Nakamura, S. Tsuda, S. Nakano, Y. Kishi, Y. Kuwano, Interference-free determination of the optical absorption coefficient and the optical gap of amorphous silicon thin films. Jpn. J. Appl. Phys. 30, 1008–1014 (1991). https://doi.org/10.1143/jjap.30.1008
M. Hoeb, J.O. Rädler, S. Klein, M. Stutzmann, M.S. Brandt, Light-induced dielectrophoretic manipulation of DNA. Biophys. J. 93, 1032–1038 (2007). https://doi.org/10.1529/biophysj.106.101188
Y.-C. Hsiao, C.-H. Wang, W.-B. Lee, G.-B. Lee, Automatic cell fusion via optically-induced dielectrophoresis and optically-induced locally-enhanced electric field on a microfluidic chip. Biomicrofluidics. 12, 034108 (2018)
W. Hu, K.S. Ishii, Q. Fan, A.T. Ohta, Hydrogel microrobots actuated by optically generated vapour bubbles. Lab. Chip. 12, 3821–3826 (2012). https://doi.org/10.1039/C2LC40483D
Z. Huan, H.K. Chu, H. Liu, J. Yang, D. Sun, Engineered bone scaffolds with dielectrophoresis-based patterning using 3d printing. Biomed. Microdevice. 19, 102 (2017)
K. Huang, B. Lu, J. Lai, H.K.H. Chu, Microchip system for patterning cells on different substrates via negative dielectrophoresis. IEEE. Trans. Biomed. Circuits. Syst. 13, 1063–1074 (2019). https://doi.org/10.1109/TBCAS.2019.2937744
S.-B. Huang, J. Chen, J. Wang, C.-L. Yang, M.-H. Wu, A new optically-induced dielectrophoretic (odep) force-based scheme for effective cell sorting. Int. J. Electrochem. Sci. 7, 12656–12667 (2012)
S.-B. Huang, M.-H. Wu, Y.-H. Lin, C.-H. Hsieh, C.-L. Yang, H.-C. Lin, C.-P. Tseng, G.-B. Lee, High-purity and label-free isolation of circulating tumor cells (ctcs) in a microfluidic platform by using optically-induced-dielectrophoretic (odep) force. Lab. Chip. 13, 1371–1383 (2013). https://doi.org/10.1039/C3LC41256C
Y. Huang, R. Pethig, Electrode design for negative dielectrophoresis. Meas. Sci. Technol. 2, 1142–1146 (1991). https://doi.org/10.1088/0957-0233/2/12/005
S.-H. Hung, Y.-H. Lin, G.-B. Lee, A microfluidic platform for manipulation and separation of oil-in-water emulsion droplets using optically induced dielectrophoresis. J. Micromech. Microeng. 20, 045026 (2010)
H. Hwang, D.-H. Lee, W. Choi, J.-K. Park, Enhanced discrimination of normal oocytes using optically induced pulling-up dielectrophoretic force. Biomicrofluidics. 3, 014103 (2009)
K.-A. Hyun, T.Y. Lee, S.H. Lee, H.-I. Jung, Two-stage microfluidic chip for selective isolation of circulating tumor cells (ctcs). Biosens. Bioelectron. 67, 86–92 (2015). https://doi.org/10.1016/j.bios.2014.07.019
A. Irimajiri, T. Hanai, A. Inouye, A dielectric theory of “multi-stratified shell” model with its application to a lymphoma cell. J. Theor. Biol. 78, 251–269 (1979). https://doi.org/10.1016/0022-5193(79)90268-6
A. Jamshidi, P.J. Pauzauskie, P.J. Schuck, A.T. Ohta, P.-Y. Chiou, J. Chou, P. Yang, M.C. Wu, Dynamic manipulation and separation of individual semiconducting and metallic nanowires. Nat. Photonics. 2, 86–89 (2008). https://doi.org/10.1038/nphoton.2007.277
B.K. Jena, C.R. Raj, Electrochemical biosensor based on integrated assembly of dehydrogenase enzymes and gold nanoparticles. Anal. Chem. 78, 6332–6339 (2006). https://doi.org/10.1021/ac052143f
T.B. Jones, Basic theory of dielectrophoresis and electrorotation. IEEE. Eng. Med. Biol. Mag. 22, 33–42 (2003). https://doi.org/10.1109/MEMB.2003.1304999
