Recent advances in optical manipulation of cells and molecules for biological science

Tatsunori Kishimoto1,2, Kyoko Masui1, Wataru Minoshima1,3, Chie Hosokawa1
1Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, Japan
2Department of Mechanical Engineering, Toyohashi University of Technology, Japan
3Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Japan

Tài liệu tham khảo

Ashkin, 1987, Optical trapping and manipulation of viruses and bacteria, Science, 235, 1517, 10.1126/science.3547653 Lester, 1982, Physiological and pharmacological manipulations with light flashes, Annu. Rev. Biophys. Bioeng., 11, 151, 10.1146/annurev.bb.11.060182.001055 Maiti, 2015, Molecular regulation of dendritic spine dynamics and their potential impact on synaptic plasticity and neurological diseases, Neurosci. Biobehav. Rev., 59, 208, 10.1016/j.neubiorev.2015.09.020 Wieboldt, 1994, Photolabile precursors of glutamate: synthesis, photochemical properties, and activation of glutamate receptors on a microsecond time scale, Proc. Natl. Acad. Sci., 91, 8752, 10.1073/pnas.91.19.8752 Kandler, 1998, Focal photolysis of caged glutamate produces long-term depression of hippocampal glutamate receptors, Nat. Neurosci., 1, 119, 10.1038/368 Sawatari, 2000, Diversity and cell type specificity of local excitatory connections to neurons in layer 3B of monkey primary visual cortex, Neuron, 25, 459, 10.1016/S0896-6273(00)80908-3 Callaway, 2002, Stimulating neurons with light, Curr. Opin. Neurobiol., 12, 587, 10.1016/S0959-4388(02)00364-1 Noguchi, 2011, In vivo two-photon uncaging of glutamate revealing the structure-function relationships of dendritic spines in the neocortex of adult mice: In vivo two-photon glutamate uncaging, J. Physiol., 589, 2447, 10.1113/jphysiol.2011.207100 Matsuzaki, 2001, Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons, Nat. Neurosci., 4, 1086, 10.1038/nn736 Oesterhelt, 1971, Rhodopsin-like protein from the purple membrane of halobacterium halobium, Nat. N. Biol., 233, 149, 10.1038/newbio233149a0 Matsuno-Yagi, 1977, Two possible roles of bacteriorhodopsin; a comparative study of strains of Halobacterium halobium differing in pigmentation, Biochem. Biophys. Res. Commun., 78, 237, 10.1016/0006-291X(77)91245-1 Nagel, 2002, Channelrhodopsin-1: a light-gated proton channel in green algae, Science, 296, 2395, 10.1126/science.1072068 Nagel, 2003, Channelrhodopsin-2, a directly light-gated cation-selective membrane channel, Proc. Natl. Acad. Sci., 100, 13940, 10.1073/pnas.1936192100 Boyden, 2005, Millisecond-timescale, genetically targeted optical control of neural activity, Nat. Neurosci., 8, 1263, 10.1038/nn1525 Fenno, 2011, The development and application of optogenetics, Annu. Rev. Neurosci., 34, 389, 10.1146/annurev-neuro-061010-113817 Liu, 2019, Optogenetic study of the response interaction among multi-afferent inputs in the barrel cortex of rats, Sci. Rep., 9, 3917, 10.1038/s41598-019-40688-2 Zhang, 2007, Multimodal fast optical interrogation of neural circuitry, Nature, 446, 633, 10.1038/nature05744 Karst, 1993, Low-threshold calcium current in dendrites of the adult rat hippocampus, Neurosci. Lett., 164, 154, 10.1016/0304-3940(93)90880-T Bekkers, 2007, Targeted dendrotomy reveals active and passive contributions of the dendritic tree to synaptic integration and neuronal output, Proc. Natl. Acad. Sci., 104, 11447, 10.1073/pnas.0701586104 Rancz, 2011, Transfection via whole-cell recording in vivo: bridging single-cell physiology, genetics and connectomics, Nat. Neurosci., 14, 527, 10.1038/nn.2765 Hosokawa, 2008, Femtosecond laser modification of living neuronal network, Appl. Phys. A, 93, 57, 10.1007/s00339-008-4655-3 Liu, 2013, Novel single-cell functional analysis of red blood cells using laser