Recent advances in metal sulfides: from controlled fabrication to electrocatalytic, photocatalytic and photoelectrochemical water splitting and beyond

Chemical Society Reviews - Tập 48 Số 15 - Trang 4178-4280
Sundaram Chandrasekaran1,2,3,4, Lei Yao5,6,3,7,4, Libo Deng1,2,3,4, Chris Bowen8,9, Yan Zhang8,9, Sanming Chen1,2,3,4, Zhiqun Lin10,11,12, Feng Peng1,13,14,15, Peixin Zhang1,2,3,4
1China
2College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
3Shenzhen 518060
4Shenzhen University
5College of Materials Science and Engineering
6Guangdong Research Center for Interfacial Engineering of Functional Materials
7Shenzhen Key Laboratory of Special Functional Materials & Guangdong, Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
8Department of Mechanical Engineering, University of Bath, Bath, UK
9University of Bath
10Atlanta
11Georgia Institute of Technology
12School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA USA
13Guangzhou
14Guangzhou University
15School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, China

Tóm tắt

This review describes an in-depth overview and knowledge on the variety of synthetic strategies for forming metal sulfides and their potential use to achieve effective hydrogen generation and beyond.

Từ khóa


Tài liệu tham khảo

Hisatomi, 2014, Chem. Soc. Rev., 43, 7520, 10.1039/C3CS60378D

Clavero, 2014, Nat. Photonics, 8, 95, 10.1038/nphoton.2013.238

Zou, 2001, Nature, 414, 625, 10.1038/414625a

Chandrasekaran, 2018, J. Mater. Chem. A, 6, 11078, 10.1039/C8TA03669A

Grätzel, 2001, Nature, 414, 338, 10.1038/35104607

Heller, 1981, Acc. Chem. Res., 14, 154, 10.1021/ar00065a004

Kudo, 2009, Chem. Soc. Rev., 38, 253, 10.1039/B800489G

Inoue, 2009, Energy Environ. Sci., 2, 364, 10.1039/b816677n

Ahmed, 2016, Inorg. Chem. Front., 3, 578, 10.1039/C5QI00202H

Menezes, 2019, Energy Environ. Sci., 12, 988, 10.1039/C8EE01669K

Navalon, 2013, ChemSusChem, 6, 562, 10.1002/cssc.201200670

Zhang, 2013, Catal. Sci. Technol., 3, 1672, 10.1039/c3cy00018d

Cheng, 2018, Energy Environ. Sci., 11, 1362, 10.1039/C7EE03640J

Voiry, 2018, Nat. Rev. Chem., 1, 0105, 10.1038/s41570-017-0105

Tachibana, 2012, Nat. Photonics, 6, 511, 10.1038/nphoton.2012.175

Chandran, 2018, Energy Environ. Sci., 11, 115, 10.1039/C7EE01360D

Abdi, 2013, Nat. Commun., 4, 2195, 10.1038/ncomms3195

Chen, 2019, J. Mater. Chem. A, 7, 7415, 10.1039/C9TA00768G

Li, 2019, Energy Environ. Sci., 12, 631, 10.1039/C8EE01299G

Moniz, 2015, Energy Environ. Sci., 8, 731, 10.1039/C4EE03271C

Xie, 2013, Adv. Mater., 25, 3820, 10.1002/adma.201301207

Liu, 2015, Science, 347, 970, 10.1126/science.aaa3145

Chandrasekaran, 2019, Mater. Res. Bull., 112, 95, 10.1016/j.materresbull.2018.12.010

Shiga, 2016, Chem. Commun., 52, 7470, 10.1039/C6CC03199D

Raebiger, 2007, Phys. Rev. B: Condens. Matter Mater. Phys., 76, 045209, 10.1103/PhysRevB.76.045209