T. Kakutani, S. Shibatani, M. Sugai, Electrorotation of non-spherical cells: Theory for ellipsoidal cells with an arbitrary number of shells. Bioelectrochem. Bioenerg. 31, 131–145 (1993). https://doi.org/10.1016/0302-4598(93)80002-C
Y. Kang, D. Li, Electrokinetic motion of particles and cells in microchannels. Microfluid. Nanofluid. 6, 431–460 (2009)
Y. Kim, S.A. Choulis, J. Nelson, D.D.C. Bradley, S. Cook, J.R. Durrant, Device annealing effect in organic solar cells with blends of regioregular poly(3-hexylthiophene) and soluble fullerene. Appl. Phys. Lett. 86, 063502 (2005). https://doi.org/10.1063/1.1861123
T. Kojima, Y. Takei, M. Ohtsuka, Y. Kawarasaki, T. Yamane, H. Nakano, Pcr amplification from single DNA molecules on magnetic beads in emulsion: Application for high-throughput screening of transcription factor targets. Nucleic. Acids. Res. 33, e150–e250 (2005). https://doi.org/10.1093/nar/gni143
A.V. Korobko, W. Jesse, J.R.C. van der Maarel, Encapsulation of DNA by cationic diblock copolymer vesicles. Langmuir. 21, 34–42 (2005). https://doi.org/10.1021/la047967r
M.-W. Lee, Y.-H. Lin, G.-B. Lee, Manipulation and patterning of carbon nanotubes utilizing optically induced dielectrophoretic forces. Microfluid. Nanofluid. 8, 609–617 (2010)
P. Li, N. Liu, H. Yu, F. Wang, L. Liu, G.-B. Lee, Y. Wang, W.J. Li, Silver nanostructures synthesis via optically induced electrochemical deposition. Sci. Rep. 6, 28035 (2016). https://doi.org/10.1038/srep28035
P. Li, H. Yu, N. Liu, F. Wang, G.-B. Lee, Y. Wang, L. Liu, W.J. Li, Visible light induced electropolymerization of suspended hydrogel bioscaffolds in a microfluidic chip. Biomater. Sci. 6, 1371–1378 (2018). https://doi.org/10.1039/C7BM01153A
W. Liang, S. Wang, Z. Dong, G.-B. Lee, W.J. Li, Optical spectrum and electric field waveform dependent optically-induced dielectrophoretic (odep) micro-manipulation. Micromachines. 3, 492–508 (2012). https://doi.org/10.3390/mi3020492
W. Liang, L. Liu, S.H.-S. Lai, Y. Wang, G.-B. Lee, W.J. Li, Rapid assembly of gold nanoparticle-based microstructures using optically-induced electrokinetics. Opt. Mater. Express. 4, 2368–2380 (2014a). https://doi.org/10.1364/OME.4.002368
W. Liang, Y. Zhao, L. Liu, Y. Wang, Z. Dong, W.J. Li, G.-B. Lee, X. Xiao, W. Zhang, Rapid and label-free separation of burkitt’s lymphoma cells from red blood cells by optically-induced electrokinetics. PLoS. ONE. 9, e90827 (2014b)
W. Liang, Y. Zhao, L. Liu, Y. Wang, W.J. Li, G.-B. Lee, Determination of cell membrane capacitance and conductance via optically induced electrokinetics. Biophys. J. 113, 1531–1539 (2017). https://doi.org/10.1016/j.bpj.2017.08.006
X. Liang, K. Graham, A. Johannessen, D. Costea, F. Labeed, Human oral cancer cells with increasing tumorigenic abilities exhibit higher effective membrane capacitance. Integr. Biol. 6, 545–554 (2014c)
C.-J. Liao, C.-H. Hsieh, T.-K. Chiu, Y.-X. Zhu, H.-M. Wang, F.-C. Hung, W.-P. Chou, M.-H. Wu, An optically induced dielectrophoresis (odep)-based microfluidic system for the isolation of high-purity cd45neg/epcamneg cells from the blood samples of cancer patients–demonstration and initial exploration of the clinical significance of these cells. Micromachines. 9, 563 (2018). https://doi.org/10.3390/mi9110563
S.-J. Lin, S.-H. Hung, J.-Y. Jeng, T.-F. Guo, G.-B. Lee, Manipulation of micro-particles by flexible polymer-based optically-induced dielectrophoretic devices. Opt. Express. 20, 583–592 (2012a). https://doi.org/10.1364/OE.20.000583