tweezers Raman spectroscopy: application for sickle cell disease, Exp. Hematol., 41, 656, 10.1016/j.exphem.2013.02.012 Harilal, 2014, Femtosecond laser ablation: fundamentals and applications, 143 Brown, 2008, Enhanced operation of femtosecond lasers and applications in cell transfection, J. Biophotonics., 1, 183, 10.1002/jbio.200810011 Chung, 2009, Femtosecond laser ablation of neurons in C. elegans for behavioral studies, Appl. Phys. A., 96, 335, 10.1007/s00339-009-5201-7 König, 1997, Cellular response to near-infrared femtosecond laser pulses in two-photon microscopes, Opt. Lett., 22, 135, 10.1364/OL.22.000135 König, 1999, Pulse-length dependence of cellular response to intense near-infrared laser pulses in multiphoton microscopes, Opt. Lett., 24, 113, 10.1364/OL.24.000113 Hirase, 2002, Multiphoton stimulation of neurons, J. Neurobiol., 51, 237, 10.1002/neu.10056 Yanik, 2004, Functional regeneration after laser axotomy, Nature, 432, 10.1038/432822a Iwanaga, 2005, Single-pulse cell stimulation with a near-infrared picosecond laser, Appl. Phys. Lett., 87, 10.1063/1.2147733 Go, 2016, Targeted pruning of a neuron’s dendritic tree via femtosecond laser dendrotomy, Sci. Rep., 6, 19078, 10.1038/srep19078 Okano, 2020, Selective induction of targeted cell death and elimination by near-infrared femtosecond laser ablation, Biochem. Biophys. Rep., 24 Rastogi, 2020, Remote nongenetic optical modulation of neuronal activity using fuzzy graphene, Proc. Natl. Acad. Sci., 117, 13339, 10.1073/pnas.1919921117 Tsukakoshi, 1984, A novel method of DNA transfection by laser microbeam cell surgery, Appl. Phys. B Photo Laser Chem., 35, 135, 10.1007/BF00697702 Uchugonova, 2008, Targeted transfection of stem cells with sub-20 femtosecond laser pulses, Opt. Express, 16, 9357, 10.1364/OE.16.009357 Hosokawa, 2011, Photoporation of biomolecules into single cells in living vertebrate embryos induced by a femtosecond laser amplifier, PLoS One, 6, 10.1371/journal.pone.0027677 Antkowiak, 2013, Fast targeted gene transfection and optogenetic modification of single neurons using femtosecond laser irradiation, Sci. Rep., 3, 3281, 10.1038/srep03281 Neuman, 2004, Optical trapping, Rev. Sci. Instrum., 75, 2787, 10.1063/1.1785844 Bustamante, 2021, Optical tweezers in single-molecule biophysics, Nat. Rev. Methods Prim., 1, 25, 10.1038/s43586-021-00021-6 Ashkin, 1970, Acceleration and trapping of particles by radiation pressure, Phys. Rev. Lett., 24, 156, 10.1103/PhysRevLett.24.156 Ashkin, 1986, Observation of a single-beam gradient force optical trap for dielectric particles, Opt. Lett., 11, 288, 10.1364/OL.11.000288 Ashkin, 1989, Internal cell manipulation using infrared laser traps, Proc. Natl. Acad. Sci., 86, 7914, 10.1073/pnas.86.20.7914 Ashkin, 1990, Force generation of organelle transport measured in vivo by an infrared laser trap, Nature, 348, 3, 10.1038/348346a0 Block, 1989, Compliance of bacterial flagella measured with optical tweezers, Nature, 338, 514, 10.1038/338514a0 Bar-Ziv, 1998, Dynamic excitations in membranes induced by optical tweezers, Biophys. J., 75, 294, 10.1016/S0006-3495(98)77515-0 Mehta, 1999, Single-molecule biomechanics with optical methods, Science, 283, 1689, 10.1126/science.283.5408.1689 Svoboda, 1994, Biological applications of optical forces, Annu Rev. Biophys. Biomol. Struct., 23, 247, 10.1146/annurev.bb.23.060194.001335 Gong, 2020, Optical tweezers in biotechnology Kawata, 1992, Movement of micrometer-sized particles in the evanescent field of a laser beam, Opt. Lett., 17, 772, 10.1364/OL.17.000772 Sasaki, 1997, Three-dimensional potential analysis of radiation pressure exerted on a single microparticle, Appl. Phys. Lett., 71, 37, 10.1063/1.119461 Yasuda, 2017, Direct measurement of optical trapping