Chandrasekaran, 2019, J. Mater. Chem. A, 7, 6161, 10.1039/C8TA12238E

Wang, 2012, Nat. Nanotechnol., 7, 699, 10.1038/nnano.2012.193

Chhowalla, 2013, Nat. Chem., 5, 263, 10.1038/nchem.1589

Wang, 1991, J. Phys. Chem., 95, 525, 10.1021/j100155a009

Hoffman, 1992, J. Phys. Chem., 96, 5546, 10.1021/j100192a067

Voiry, 2016, Nat. Mater., 15, 1003, 10.1038/nmat4660

Maeda, 2006, Nature, 440, 295, 10.1038/440295a

Wang, 2016, Nat. Mater., 15, 611, 10.1038/nmat4589

Li, 2013, Energy Environ. Sci., 6, 347, 10.1039/C2EE22618A

Wang, 2019, Angew. Chem., Int. Ed., 131, 2701, 10.1002/ange.201812387

Iwashina, 2015, J. Am. Chem. Soc., 137, 604, 10.1021/ja511615s

Rui, 2014, Nanoscale, 6, 9889, 10.1039/C4NR03057E

Xu, 2014, Nano Today, 9, 604, 10.1016/j.nantod.2014.09.005

Bebie, 1998, Geochim. Cosmochim. Acta, 62, 633, 10.1016/S0016-7037(98)00058-1

Zhao, 2017, Adv. Energy Mater., 7, 1601424, 10.1002/aenm.201601424

Li, 2011, J. Am. Chem. Soc., 133, 7296, 10.1021/ja201269b

Remskar, 2001, Science, 292, 479, 10.1126/science.1059011

Yu, 2018, Adv. Energy Mater., 8, 1701592, 10.1002/aenm.201701592

Zhao, 2012, Energy Environ. Sci., 5, 5564, 10.1039/C1EE02734D

Coughlan, 2017, Chem. Rev., 117, 5865, 10.1021/acs.chemrev.6b00376

Lai, 2012, J. Mater. Chem., 22, 19, 10.1039/C1JM13879K

Yu, 2016, Adv. Energy Mater., 6, 1501333, 10.1002/aenm.201501333

Chianelli, 2009, Catal. Today, 147, 275, 10.1016/j.cattod.2008.09.041

Geng, 2018, Adv. Energy Mater., 8, 1703259, 10.1002/aenm.201703259

Mitchell, 2002, Chem. Rev., 102, 1929, 10.1021/cr010319h

Si, 2016, Nat. Rev. Mater., 1, 16017, 10.1038/natrevmats.2016.17

Ruan, 2016, J. Mater. Chem. A, 4, 14509, 10.1039/C6TA05104A

T. Weber , H.Prins and R. A.van Santen , Transition metal sulphides: chemistry and catalysis , Springer Science & Business Media , 2013

Zhao, 2017, Chem. Rev., 117, 10121, 10.1021/acs.chemrev.7b00051

G. S. Rohrer , Structure and bonding in crystalline materials , Cambridge University Press , 2001

Vaughan, 2017, Elements, 13, 81, 10.2113/gselements.13.2.81

Hauck, 1998, J. Solid State Chem., 138, 334, 10.1006/jssc.1998.7793

Pakiari, 2010, J. Phys. Chem. A, 114, 9212, 10.1021/jp100423b

Heinrich, 1975, Angew. Chem., Int. Ed. Engl., 14, 322, 10.1002/anie.197503221

Rao, 1976, Prog. Solid State Chem., 10, 207, 10.1016/0079-6786(76)90009-1

J. B. Moffat , Theoretical Aspects of Heterogeneous Catalysis , Springer Science & Business Media , 2013

Kale, 2006, Adv. Funct. Mater., 16, 1349, 10.1002/adfm.200500525

Benco, 1999, J. Solid State Chem., 145, 503, 10.1006/jssc.1999.8195

Enokiya, 1977, J. Phys. Soc. Jpn., 42, 805, 10.1143/JPSJ.42.805

Shen, 2013, Chem. Mater., 25, 1166, 10.1021/cm302482d

Liu, 2016, Mater. Horiz., 3, 402, 10.1039/C6MH00075D

Zhou, 2018, ACS Catal., 8, 4928, 10.1021/acscatal.8b00104

Wang, 2018, J. Am. Chem. Soc., 140, 5037, 10.1021/jacs.8b02200

Guan, 2017, Adv. Mater., 29, 1605051, 10.1002/adma.201605051

Liu, 2019, Adv. Energy Mater., 9, 1803052, 10.1002/aenm.201803052

Wang, 2019, Angew. Chem., Int. Ed., 131, 770, 10.1002/ange.201810729

Zhang, 2019, Energy Environ. Sci., 12, 164, 10.1039/C8EE02538J

Park, 2018, ACS Nano, 12, 2827, 10.1021/acsnano.8b00118

Chao, 2016, ACS Nano, 10, 10211, 10.1021/acsnano.6b05566

Zhong, 2012, J. Phys. Chem. C, 116, 9319, 10.1021/jp301024d

Zhou, 2017, ACS Appl. Mater. Interfaces, 9, 6979, 10.1021/acsami.6b13613

Stephenson, 2014, Energy Environ. Sci., 7, 209, 10.1039/C3EE42591F

Yu, 2014, Nano Lett., 14, 553, 10.1021/nl403620g

Guo, 2018, Energy Environ. Sci., 11, 106, 10.1039/C7EE02464A

Wang, 2018, Appl. Catal., B, 221, 169, 10.1016/j.apcatb.2017.09.011

Huo, 2013, ChemPhysChem, 14, 4069, 10.1002/cphc.201300680

Arai, 2009, J. Phys. Chem. C, 113, 6602, 10.1021/jp8111342

Chandrasekaran, 2013, Sol. Energy Mater. Sol. Cells, 109, 220, 10.1016/j.solmat.2012.11.003