W. Lin, Y. Lin, G. Lee, Contiunous micro-particle separation using optically-induced dielectrophoretic forces. 2009 IEEE 22nd International Conference on Micro Electro Mechanical Systems (2009a), pp. 47–50. https://doi.org/10.1109/MEMSYS.2009.4805315
Y.-H. Lin, G.-B. Lee, An optically induced cell lysis device using dielectrophoresis. Appl. Phys. Lett. 94, 033901 (2009). https://doi.org/10.1063/1.3072593
Y.-H. Lin, C.-M. Chang, G.-B. Lee, Manipulation single DNA molecule by using optically-induced dielectrophoresis. Opt. Express. 17, 15318–15329 (2009b)
Y.-H. Lin, G.-B. Lee, An integrated cell counting and continuous cell lysis device using an optically induced electric field. Sens. Actuators. B. Chem. 145, 854–860 (2010). https://doi.org/10.1016/j.snb.2010.01.019
Y.-H. Lin, Y.-W. Yang, Y.-D. Chen, S.-S. Wang, Y.-H. Chang, M.-H. Wu, The application of an optically switched dielectrophoretic (odep) force for the manipulation and assembly of cell-encapsulating alginate microbeads in a microfluidic perfusion cell culture system for bottom-up tissue engineering. Lab. Chip. 12, 1164–1173 (2012b). https://doi.org/10.1039/C2LC21097E
B.K. Lin, S.M. McFaul, C. Jin, P.C. Black, H. Ma, Highly selective biomechanical separation of cancer cells from leukocytes using microfluidic ratchets and hydrodynamic concentrator. Biomicrofluidics. 7, 034114 (2013). https://doi.org/10.1063/1.4812688
Y.-H. Lin, G.-B. Lee, Optically induced flow cytometry for continuous microparticle counting and sorting. Biosens. Bioelectron. 24, 572–578 (2008). https://doi.org/10.1016/j.bios.2008.06.008
W.-Y. Lin, Y.-H. Lin, G.-B. Lee, Separation of micro-particles utilizing spatial difference of optically induced dielectrophoretic forces. Microfluid. Nanofluid. 8, 217–229 (2010). https://doi.org/10.1007/s10404-009-0457-y
N. Liu, W. Liang, J.D. Mai, Z. Dong, W. J. Li, G. Lee, Rapid micro-patterning of a conductive pani/mwnts-polymer composite using an optically-induced electrokinetics chip. Presented at 2012 IEEE Nanotechnology Materials and Devices Conference (NMDC2012) (2012) pp. 105–110. https://doi.org/10.1109/NMDC.2012.6527579
V.A. Liu, S.N. Bhatia, Three-dimensional photopatterning of hydrogels containing living cells. Biomed. Microdevice. 4, 257–266 (2002). https://doi.org/10.1023/A:1020932105236
B. Liu, W. Luo, X. Zhao, A facile synthesis of ordered ultralong silver nanobelts. Mater. Res. Bull. 44, 682–687 (2009). https://doi.org/10.1016/j.materresbull.2008.06.018
N. Liu, W. Liang, L. Liu, Y. Wang, J.D. Mai, G.-B. Lee, W.J. Li, Extracellular-controlled breast cancer cell formation and growth using non-uv patterned hydrogels via optically-induced electrokinetics. Lab. Chip. 14, 1367–1376 (2014). https://doi.org/10.1039/C3LC51247A
N. Liu, P. Li, L. Liu, H. Yu, Y. Wang, G. Lee, W.J. Li, 3-d non-uv digital printing of hydrogel microstructures by optically controlled digital electropolymerization. J. Microelectromech. Syst. 24, 2128–2135 (2015a). https://doi.org/10.1109/JMEMS.2015.2477217
N. Liu, F. Wei, L. Liu, H.S.S. Lai, H. Yu, Y. Wang, G.-B. Lee, W.J. Li, Optically-controlled digital electrodeposition of thin-film metals for fabrication of nano-devices. Opt. Mater. Express. 5, 838–848 (2015b). https://doi.org/10.1364/OME.5.000838