force gradient on polystyrene microspheres using a carbon nanotube mechanical resonator, Sci. Rep., 7, 2825, 10.1038/s41598-017-03068-2 Yamanishi, 2021, Optical force mapping at the single-nanometre scale, Nat. Commun., 12, 3865, 10.1038/s41467-021-24136-2 Hartman, 2012, The myosin superfamily at a glance, J. Cell Sci., 125, 1627, 10.1242/jcs.094300 Verhey, 2011, Kinesin assembly and movement in cells, Annu. Rev. Biophys., 40, 267, 10.1146/annurev-biophys-042910-155310 Svoboda, 1993, Direct observation of kinesin stepping by optical trapping interferometry, Nature, 365, 721, 10.1038/365721a0 Arai, 1999, Tying a molecular knot with optical tweezers, Nature, 399, 446, 10.1038/20894 Veigel, 2003, Load-dependent kinetics of force production by smooth muscle myosin measured with optical tweezers, Nat. Cell Biol., 5, 980, 10.1038/ncb1060 Reinemann, 2017, Collective force regulation in anti-parallel microtubule gliding by dimeric Kif15 kinesin motors, Curr. Biol., 27, 2810, 10.1016/j.cub.2017.08.018 Moffitt, 2006, Differential detection of dual traps improves the spatial resolution of optical tweezers, Proc. Natl. Acad. Sci., 103, 9006, 10.1073/pnas.0603342103 Yehoshua, 2015, Axial optical traps: a new direction for optical tweezers, Biophys. J., 108, 2759, 10.1016/j.bpj.2015.05.014 Brouwer, 2018, Two distinct conformational states define the interaction of human RAD 51– ATP with single‐stranded DNA, EMBO J., 37, 10.15252/embj.201798162 Barak, 1982, Diffusion of low density lipoprotein-receptor complex on human fibroblasts, J. Cell Biol., 95, 846, 10.1083/jcb.95.3.846 Kusumi, 1993, Confined lateral diffusion of membrane receptors as studied by single particle tracking (nanovid microscopy). Effects of calcium-induced differentiation in cultured epithelial cells, Biophys. J., 65, 2021, 10.1016/S0006-3495(93)81253-0 Sako, 1994, Compartmentalized structure of the plasma membrane for receptor movements as revealed by a nanometer-level motion analysis., J. Cell Biol., 125, 1251, 10.1083/jcb.125.6.1251 Kusumi, 1996, Cell surface organization by the membrane skeleton, Curr. Opin. Cell Biol., 8, 566, 10.1016/S0955-0674(96)80036-6 Fujiwara, 2002, Phospholipids undergo hop diffusion in compartmentalized cell membrane, J. Cell Biol., 157, 1071, 10.1083/jcb.200202050 Ritchie, 2003, The fence and picket structure of the plasma membrane of live cells as revealed by single molecule techniques (Review), Mol. Membr. Biol., 20, 13, 10.1080/0968768021000055698 Douglass, 2005, Single-molecule microscopy reveals plasma membrane microdomains created by protein-protein networks that exclude or trap signaling molecules in T cells, Cell, 121, 937, 10.1016/j.cell.2005.04.009 Gambin, 2006, Lateral mobility of proteins in liquid membranes revisited, Proc. Natl. Acad. Sci., 103, 2098, 10.1073/pnas.0511026103 Choquet, 2010, Fast AMPAR trafficking for a high-frequency synaptic transmission: fast AMPAR trafficking for a high-frequency synaptic transmission, Eur. J. Neurosci., 32, 250, 10.1111/j.1460-9568.2010.07350.x Song, 2002, Regulation of AMPA receptors during synaptic plasticity, Trends Neurosci., 25, 578, 10.1016/S0166-2236(02)02270-1 Barria, 1997, Regulatory phosphorylation of AMPA-type glutamate receptors by CaM-KII during long-term potentiation, Science, 276, 2042, 10.1126/science.276.5321.2042 Sako, 1998, Cytoplasmic regulation of the movement of E-cadherin on the free cell surface as studied by optical tweezers and single particle tracking: corralling and tethering by the membrane skeleton, J. Cell Biol., 140, 1227, 10.1083/jcb.140.5.1227 L. Oddershede, J.K. Dreyer, S. Grego, S. Brown, K. Berg-Sørensen, The Motion of a Single Molecule, the λ-Receptor, in the Bacterial Outer Membrane, Biophys. J. 83 (n.d.) 3152–3161. 