Meyers, 2006, Prog. Mater. Sci., 51, 427, 10.1016/j.pmatsci.2005.08.003

Tiwari, 2012, Prog. Mater. Sci., 57, 724, 10.1016/j.pmatsci.2011.08.003

Gleiter, 1995, Nanostruct. Mater., 6, 3, 10.1016/0965-9773(95)00025-9

Pokropivny, 2007, Mater. Sci. Eng., C, 27, 990, 10.1016/j.msec.2006.09.023

Şengül, 2008, J. Ind. Ecol., 12, 329, 10.1111/j.1530-9290.2008.00046.x

G. A. Ozin , A. C.Arsenault and L.Cademartiri , Nanochemistry: A chemical approach to nanomaterials , Royal Society of Chemistry , 2009

M. Berger , Nanotechnology: The Future is Tiny , Royal Society of Chemistry , 2016

Eustis, 2006, Chem. Soc. Rev., 35, 209, 10.1039/B514191E

Dahl, 2007, Chem. Rev., 107, 2228, 10.1021/cr050943k

Kang, 2015, Nature, 520, 656, 10.1038/nature14417

Dahn, 2002, Chem. Mater., 14, 3519, 10.1021/cm020236x

Linsebigler, 1995, Chem. Rev., 95, 735, 10.1021/cr00035a013

Lindgren, 2003, J. Phys. Chem. B, 107, 5709, 10.1021/jp027345j

Ogawa, 1997, J. Phys. Chem. B, 101, 5707, 10.1021/jp970737j

Zeng, 2016, Sci. Rep., 6, 20343, 10.1038/srep20343

Tao, 2015, Nanoscale, 7, 2497, 10.1039/C4NR06411A

Gerein, 2006, Chem. Mater., 18, 6289, 10.1021/cm061452z

Weil, 2010, J. Am. Chem. Soc., 132, 6642, 10.1021/ja1020475

Cho, 2012, ACS Appl. Mater. Interfaces, 4, 849, 10.1021/am201524z

da Silva Filho, 2018, Sci. Rep., 8, 1563, 10.1038/s41598-018-19746-8

Kumar, 2006, J. Mater. Sci., 41, 5519, 10.1007/s10853-006-0307-1

Willeke, 1992, Thin Solid Films, 213, 271, 10.1016/0040-6090(92)90293-K

Susac, 2007, J. Phys. Chem. C, 111, 18715, 10.1021/jp073395i

Xiao, 2017, Adv. Energy Mater., 7, 1601329, 10.1002/aenm.201601329

Fei, 2016, Chem. Commun., 52, 1501, 10.1039/C5CC06957B

Virji, 2005, Small, 1, 624, 10.1002/smll.200400155

Greiner, 2007, Angew. Chem., Int. Ed., 46, 5670, 10.1002/anie.200604646

Zhang, 2015, J. Mater. Chem. B, 3, 2487, 10.1039/C4TB02092H

Kim, 2012, Carbon, 50, 2472, 10.1016/j.carbon.2012.01.069

Bao, 2010, Adv. Funct. Mater., 20, 782, 10.1002/adfm.200901658

Zhang, 2012, Sens. Actuators, B, 171, 580, 10.1016/j.snb.2012.05.037

Harilal, 2018, Langmuir, 34, 1873, 10.1021/acs.langmuir.7b03576

Zhang, 2018, Nano Energy, 48, 238, 10.1016/j.nanoen.2018.03.053

Hsu, 2013, CrystEngComm, 15, 4303, 10.1039/c3ce00052d

Ito, 1988, Jpn. J. Appl. Phys., 27, 2094, 10.1143/JJAP.27.2094

Mali, 2014, ACS Appl. Mater. Interfaces, 6, 1688, 10.1021/am404586n

Zhao, 2018, J. Energy Chem., 27, 1536, 10.1016/j.jechem.2018.01.009

Qiao, 2018, Coord. Chem. Rev., 372, 31, 10.1016/j.ccr.2018.06.001

Fu, 2018, Appl. Catal., B, 220, 148, 10.1016/j.apcatb.2017.08.034