C. Lv, X.-C. Sun, H. Xia, Y.-H. Yu, G. Wang, X.-W. Cao, S.-X. Li, Y.-S. Wang, Q.-D. Chen, Y.-D. Yu et al., Humidity-responsive actuation of programmable hydrogel microstructures based on 3d printing. Sens. Actuators. B. Chem. 259, 736–744 (2018). https://doi.org/10.1016/j.snb.2017.12.053
A.J. Mach, J.H. Kim, A. Arshi, S.C. Hur, D. Di Carlo, Automated cellular sample preparation using a centrifuge-on-a-chip. Lab. Chip. 11, 2827–2834 (2011). https://doi.org/10.1039/C1LC20330D
G. Mariani, P.-S. Wong, A.M. Katzenmeyer, F. Léonard, J. Shapiro, D.L. Huffaker, Patterned radial gaas nanopillar solar cells. Nano Lett. 11, 2490–2494 (2011). https://doi.org/10.1021/nl200965j
E. Marzbanrad, G. Rivers, P. Peng, B. Zhao, N.Y. Zhou, How morphology and surface crystal texture affect thermal stability of a metallic nanoparticle: The case of silver nanobelts and pentagonal silver nanowires. Phys. Chem. Chem. Phys. 17, 315–324 (2015)
A. Mellati, C.-M. Fan, A. Tamayol, N. Annabi, S. Dai, J. Bi, B. Jin, C. Xian, A. Khademhosseini, H. Zhang, Microengineered 3d cell-laden thermoresponsive hydrogels for mimicking cell morphology and orientation in cartilage tissue engineering. Biotechnol. Bioeng. 114, 217–231 (2017). https://doi.org/10.1002/bit.26061
H. Ming-Chang, G.B. Lee, A new carbon nanotube-based hot-film sensor assembled by optically-induced dielectrophoresis. Presented at The 8th Annual IEEE International Conference on Nano/Micro Engineered and Molecular Systems (2013) pp. 171–174. https://doi.org/10.1109/NEMS.2013.6559707
S.M. Moghimi, A.C. Hunter, J.C. Murray, Nanomedicine: Current status and future prospects. FASEB. J. 19, 311–330 (2005). https://doi.org/10.1096/fj.04-2747rev
H. Morgan, N.G. Green, Ac electrokinetics: Colloids and nanoparticles (Research Studies Press, 2003)
H.S. Nalwa, Handbook of organic conductive molecules and polymers (Wiley, 1997)
A.T. Ohta, P. Chiou, H.L. Phan, S.W. Sherwood, J.M. Yang, A.N.K. Lau, H. Hsu, A. Jamshidi, M.C. Wu, Optically controlled cell discrimination and trapping using optoelectronic tweezers. IEEE J. Sel. Top. Quantum. Electron. 13, 235–243 (2007). https://doi.org/10.1109/JSTQE.2007.893558
A.T. Ohta, S.L. Neale, H. Hsan-Yin, J.K. Valley, M.C. Wu, Parallel assembly of nanowires using lateral-field optoelectronic tweezers. Presented at 2008 IEEE/LEOS International Conference on Optical MEMs and Nanophotonics (2008) pp. 7–8. https://doi.org/10.1109/OMEMS.2008.4607801
W. Oropallo, L.A. Piegl, Ten challenges in 3d printing. Eng. Comput. 32, 135–148 (2016). https://doi.org/10.1007/s00366-015-0407-0
E. Ozkumur, M.S. Ajay, C.C. Jordan, L.E. Benjamin, T.M. David, E. Brachtel, M. Yu, P.-I. Chen, B. Morgan, J. Trautwein et al., Inertial focusing for tumor antigen–dependent and –independent sorting of rare circulating tumor cells. Sci. Trans. Med. 5, 179ra47 (2013). https://doi.org/10.1126/scitranslmed.3005616
F. Padinger, R.S. Rittberger, N.S. Sariciftci, Effects of postproduction treatment on plastic solar cells. Adv. Func. Mater. 13, 85–88 (2003a). https://doi.org/10.1002/adfm.200390011
F. Padinger, R. Rittberger, N. Sariciftci, New architecture for highefficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer. Adv. Funct. Mater 13, 85–88 (2003b)