〈https://doi.org/10.1016/S0006–3495(02)75318–6〉. Maiti, 1997, Fluorescence correlation spectroscopy: diagnostics for sparse molecules, Proc. Natl. Acad. Sci., 94, 11753, 10.1073/pnas.94.22.11753 Yu, 2021, A comprehensive review of fluorescence correlation spectroscopy, Front. Phys., 9, 10.3389/fphy.2021.644450 Magde, 1972, Thermodynamic fluctuations in a reacting system—measurement by fluorescence correlation spectroscopy, Phys. Rev. Lett., 29, 705, 10.1103/PhysRevLett.29.705 Palmer, 1987, Molecular aggregation characterized by high order autocorrelation in fluorescence correlation spectroscopy, Biophys. J., 52, 257, 10.1016/S0006-3495(87)83213-7 Aragón, 2008, Fluorescence correlation spectroscopy as a probe of molecular dynamics, J. Chem. Phys., 64, 1791, 10.1063/1.432357 Rigler, 1993, Fluorescence correlation spectroscopy with high count rate and low background: analysis of translational diffusion, Eur. Biophys. J., 22, 10.1007/BF00185777 Eigen, 1994, Sorting single molecules: application to diagnostics and evolutionary biotechnology., Proc. Natl. Acad. Sci., 91, 5740, 10.1073/pnas.91.13.5740 Berland, 1995, Two-photon fluorescepce correlation spectroscopy: method and application to the intracellular environment, Biophys. J., 68, 8, 10.1016/S0006-3495(95)80230-4 Takahashi, 2007, Detection of polyglutamine protein oligomers in cells by fluorescence correlation spectroscopy, J. Biol. Chem., 282, 24039, 10.1074/jbc.M704789200 Gullapalli, 2007, Integrated multimodal microscopy, time-resolved fluorescence, and optical-trap rheometry: toward single molecule mechanobiology, J. Biomed. Opt., 12, 10.1117/1.2673245 Schwille, 1997, Dual-color fluorescence cross-correlation spectroscopy for multicomponent diffusional analysis in solution, Biophys. J., 72, 1878, 10.1016/S0006-3495(97)78833-7 Bacia, 2007, Practical guidelines for dual-color fluorescence cross-correlation spectroscopy, Nat. Protoc., 2, 2842, 10.1038/nprot.2007.410 Sasaki, 2010, Monitoring intracellular degradation of exogenous DNA using diffusion properties, J. Control. Release, 143, 104, 10.1016/j.jconrel.2009.12.013 Kettling, 1998, Real-time enzyme kinetics monitored by dual-color fluorescence cross-correlation spectroscopy, Proc. Natl. Acad. Sci., 95, 1416, 10.1073/pnas.95.4.1416 Kolin, 2007, Advances in image correlation spectroscopy: measuring number densities, aggregation states, and dynamics of fluorescently labeled macromolecules in cells, Cell Biochem. Biophys., 49, 141, 10.1007/s12013-007-9000-5 Petersen, 1993, Quantitation of membrane receptor distributions by image correlation spectroscopy: concept and application, Biophys. J., 65, 1135, 10.1016/S0006-3495(93)81173-1 Wiseman, 1999, Image correlation spectroscopy. II. Optimization for ultrasensitive detection of preexisting platelet-derived growth factor-beta receptor oligomers on intact cells., Biophys. J., 76, 963, 10.1016/S0006-3495(99)77260-7 Hu, 2013, Enumerating virus-like particles in an optically concentrated suspension by fluorescence correlation spectroscopy, Biomed. Opt. Express, 4, 1646, 10.1364/BOE.4.001646 Hosokawa, 2005, Cluster formation of nanoparticles in an optical trap studied by fluorescence correlation spectroscopy, Phys. Rev. E., 72, 10.1103/PhysRevE.72.021408 Ito, 2010, Evaluation of radiation force acting on macromolecules by combination of Brownian dynamics simulation with fluorescence correlation spectroscopy, Phys. Rev. E., 81, 10.1103/PhysRevE.81.061402 Dupuis, 2020, Surface trafficking of neurotransmitter receptors: from cultured neurons to intact brain preparations, Neuropharmacology, 169, 10.1016/j.neuropharm.2019.05.019 Nie, 1997, Probing single molecules and single nanoparticles by surface-enhanced raman scattering, Science, 275, 1102, 10.1126/science.275.5303.1102 