Zhang, 2018, Nanoscale, 10, 4041, 10.1039/C7NR09415A

Yin, 2018, Chem. Eng. J., 346, 376, 10.1016/j.cej.2018.03.062

Zhong, 2016, ACS Appl. Mater. Interfaces, 8, 28671, 10.1021/acsami.6b10241

Jagadale, 2018, Sci. Rep., 8, 1602, 10.1038/s41598-018-19787-z

Rath, 2013, J. Mater. Chem. A, 1, 11135, 10.1039/c3ta12592k

Tada, 1998, J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.–Process., Meas., Phenom., 16, 3934, 10.1116/1.590440

Radha, 2011, J. Am. Chem. Soc., 133, 12706, 10.1021/ja2039612

Päivänranta, 2011, Nanotechnology, 22, 375302, 10.1088/0957-4484/22/37/375302

Saifullah, 2017, ACS Nano, 11, 9920, 10.1021/acsnano.7b03951

Roxlo, 1987, Science, 235, 1629, 10.1126/science.235.4796.1629

Zhang, 2004, Langmuir, 20, 6914, 10.1021/la049887t

Li, 2016, Appl. Surf. Sci., 384, 272, 10.1016/j.apsusc.2016.05.034

Han, 2003, J. Alloys Compd., 351, 273, 10.1016/S0925-8388(02)01037-X

Ambrosi, 2015, Electrochem. Commun., 54, 36, 10.1016/j.elecom.2015.02.017

Kaltzoglou, 2014, J. Electron. Mater., 43, 2029, 10.1007/s11664-013-2941-0

Li, 2015, J. Materiomics, 1, 33, 10.1016/j.jmat.2015.03.003

Ottaviano, 2017, 2D Mater., 4, 045013, 10.1088/2053-1583/aa8764

Yuan, 2016, AIP Adv., 6, 125201, 10.1063/1.4967967

Li, 2014, Acc. Chem. Res., 47, 1067, 10.1021/ar4002312

Sun, 2017, Crystals, 7, 198, 10.3390/cryst7070198

Voiry, 2013, Nat. Mater., 12, 850, 10.1038/nmat3700

Chen, 2013, ACS Nano, 7, 4610, 10.1021/nn401420h

Paton, 2014, Nat. Mater., 13, 624, 10.1038/nmat3944

Coleman, 2011, Science, 331, 568, 10.1126/science.1194975

Zheng, 2014, Nat. Commun., 5, 2995, 10.1038/ncomms3995

Varrla, 2015, Chem. Mater., 27, 1129, 10.1021/cm5044864

Forsberg, 2016, PLoS One, 11, e0154522, 10.1371/journal.pone.0154522

Gupta, 2016, J. Phys. Chem. Lett., 7, 4884, 10.1021/acs.jpclett.6b02405

Yao, 2012, J. Mater. Chem., 22, 13494, 10.1039/c2jm30587a

Huo, 2015, Sci. Bull., 60, 1994, 10.1007/s11434-015-0936-3

Yang, 2017, Nat. Commun., 8, 14224, 10.1038/ncomms14224

Zhang, 2015, Nano Res., 8, 1522, 10.1007/s12274-014-0637-2

Zhang, 2015, Nanoscale, 7, 10210, 10.1039/C5NR02253C

Lukowski, 2013, J. Am. Chem. Soc., 135, 10274, 10.1021/ja404523s

Liu, 2012, Small, 8, 3517, 10.1002/smll.201200999

Liu, 2014, ChemCatChem, 6, 2522, 10.1002/cctc.201402191

Ramakrishna Matte, 2010, Angew. Chem., Int. Ed., 49, 4059, 10.1002/anie.201000009

Kibsgaard, 2012, Nat. Mater., 11, 963, 10.1038/nmat3439

Chisung, 2015, Adv. Mater., 27, 5223, 10.1002/adma.201501678

Hollingsworth, 1999, Chem. Vap. Deposition, 5, 105, 10.1002/(SICI)1521-3862(199906)5:3<105::AID-CVDE105>3.0.CO;2-G