L. Pan, G. Yu, D. Zhai, R.L. Hye, W. Zhao, N. Liu, H. Wang, C.K.T. Benjamin, Y. Shi, Y. Cui et al., Hierarchical nanostructured conducting polymer hydrogel with high electrochemical activity. Proc. Natl. Acad. Sci. 109, 9287–9292 (2012). https://doi.org/10.1073/pnas.1202636109
S.-Y. Park, S. Kalim, C. Callahan, M.A. Teitell, E.P.Y. Chiou, A light-induced dielectrophoretic droplet manipulation platform. Lab. Chip. 9, 3228–3235 (2009). https://doi.org/10.1039/B909158K
P.S.G. Pattader, I. Banerjee, A. Sharma, D. Bandyopadhyay, Multiscale pattern generation in viscoelastic polymer films by spatiotemporal modulation of electric field and control of rheology. Adv. Func. Mater. 21, 324–335 (2011). https://doi.org/10.1002/adfm.201001206
C. Pei-Yu, T.O. Aaron, C.W. Ming, Toward all optical lab-on-a-chip system: Optical manipulation of both microfluid and microscopic particles. In Proc. SPIE, vol. 5514 (2004). https://doi.org/10.1117/12.560729
H.A. Pohl, The motion and precipitation of suspensoids in divergent electric fields. J. Appl. Phys. 22, 869–871 (1951). https://doi.org/10.1063/1.1700065
H.A. Pohl, K. Pollock, J.S. Crane, Dielectrophoretic force: A comparison of theory and experiment. J. Biol. Phys. 6, 133–160 (1978). https://doi.org/10.1007/BF02328936
D. Qi, Z. Liu, M. Yu, Y. Liu, Y. Tang, J. Lv, Y. Li, J. Wei, B. Liedberg, Z. Yu et al., Highly stretchable gold nanobelts with sinusoidal structures for recording electrocorticograms. Adv. Mater. 27, 3145–3151 (2015). https://doi.org/10.1002/adma.201405807
Y.L. Qu, M.J. Zheng, W.F. Liang, Z.L. Dong, Fully automatic wafer-scale micro/nano manipulation based on optically induced dielectrophoresis. Adv. Mater. Res. 415, 842–847 (2012). https://doi.org/10.4028/www.scientific.net/AMR.415-417.842
A. Revzin, R.G. Tompkins, M. Toner, Surface engineering with poly(ethylene glycol) photolithography to create high-density cell arrays on glass. Langmuir. 19, 9855–9862 (2003). https://doi.org/10.1021/la035129b
S. Riethdorf, H. Fritsche, V. Müller, T. Rau, C. Schindlbeck, B. Rack, W. Janni, C. Coith, K. Beck, F. Jänicke et al., Detection of circulating tumor cells in peripheral blood of patients with metastatic breast cancer: A validation study of the cellsearch system. Clin. Cancer. Res. 13, 920–928 (2007). https://doi.org/10.1158/1078-0432.CCR-06-1695
A. Sabnis, M. Rahimi, C. Chapman, K.T. Nguyen, Cytocompatibility studies of an in situ photopolymerized thermoresponsive hydrogel nanoparticle system using human aortic smooth muscle cells. J. Biomed. Mater. Res. a. 91A, 52–59 (2009). https://doi.org/10.1002/jbm.a.32194
U. Schwab, H. Stein, J. Gerdes, H. Lemke, H. Kirchner, M. Schaadt, V. Diehl, Production of a monoclonal antibody specific for hodgkin and sternberg–reed cells of hodgkin’s disease and a subset of normal lymphoid cells. Nature. 299, 65–67 (1982). https://doi.org/10.1038/299065a0
J. Shi, H. Huang, Z. Stratton, Y. Huang, T.J. Huang, Continuous particle separation in a microfluidic channelvia standing surface acoustic waves (ssaw). Lab. Chip. 9, 3354–3359 (2009). https://doi.org/10.1039/B915113C
R.J. Simpson, S.S. Jensen, J.W.E. Lim, Proteomic profiling of exosomes: Current perspectives. Proteomics. 8, 4083–4099 (2008). https://doi.org/10.1002/pmic.200800109
R.J. Simpson, J.W.E. Lim, R.L. Moritz, S. Mathivanan, Exosomes: Proteomic insights and diagnostic potential. Expert Rev. Proteomics 6, 267–283 (2009). https://doi.org/10.1586/epr.09.17