Chan, 2009, The effect of cell fixation on the discrimination of normal and leukemia cells with laser tweezers Raman spectroscopy, Biopolymers, 91, 132, 10.1002/bip.21094 Chan, 2013, Recent advances in laser tweezers Raman spectroscopy (LTRS) for label-free analysis of single cells, J. Biophotonics., 6, 36, 10.1002/jbio.201200143 Thurn, 1984, Raman-microsampling technique applying optical levitation by radiation pressure, Appl. Spectrosc., 38, 78, 10.1366/0003702844554440 Wang, 2021, Optical trapping and laser-spectroscopy measurements of single particles in air: a review, Meas. Sci. Technol., 32, 10.1088/1361-6501/ac0acf Xie, 2004, Real-time Raman spectroscopy of optically trapped living cells and organelles, Opt. Express, 12, 6208, 10.1364/OPEX.12.006208 Petrov, 2007, Raman spectroscopy of optically trapped particles, J. Opt. Pure Appl. Opt., 9, S139, 10.1088/1464-4258/9/8/S06 Cherney, 2010, Confocal Raman microscopy of optical-trapped particles in liquids, Annu. Rev. Anal. Chem., 3, 277, 10.1146/annurev-anchem-070109-103404 Xie, 2002, Near-infrared Raman spectroscopy of single optically trapped biological cells, Opt. Lett., 27, 249, 10.1364/OL.27.000249 Zhu, 2020, Optical tweezers in studies of red blood cells, Cells, 9, 545, 10.3390/cells9030545 Chan, 2008, Nondestructive identification of individual leukemia cells by laser trapping raman spectroscopy, Anal. Chem., 80, 2180, 10.1021/ac7022348 Ajito, 2002, Laser trapping and Raman spectroscopy of single cellular organelles in the nanometer range, Lab Chip, 2, 11, 10.1039/B108744B Tang, 2007, NIR Raman spectroscopic investigation of single mitochondria trapped by optical tweezers, Opt. Express, 15, 12708, 10.1364/OE.15.012708 Chan, 2005, Raman spectroscopic analysis of biochemical changes in individual triglyceride-rich lipoproteins in the pre- and postprandial state, Anal. Chem., 77, 5870, 10.1021/ac050692f Vasdekis, 2013, Vesicle photonics, Annu. Rev. Mater. Res., 43, 283, 10.1146/annurev-matsci-071312-121724 Cherney, 2004, Optical trapping of unilamellar phospholipid vesicles: investigation of the effect of optical forces on the lipid membrane shape by confocal-raman microscopy, Anal. Chem., 76, 4920, 10.1021/ac0492620 Schaefer, 2012, Confocal Raman microscopy for monitoring the membrane polymerization and thermochromism of individual, optically trapped diacetylenic phospholipid vesicles: confocal Raman microscopy for monitoring the membrane polymerization, J. Raman Spectrosc., 43, 351, 10.1002/jrs.3050 Fox, 2010, Confocal Raman microscopy for simultaneous monitoring of partitioning and disordering of tricyclic antidepressants in phospholipid vesicle membranes: confocal Raman microscopy of tricyclic antidepressants in vesicle membranes, J. Raman Spectrosc., 41, 498, 10.1002/jrs.2483 Masui, 2022, Detection of glutamate encapsulated in liposomes by optical trapping Raman spectroscopy, ACS Omega, 7, 9701, 10.1021/acsomega.1c07206 Tatischeff, 2012, Fast characterisation of cell-derived extracellular vesicles by nanoparticles tracking analysis, cryo-electron microscopy, and Raman tweezers microspectroscopy, J. Extracell. Vesicles., 1, 10.3402/jev.v1i0.19179 Horgan, 2020, Molecular imaging of extracellular vesicles in vitro via Raman metabolic labelling, J. Mater. Chem. B., 8, 4447, 10.1039/D0TB00620C Enciso-Martinez, 2020, Synchronized Rayleigh and Raman scattering for the characterization of single optically trapped extracellular vesicles, Nanomed. Nanotechnol. Biol. Med., 24, 10.1016/j.nano.2019.102109 Xie, 2003, Confocal micro-Raman spectroscopy of single biological cells using optical trapping and shifted excitation difference techniques, J. Appl. Phys., 93, 2982, 10.1063/1.1542654 Smith, 2004, Resonance raman scattering, 93 Carney, 