Song, 2014, Angew. Chem., Int. Ed., 53, 1266, 10.1002/anie.201309474

Whitham, 2014, Plasma Chem. Plasma Process., 34, 755, 10.1007/s11090-014-9542-4

Lim, 2016, Adv. Mater., 28, 5025, 10.1002/adma.201600606

Kumar, 2015, Nanoscale, 7, 7802, 10.1039/C4NR07080A

Wang, 2016, Sci. Rep., 6, 21536, 10.1038/srep21536

Zheng, 2015, Appl. Phys. Lett., 106, 063113, 10.1063/1.4908256

Ji, 2013, Nano Lett., 13, 3870, 10.1021/nl401938t

Zhang, 2013, ACS Nano, 7, 8963, 10.1021/nn403454e

Rong, 2014, Nanoscale, 6, 12096, 10.1039/C4NR04091K

Song, 2015, Nat. Commun., 6, 7817, 10.1038/ncomms8817

Lin, 2014, APL Mater., 2, 092514, 10.1063/1.4895469

George, 2014, Adv. Funct. Mater., 24, 7461, 10.1002/adfm.201402519

Yang, 2015, Nanoscale, 7, 650, 10.1039/C4NR06141A

Gurarslan, 2014, ACS Nano, 8, 11522, 10.1021/nn5057673

Sim, 2015, ACS Nano, 9, 12115, 10.1021/acsnano.5b05173

Moody, 2018, Chem. Mater., 30, 3628, 10.1021/acs.chemmater.8b01171

Kim, 2018, Nano Res., 11, 731, 10.1007/s12274-017-1682-4

Su, 2018, ACS Appl. Mater. Interfaces, 10, 8026-, 10.1021/acsami.7b19197

Shao, 2017, Angew. Chem., Int. Ed., 129, 3274, 10.1002/ange.201700449

Kuhs, 2018, J. Vac. Sci. Technol., A, 36, 01A113, 10.1116/1.5003339

Lim, 2003, Nat. Mater., 2, 749, 10.1038/nmat1000

Peters, 2015, ACS Nano, 9, 8484, 10.1021/acsnano.5b03429

Ihanus, 2002, Chem. Mater., 14, 1937, 10.1021/cm0111130

George, 2009, Chem. Rev., 110, 111, 10.1021/cr900056b

Zhu, 2010, J. Am. Chem. Soc., 132, 12619, 10.1021/ja1025112

Johnson, 2014, Mater. Today, 17, 236, 10.1016/j.mattod.2014.04.026

Tammenmaa, 1987, J. Cryst. Grow., 84, 151, 10.1016/0022-0248(87)90122-9

Sarkar, 2010, J. Phys. Chem. C, 114, 8032, 10.1021/jp9086943

Dasgupta, 2015, Acc. Chem. Res., 48, 341, 10.1021/ar500360d

Thimsen, 2013, Chem. Mater., 25, 313, 10.1021/cm3027225

Thimsen, 2012, Chem. Mater., 24, 3188, 10.1021/cm3015463

Afifi, 1995, Thin Solid Films, 263, 248, 10.1016/0040-6090(95)06565-2

Krunks, 2003, J. Therm. Anal. Calorim., 72, 497, 10.1023/A:1024561212883

Calixto-Rodriguez, 2009, Thin Solid Films, 517, 2497, 10.1016/j.tsf.2008.11.026

Patil, 1999, Mater. Chem. Phys., 59, 185, 10.1016/S0254-0584(99)00049-8

Naşcu, 1997, Mater. Lett., 32, 73, 10.1016/S0167-577X(97)00015-3

Raviprakash, 2009, Sol. Energy, 83, 1645, 10.1016/j.solener.2009.06.004

John, 2005, Sol. Energy Mater. Sol. Cells, 89, 27, 10.1016/j.solmat.2004.12.005

Zouaghi, 2001, Thin Solid Films, 382, 39, 10.1016/S0040-6090(00)01699-0

Pengfei, 2016, Rare Met. Mater. Eng., 45, 1700, 10.1016/S1875-5372(16)30143-6

Lee, 2015, Electrochim. Acta, 167, 287, 10.1016/j.electacta.2015.03.196

Yang, 2016, J. Mater. Chem. C, 4, 8859, 10.1039/C6TC01602B

Vanalakar, 2015, Sol. Energy Mater. Sol. Cells, 138, 1, 10.1016/j.solmat.2015.02.031

Deng, 2012, ACS Nano, 6, 3727, 10.1021/nn300900v

Feng, 2014, Adv. Mater., 26, 2648, 10.1002/adma.201306095

Serrao, 2015, Appl. Phys. Lett., 106, 052101, 10.1063/1.4907169

Loh, 2015, Sci. Rep., 5, 18116, 10.1038/srep18116

Loh, 2015, J. Phys. Chem. C, 119, 27496, 10.1021/acs.jpcc.5b09277

Li, 2017, Sci. Rep., 7, 11182, 10.1038/s41598-017-10632-3

Ettlinger, 2016, Appl. Phys. A: Mater. Sci. Process., 122, 466, 10.1007/s00339-016-9939-4