H. Sirringhaus, N. Tessler, H.F. Richard, Integrated optoelectronic devices based on conjugated polymers. Science. 280, 1741–1744 (1998). https://doi.org/10.1126/science.280.5370.1741
S. Srivastava, P.D.S. Reddy, C. Wang, D. Bandyopadhyay, A. Sharma, Electric field induced microstructures in thin films on physicochemically heterogeneous and patterned substrates. J. Chem. Phys. 132, 174703 (2010). https://doi.org/10.1063/1.3400653
S.K. Srivastava, A. Gencoglu, A.R. Minerick, Dc insulator dielectrophoretic applications in microdevice technology: A review. Anal. Bioanal. Chem. 399, 301–321 (2011). https://doi.org/10.1007/s00216-010-4222-6
M. Stutzmann, W.B. Jackson, C.C. Tsai, Light-induced metastable defects in hydrogenated amorphous silicon: A systematic study. Phys. Rev. b. 32, 23–47 (1985). https://doi.org/10.1103/PhysRevB.32.23
V.L. Sukhorukov, R. Reuss, J.M. Endter, S. Fehrmann, A. Katsen-Globa, P. Geßner, A. Steinbach, K.J. Müller, A. Karpas, U. Zimmermann et al., A biophysical approach to the optimisation of dendritic-tumour cell electrofusion. Biochem. Biophys. Res. Commun. 346, 829–839 (2006). https://doi.org/10.1016/j.bbrc.2006.05.193
Y.-C. Tan, A.P. Lee, Microfluidic separation of satellite droplets as the basis of a monodispersed micron and submicron emulsification system. Lab. Chip. 5, 1178–1183 (2005). https://doi.org/10.1039/B504497A
M. Tewes, B. Aktas, A. Welt, S. Mueller, S. Hauch, R. Kimmig, S. Kasimir-Bauer, Molecular profiling and predictive value of circulating tumor cells in patients with metastatic breast cancer: An option for monitoring response to breast cancer related therapies. Breast. Cancer. Res. Treat. 115, 581 (2008). https://doi.org/10.1007/s10549-008-0143-x
A.J. Tijsen, Y.M. Pinto, E.E. Creemers, Circulating micrornas as diagnostic biomarkers for cardiovascular diseases. Am. J. Physiol. Heart. Circulat. Physiol. 303, H1085–H1095 (2012). https://doi.org/10.1152/ajpheart.00191.2012
G. Vassilopoulos, P.-R. Wang, D.W. Russell, Transplanted bone marrow regenerates liver by cell fusion. Nature. 422, 901–904 (2003). https://doi.org/10.1038/nature01539
C.-H. Wang, Y.-H. Lee, H.-T. Kuo, W.-F. Liang, W.-J. Li, G.-B. Lee, Dielectrophoretically-assisted electroporation using light-activated virtual microelectrodes for multiple DNA transfection. Lab. Chip. 14, 592–601 (2014a). https://doi.org/10.1039/C3LC51102B
F. Wang, H. Yu, W. Liang, L. Liu, J.D. Mai, G.-B. Lee, W.J. Li, Optically induced electrohydrodynamic instability-based micro-patterning of fluidic thin films. Microfluid. Nanofluid. 16, 1097–1106 (2014b)
F. Wang, H. Yu, N. Liu, J.D. Mai, L. Liu, G.-B. Lee, W.J. Li, Non-ultraviolet-based patterning of polymer structures by optically induced electrohydrodynamic instability. Appl. Phys. Lett. 103, 214101 (2013). https://doi.org/10.1063/1.4830001
S. Wang, W. Liang, Z. Dong, V.G.B. Lee, W.J. Li, Fabrication of micrometer- and nanometer-scale polymer structures by visible light induced dielectrophoresis (dep) force. Micromachines. 2, 431–442 (2011). https://doi.org/10.3390/mi2040431
W. Wang, Y.-H. Lin, R.-S. Guan, T.-C. Wen, T.-F. Guo, G.-B. Lee, Bulk-heterojunction polymers in optically-induced dielectrophoretic devices for the manipulation of microparticles. Opt. Express. 17, 17603–17613 (2009). https://doi.org/10.1364/OE.17.017603