2017, Multispectral optical tweezers for biochemical fingerprinting of CD9-positive exosome subpopulations, Anal. Chem., 89, 5357, 10.1021/acs.analchem.7b00017 Penders, 2021, Single particle automated raman trapping analysis of breast cancer cell-derived extracellular vesicles as cancer biomarkers, ACS Nano, 15, 18192, 10.1021/acsnano.1c07075 Kolbow, 2021, Nano-optical tweezers: methods and applications for trapping single molecules and nanoparticles, ChemPhysChem, 22, 1409, 10.1002/cphc.202100004 Liu, 2016, Cell refractive index for cell biology and disease diagnosis: past, present and future, Lab. Chip., 16, 634, 10.1039/C5LC01445J Osborne, 1998, Optically biased diffusion of single molecules studied by confocal fluorescence microscopy, J. Phys. Chem. B, 102, 3160, 10.1021/jp9715078 Miyauchi, 2016, Surface plasmon-enhanced optical trapping of quantum-dot-conjugated surface molecules on neurons cultured on a plasmonic chip, Jpn. J. Appl. Phys., 55, 06GN04, 10.7567/JJAP.55.06GN04 Wang, 2016, Optically evolved assembly formation in laser trapping of polystyrene nanoparticles at solution surface, Langmuir, 32, 12488, 10.1021/acs.langmuir.6b02433 Burns, 1990, Optical matter: crystallization and binding in intense optical fields, Science, 249, 749, 10.1126/science.249.4970.749 Coursault, 2018, Dynamics of the optically directed assembly and disassembly of gold nanoplatelet arrays, Nano Lett., 18, 3391, 10.1021/acs.nanolett.8b00199 Chaumet, 2001, Optical binding of particles with or without the presence of a flat dielectric surface, Phys. Rev. B., 64, 10.1103/PhysRevB.64.035422 Masuhara, 2003 Juodkazis, 2000, Reversible phase transitions in polymer gels induced by radiation forces, Nature, 408, 178, 10.1038/35041522 Wang, 2021, Manipulation of dual fluorescence behavior in aggregation-induced emission enhancement of a tetraphenylethene-appended polymer by optical tweezers, J. Mater. Chem. C., 9, 7545, 10.1039/D1TC01631H Garetz, 1996, Nonphotochemical, polarization-dependent, laser-induced nucleation in supersaturated aqueous urea solutions, Phys. Rev. Lett., 77, 3475, 10.1103/PhysRevLett.77.3475 Sugiyama, 2007, Crystallization of glycine by photon pressure of a focused CW laser beam, Chem. Lett., 36, 1480, 10.1246/cl.2007.1480 Masuhara, 2011, Laser-trapping assembling dynamics of molecules and proteins at surface and interface, Pure Appl. Chem., 83, 869, 10.1351/PAC-CON-10-09-32 Yuyama, 2014, Laser trapping-induced crystallization of L -phenylalanine through its high-concentration domain formation, Photochem. Photobio. Sci., 13, 254, 10.1039/c3pp50276g Yuyama, 2018, Crystallization of methylammonium lead halide perovskites by optical trapping, Angew. Chem. Int. Ed., 57, 13424, 10.1002/anie.201806079 Islam, 2019, Mixed-halide perovskite synthesis by chemical reaction and crystal nucleation under an optical potential, NPG Asia Mater., 11, 31, 10.1038/s41427-019-0131-0 Niinomi, 2017, Plasmonic heating-assisted laser-induced crystallization from a NaClO 3 unsaturated mother solution, Cryst. Growth Des., 17, 809, 10.1021/acs.cgd.6b01657 Tsuboi, 2007, Crystallization of lysozyme based on molecular assembling by photon pressure, Jpn. J. Appl. Phys., 46, L1234, 10.1143/JJAP.46.L1234 Walton, 2018, Control over phase separation and nucleation using a laser-tweezing potential, Nat. Chem., 10, 506, 10.1038/s41557-018-0009-8 Ushiro, 2020, Microanalysis of single poly( N -isopropylacrylamide) droplet produced by an optical tweezer in water: isotacticity dependence of growth and chemical structure of the droplet, J. Phys. Chem. B, 124, 8454, 10.1021/acs.jpcb.0c06932 Gowayed, 2021, Dynamic light scattering study of a laser-induced phase-separated droplet of aqueous glycine, J. Phys. Chem. B, 125, 7828, 10.1021/acs.jpcb.1c02620 