Liang, 2004, J. Phys. Chem. B, 108, 9728, 10.1021/jp037963f

Lu, 2009, J. Phys. Chem. C, 113, 12878, 10.1021/jp903350x

Shen, 2005, J. Phys. Chem. B, 109, 9294, 10.1021/jp044888f

Lu, 2009, ACS Nano, 3, 357, 10.1021/nn800804r

Lu, 2008, Appl. Phys. Lett., 93, 242503, 10.1063/1.3050537

Huang, 2014, Nanoscale, 6, 8787, 10.1039/C4NR01575D

Ma, 2003, Adv. Mater., 15, 228, 10.1002/adma.200390052

Jiang, 2003, Adv. Mater., 15, 323, 10.1002/adma.200390079

Jen-La Plante, 2010, J. Mater. Chem., 20, 6612, 10.1039/c0jm00439a

Ramasamy, 2012, Chem. Commun., 48, 5703, 10.1039/c2cc30792h

Mani, 2014, J. Chem. Sci., 126, 967, 10.1007/s12039-014-0629-5

Hosny, 2015, J. Mol. Struct., 1085, 78, 10.1016/j.molstruc.2014.11.074

Zhan, 2000, Adv. Mater., 12, 1348, 10.1002/1521-4095(200009)12:18<1348::AID-ADMA1348>3.0.CO;2-X

Liu, 2014, Mater. Res. Bull., 57, 29, 10.1016/j.materresbull.2014.05.027

Athanassiou, 2010, Nanotechnology, 21, 215603, 10.1088/0957-4484/21/21/215603

Freeda, 2017, J. Alloys Compd., 726, 1, 10.1016/j.jallcom.2017.07.128

Liu, 2014, Mater. Lett., 117, 158, 10.1016/j.matlet.2013.11.128

Malik, 2012, Arabian J. Chem., 5, 397, 10.1016/j.arabjc.2010.09.027

Bagwe, 2004, Langmuir, 20, 8336, 10.1021/la049137j

Hota, 2004, Colloids Surf., A, 232, 119, 10.1016/j.colsurfa.2003.10.021

Zhang, 2008, Chem. Commun., 5945, 10.1039/b814725f

Petit, 1990, J. Phys. Chem., 94, 1598, 10.1021/j100367a069

Dhlamini, 2008, J. Lumin., 128, 1997, 10.1016/j.jlumin.2008.06.016

Solanki, 2010, Solid State Sci., 12, 1560, 10.1016/j.solidstatesciences.2010.06.021

Ghows, 2011, Ultrason. Sonochem., 18, 629, 10.1016/j.ultsonch.2010.08.003

Vaidya, 2010, Colloids Surf., A, 363, 130, 10.1016/j.colsurfa.2010.04.030

Zhang, 2018, Colloids Surf., A, 546, 203, 10.1016/j.colsurfa.2018.03.020

Malikov, 2018, Fullerenes, Nanotubes, Carbon Nanostruct., 26, 255, 10.1080/1536383X.2018.1432602

Loukanov, 2004, Colloids Surf., A, 245, 9, 10.1016/j.colsurfa.2004.06.016

Ovits, 2009, J. Mater. Chem., 19, 7650, 10.1039/b908609a

Liu, 2015, ACS Appl. Mater. Interfaces, 7, 13849, 10.1021/acsami.5b04128

Vacassy, 1998, J. Am. Ceram. Soc., 81, 2699, 10.1111/j.1151-2916.1998.tb02679.x

Pecoraro, 1981, J. Catal., 67, 430, 10.1016/0021-9517(81)90303-1

Vattikuti, 2015, Appl. Phys. A: Mater. Sci. Process., 119, 813, 10.1007/s00339-015-9163-7