W. Wang, Y.-H. Lin, T.-C. Wen, T.-F. Guo, G.-B. Lee, Selective manipulation of microparticles using polymer-based optically induced dielectrophoretic devices. Appl. Phys. Lett. 96, 113302 (2010). https://doi.org/10.1063/1.3358193
X.-B. Wang, Y. Huang, R. Holzel, J.P. Burt, R. Pethig, Theoretical and experimental investigations of the interdependence of the dielectric, dielectrophoretic and electrorotational behaviour of colloidal particles. J. Phys. D. Appl. Phys. 26, 312 (1993)
Z.L. Wang, Functional oxide nanobelts: Materials, properties and potential applications in nanosystems and biotechnology. Annu. Rev. Phys. Chem. 55, 159–196 (2004). https://doi.org/10.1146/annurev.physchem.55.091602.094416
K. Witwer, E. Buzas, L. Bemis, A. Bora, C. Lässer, J. Lötvall, E.N. Nolte-’t Hoen, M.G. Piper, S. Sivaraman, J. Skog, C. Théry, M.H. Wauben, F. Hochberg, Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J. Extracell. Vesicles. 2, 20360 (2013)
P.-F. Wu, G.-B. Lee, Assembly of carbon nanotubes between electrodes by utilizing optically induced dielectrophoresis and dielectrophoresis. Adv. OptoElectron. 2011, 482741 (2011)
H. Yoon, Current trends in sensors based on conducting polymer nanomaterials. Nanomaterials. 3, 524–549 (2013). https://doi.org/10.3390/nano3030524
Y. Zhang, Y. Lv, Y. Niu, H. Su, A. Feng, Role of circulating tumor cell (ctc) monitoring in evaluating prognosis of triple-negative breast cancer patients in China. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 23, 3071–3079 (2017). https://doi.org/10.12659/msm.902637
H. Zhao, Double-layer polarization of a non-conducting particle in an alternating current field with applications to dielectrophoresis. Electrophoresis. 32, 2232–2244 (2011). https://doi.org/10.1002/elps.201100035
Y. Zhao, H.S.S. Lai, G. Zhang, G.-B. Lee, W.J. Li, Measurement of single leukemia cell’s density and mass using optically induced electric field in a microfluidics chip. Biomicrofluidics. 9, 022406 (2015)
L. Zheng, S. Li, J.P. Brody, P.J. Burke, Manipulating nanoparticles in solution with electrically contacted nanotubes using dielectrophoresis. Langmuir. 20, 8612–8619 (2004). https://doi.org/10.1021/la049687h
S. Zheng, H.K. Lin, B. Lu, A. Williams, R. Datar, R.J. Cote, Y.-C. Tai, 3d microfilter device for viable circulating tumor cell (ctc) enrichment from blood. Biomed. Microdevice. 13, 203–213 (2011). https://doi.org/10.1007/s10544-010-9485-3
H. Zhou, M.A. Preston, R.D. Tilton, L.R. White, Calculation of the electric polarizability of a charged spherical dielectric particle by the theory of colloidal electrokinetics. J. Colloid. Interface. Sci. 285, 845–856 (2005). https://doi.org/10.1016/j.jcis.2004.11.065
M.-D. Zhou, S. Hao, A.J. Williams, R.A. Harouaka, B. Schrand, S. Rawal, Z. Ao, R. Brenneman, E. Gilboa, B. Lu et al., Separable bilayer microfiltration device for viable label-free enrichment of circulating tumour cells. Sci. Rep. 4, 7392 (2014). https://doi.org/10.1038/srep07392
X. Zhu, H. Yi, Z. Ni, Frequency-dependent behaviors of individual microscopic particles in an optically induced dielectrophoresis device. Biomicrofluidics. 4, 013202 (2010)
X. Zhu, Z. Yin, Z. Gao, Z. Ni, Experimental study on filtering, transporting, concentrating and focusing of microparticles based on optically induced dielectrophoresis. Sci. China. Technol. Sci. 53, 2388–2396 (2010b). https://doi.org/10.1007/s11431-010-4057-6