E. Townes-Anderson, R.S.S. Jules, D.M. Sherry, J. Lichtenberger, M. Hassanain, Micromanipulation of Retinal Neurons by Optical Tweezers, Mol. Vis. (n.d.) 7. Liu, 1996, Physiological monitoring of optically trapped cells: assessing the effects of confinement by 1064-nm laser tweezers using microfluorometry, Biophys. J., 71, 2158, 10.1016/S0006-3495(96)79417-1 Tadir, 1989, Micromanipulation of sperm by a laser generated optical trap, Fertil. Steril., 52, 870, 10.1016/S0015-0282(16)53057-X Lúcio, 2003, Measurements and modeling of water transport and osmoregulation in a single kidney cell using optical tweezers and videomicroscopy, Phys. Rev. E., 68, 10.1103/PhysRevE.68.041906 Steubing, 1991, Laser induced cell fusion in combination with optical tweezers: The laser cell fusion trap, Cytometry, 12, 505, 10.1002/cyto.990120607 Chen, 2013, Laser-induced fusion of human embryonic stem cells with optical tweezers, Appl. Phys. Lett., 103 Wakamoto, 2001, Analysis of single-cell differences by use of an on-chip microculture system and optical trapping, Fresenius J. Anal. Chem., 371, 276, 10.1007/s002160100999 Enger, 2004, Optical tweezers applied to a microfluidic system, Lab Chip, 4, 196, 10.1039/B307960K Probst, 2013, Microfluidic growth chambers with optical tweezers for full spatial single-cell control and analysis of evolving microbes, J. Microbiol. Methods, 95, 470, 10.1016/j.mimet.2013.09.002 Ehrlicher, 2002, Guiding neuronal growth with light, Proc. Natl. Acad. Sci., 99, 16024, 10.1073/pnas.252631899 Stevenson, 2006, Optically guided neuronal growth at near infrared wavelengths, Opt. Express, 14, 9786, 10.1364/OE.14.009786 Ashkin, 1990, Force generation of organelle transport measured in vivo by an infrared laser trap, Nature, 348, 346, 10.1038/348346a0 Hosokawa, 2011, Optical trapping of synaptic vesicles in neurons, Appl. Phys. Lett., 98, 10.1063/1.3579191 T. Kishimoto, S.N. Kudoh, T. Taguchi, C. Hosokawa, Resonance laser effect on optical trapping of cell surface molecules, (n.d.) 3. Ozkan, 2003, Optical manipulation of objects and biological cells in microfluidic devices, Biomed. Micro, 5, 61, 10.1023/A:1024467417471 Wakamoto, 2003, Development of non-destructive, non-contact single-cell based differential cell assay using on-chip microcultivation and optical tweezers, Sens. Actuators B Chem., 96, 693, 10.1016/S0925-4005(03)00549-5 Barlan, 2013, The journey of the organelle: teamwork and regulation in intracellular transport, Curr. Opin. Cell Biol., 25, 483, 10.1016/j.ceb.2013.02.018 Haseda, 2015, Significant correlation between refractive index and activity of mitochondria: single mitochondrion study, Biomed. Opt. Express, 6, 859, 10.1364/BOE.6.000859 Gallo, 2011, The cytoskeletal and signaling mechanisms of axon collateral branching, Dev. Neurobiol., 71, 201, 10.1002/dneu.20852 Bissen, 2019, AMPA receptors and their minions: auxiliary proteins in AMPA receptor trafficking, Cell. Mol. Life Sci., 76, 2133, 10.1007/s00018-019-03068-7 Sobolevsky, 2009, X-ray structure, symmetry and mechanism of an AMPA-subtype glutamate receptor, Nature, 462, 745, 10.1038/nature08624 Zhao, 2019, Architecture and subunit arrangement of native AMPA receptors elucidated by cryo-EM, Science, 364, 355, 10.1126/science.aaw8250 Nair, 2013, Super-resolution imaging reveals that AMPA receptors inside synapses are dynamically organized in nanodomains regulated by PSD95, J. Neurosci., 33, 13204, 10.1523/JNEUROSCI.2381-12.2013 Hering, 2003, Lipid rafts in the maintenance of synapses, dendritic spines, and surface AMPA receptor stability, J. Neurosci., 23, 3262, 10.1523/JNEUROSCI.23-08-03262.2003 Hou, 2008, Regulation of AMPA receptor localization in lipid rafts, Mol. Cell. Neurosci., 38, 213, 10.1016/j.mcn.2008.02.010 