Rickard, 1995, Geochim. Cosmochim. Acta, 59, 4367, 10.1016/0016-7037(95)00251-T

Yadav, 2017, Nano-Struct. Nano-Objects, 10, 151, 10.1016/j.nanoso.2017.03.009

Zhang, 2007, Int. J. Hydrogen Energy, 32, 4685, 10.1016/j.ijhydene.2007.08.022

Jiang, 2014, Appl. Surf. Sci., 295, 164, 10.1016/j.apsusc.2014.01.022

Chen, 2007, J. Phys. Chem. Solids, 68, 2317, 10.1016/j.jpcs.2007.07.059

Zhan, 2018, Inorg. Chem., 57, 5791, 10.1021/acs.inorgchem.8b00108

Lei, 2003, Chem. Commun., 2142, 10.1039/b306813g

Ratha, 2013, ACS Appl. Mater. Interfaces, 5, 11427, 10.1021/am403663f

Li, 2010, J. Alloys Compd., 504, L31, 10.1016/j.jallcom.2010.05.149

Dong, 2011, Dalton Trans., 40, 243, 10.1039/C0DT01107J

Xing, 2014, Electrochim. Acta, 149, 285, 10.1016/j.electacta.2014.10.069

Kamila, 2017, Sci. Rep., 7, 8378, 10.1038/s41598-017-08677-5

Zhang, 2014, Energy Environ. Sci., 7, 3302, 10.1039/C4EE01932F

Zhang, 2006, J. Phys. Chem. B, 110, 8978, 10.1021/jp060769j

Yang, 2016, RSC Adv., 6, 83012, 10.1039/C6RA14847F

Shi, 2015, Chem. Commun., 51, 17144, 10.1039/C5CC05323D

Mahadik, 2015, J. Mater. Chem. A, 3, 23597, 10.1039/C5TA07454A

Zhu, 2012, J. Mater. Chem., 22, 7851, 10.1039/c2jm30437f

Karthikeyan, 2014, Dalton Trans., 43, 17445, 10.1039/C4DT02059F

Zhang, 2015, J. Mater. Chem. A, 3, 15020, 10.1039/C5TA03410H

Peng, 2016, Adv. Funct. Mater., 26, 2666, 10.1002/adfm.201504942

Sun, 2009, Angew. Chem., Int. Ed., 48, 2881, 10.1002/anie.200806082

Yu, 2016, J. Energy Storage, 7, 295, 10.1016/j.est.2016.08.004

Bhattacharjya, 2015, Chem. Commun., 51, 13350, 10.1039/C5CC04289E

Mei, 2014, Nano Energy, 3, 36, 10.1016/j.nanoen.2013.10.004

Michel, 2006, Chem. Mater., 18, 1726, 10.1021/cm048320v

Tao, 2007, Mater. Lett., 61, 4973, 10.1016/j.matlet.2007.03.084

Gui, 2011, Mater. Chem. Phys., 125, 698, 10.1016/j.matchemphys.2010.09.071

Liu, 2017, Appl. Surf. Sci., 416, 858, 10.1016/j.apsusc.2017.04.230

Tang, 2017, J. Power Sources, 362, 1, 10.1016/j.jpowsour.2017.07.019

Tang, 2015, J. Mater. Chem. A, 3, 12913, 10.1039/C5TA02480C

Qiu, 2011, J. Mater. Chem., 21, 13327, 10.1039/c1jm11616a

Zhou, 2014, Sci. Rep., 4, 4027, 10.1038/srep04027

Lampkin, 2016, J. Solid State Chem., 243, 44, 10.1016/j.jssc.2016.08.007

Wang, 2017, J. Mater. Chem. A, 5, 8451, 10.1039/C7TA01914A

Wang, 2011, J. Mater. Chem., 21, 327, 10.1039/C0JM03121F

Dutta, 2012, ACS Appl. Mater. Interfaces, 4, 1919, 10.1021/am300408r

Wei, 2006, Cryst. Growth Des., 6, 1942, 10.1021/cg050456y

Yang, 2009, CrystEngComm, 11, 1383, 10.1039/b900444k

Huang, 2018, ACS Nano, 12, 3030, 10.1021/acsnano.8b00901

Bhorde, 2018, Appl. Phys. A: Mater. Sci. Process., 124, 133, 10.1007/s00339-017-1529-6

Lin, 2010, Microporous Mesoporous Mater., 132, 328, 10.1016/j.micromeso.2010.03.010