Ren, 2021, Plasmonic optical tweezers for particle manipulation: principles, methods, and applications, ACS Nano, 15, 6105, 10.1021/acsnano.1c00466 Zehtabi-Oskuie, 2013, Double nanohole optical trapping: dynamics and protein-antibody co-trapping, Lab. Chip., 13, 2563, 10.1039/c3lc00003f Belkin, 2015, Plasmonic nanopores for trapping, controlling displacement, and sequencing of DNA, ACS Nano, 9, 10598, 10.1021/acsnano.5b04173 Hubarevich, 2020, λ-DNA through porous materials—surface-enhanced raman scattering in a simple plasmonic nanopore, J. Phys. Chem. C., 124, 22663, 10.1021/acs.jpcc.0c06165 Kotsifaki, 2016, Plasmon enhanced optical tweezers with gold-coated black silicon, Sci. Rep., 6, 26275, 10.1038/srep26275 Masui, 2011, Laser fabrication of Au nanorod aggregates microstructures assisted by two-photon polymerization, Opt. Express, 19, 22786, 10.1364/OE.19.022786 Kudo, 2013, Two-color laser manipulation of single organic molecules based on nonlinear optical response, Eur. Phys. J. B., 86, 98, 10.1140/epjb/e2013-30620-8 Kudo, 2017, Resonance optical trapping of individual dye-doped polystyrene particles with blue- and red-detuned lasers, Opt. Express, 25, 4655, 10.1364/OE.25.004655 Bresolí-Obach, 2021, Resonantly enhanced optical trapping of single dye-doped particles at an interface, ACS Photonics, 8, 1832, 10.1021/acsphotonics.1c00438 Hosokawa, 2006, Enhancement of biased diffusion of dye-doped nanoparticles by simultaneous irradiation with resonance and nonresonance laser beams, Jpn. J. Appl. Phys., 45, L453, 10.1143/JJAP.45.L453 Hayward, 2000, Electrophoretic assembly of colloidal crystals with optically tunable micropatterns, Nature, 404, 4, 10.1038/35003530 Chiou, 2005, Massively parallel manipulation of single cells and microparticles using optical images, Nature, 436, 370, 10.1038/nature03831 Jamshidi, 2008, Dynamic manipulation and separation of individual semiconducting and metallic nanowires, Nat. Photonics, 2, 86, 10.1038/nphoton.2007.277 Morise, 2019, AMPA receptors in the synapse turnover by monomer diffusion, Nat. Commun., 10, 5245, 10.1038/s41467-019-13229-8 Liu, 1995, Evidence for localized cell heating induced by infrared optical tweezers, Biophys. J., 68, 2137, 10.1016/S0006-3495(95)80396-6 Ito, 2007, Application of fluorescence correlation spectroscopy to the measurement of local temperature in solutions under optical trapping condition, J. Phys. Chem. B., 111, 2365, 10.1021/jp065156l Celliers, 2000, Measurement of localized heating in the focus of an optical trap, Appl. Opt., 39, 3396, 10.1364/AO.39.003396 Wurlitzer, 2001, Micromanipulation of langmuir-monolayers with optical tweezers, J. Phys. Chem. B., 105, 182, 10.1021/jp0024266 Peterman, 2003, Laser-induced heating in optical traps, Biophys. J., 84, 1308, 10.1016/S0006-3495(03)74946-7 Rivière, 2016, Convection flows driven by laser heating of a liquid layer, Phys. Rev. E., 93, 10.1103/PhysRevE.93.023112 Louchev, 2008, Coupled laser molecular trapping, cluster assembly, and deposition fed by laser-induced Marangoni convection, Opt. Express, 16, 5673, 10.1364/OE.16.005673 Flores-Flores, 2015, Trapping and manipulation of microparticles using laser-induced convection currents and photophoresis, Biomed. Opt. Express, 6, 4079, 10.1364/BOE.6.004079 Liu, 2021, Opto-thermophoretic manipulation, ACS Nano, 15, 5925, 10.1021/acsnano.0c10427 Hosokawa, 2020, Convection dynamics forced by optical trapping with a focused laser beam, J. Phys. Chem. C, 124, 8323, 10.1021/acs.jpcc.9b11663 Setoura, 2019, Opto-thermophoretic separation and trapping of plasmonic nanoparticles, Nanoscale, 11, 21093, 10.1039/C9NR05052C Asmari, 2018, Thermophoresis for characterizing biomolecular interaction, Methods, 146, 107, 10.1016/j.ymeth.2018.02.003