Yuan, 2017, J. Mater. Chem. A, 5, 15771, 10.1039/C7TA04410K

Sun, 2010, Nanoscale Res. Lett., 5, 364, 10.1007/s11671-009-9489-1

Tu, 2018, Nanoscale, 10, 4735, 10.1039/C7NR09413B

Zhang, 2018, New J. Chem., 42, 1467, 10.1039/C7NJ03581K

Wang, 2017, Energy Storage Materials, 6, 180, 10.1016/j.ensm.2016.11.005

Li, 2015, RSC Adv., 5, 46941, 10.1039/C5RA07292A

Li, 2018, J. Power Sources, 373, 103, 10.1016/j.jpowsour.2017.10.094

Ding, 2011, ACS Appl. Mater. Interfaces, 4, 306, 10.1021/am201343q

Yao, 2009, Cryst. Growth Des., 9, 3821, 10.1021/cg9000335

Thalmann, 2014, Environ. Sci. Technol., 48, 4885, 10.1021/es5003378

Bonde, 2009, Faraday Discuss., 140, 219, 10.1039/B803857K

Shen, 2015, Nat. Commun., 6, 6694, 10.1038/ncomms7694

Mrowec, 1985, Oxid. Met., 23, 107, 10.1007/BF00659899

Cabán-Acevedo, 2013, ACS Nano, 7, 1731, 10.1021/nn305833u

Cabán-Acevedo, 2012, Nano Lett., 12, 1977, 10.1021/nl2045364

Li, 2017, J. Mater. Chem. A, 5, 20428, 10.1039/C7TA06180C

Bara, 2016, J. Catal., 344, 591, 10.1016/j.jcat.2016.10.001

Cummins, 2013, Nano Lett., 13, 2423, 10.1021/nl400325s

Chen, 2011, Dalton Trans., 40, 880, 10.1039/C0DT00906G

Levard, 2011, Environ. Sci. Technol., 45, 5260, 10.1021/es2007758

Chen, 2013, Anal. Methods, 5, 6579, 10.1039/c3ay41573b

Ma, 2014, Environ. Sci.: Nano, 1, 347

Ding, 2013, J. Mater. Chem. A, 1, 11880, 10.1039/c3ta12049j

Ding, 2012, J. Mater. Chem., 22, 23169, 10.1039/c2jm34916g

Han, 2017, Sci. Rep., 7, 42536, 10.1038/srep42536

Ranjith, 2017, Catal. Sci. Technol., 7, 1167, 10.1039/C6CY02556K

Piña-Pérez, 2018, Appl. Catal., B, 230, 125, 10.1016/j.apcatb.2018.02.047

Tian, 2019, Chem. Commun., 55, 3243, 10.1039/C9CC00486F

Guan, 2017, Small Methods, 1, 1700158, 10.1002/smtd.201700158

Yu, 2017, Small Methods, 1, 1600020, 10.1002/smtd.201600020

Yang, 2019, J. Mater. Chem. A, 7, 3432, 10.1039/C8TA11489G

Heift, 2018, ChemNanoMat, 4, 663, 10.1002/cnma.201800027

Vu, 2017, Phys. Chem. Chem. Phys., 19, 29429, 10.1039/C7CP06085H

Yin, 2006, Adv. Funct. Mater., 16, 1389, 10.1002/adfm.200600256

Kung, 2012, ACS Nano, 6, 7016, 10.1021/nn302063s

Chen, 2013, J. Mater. Chem. A, 1, 13759, 10.1039/c3ta13415f

Jiang, 2014, J. Mater. Chem. A, 2, 8603, 10.1039/C3TA14430E

Su, 2017, J. Mater. Chem. A, 5, 8680, 10.1039/C7TA00855D

Yu, 2014, Adv. Funct. Mater., 24, 7440, 10.1002/adfm.201402560

Yu, 2016, Angew. Chem., Int. Ed., 55, 13422, 10.1002/anie.201606776

Zhang, 2017, Angew. Chem., Int. Ed., 56, 7141, 10.1002/anie.201702649

Chen, 2016, Sci. Rep., 6, 25151, 10.1038/srep25151

Wu, 2015, Adv. Mater., 27, 3038, 10.1002/adma.201500783

Jin, 2017, J. Power Sources, 341, 294, 10.1016/j.jpowsour.2016.12.013

Zhu, 2014, Chem. Rev., 114, 6462, 10.1021/cr400366s

Qin, 2013, Sens. Actuators, B, 184, 156, 10.1016/j.snb.2013.04.079

Pang, 2014, Sci. Rep., 4, 3577, 10.1038/srep03577

Nadagouda, 2011, Acc. Chem. Res., 44, 469, 10.1021/ar1001457

Chen, 2003, Mater. Chem. Phys., 82, 206, 10.1016/S0254-0584(03)00206-2

Butala, 2017, Solid State Sci., 74, 8, 10.1016/j.solidstatesciences.2017.09.010

Krylova, 2015, Cryst. Growth Des., 15, 2859, 10.1021/acs.cgd.5b00284

You, 2015, Chem. Commun., 51, 4252, 10.1039/C4CC09849H

Jiang, 2005, J. Phys. Chem. B, 109, 4361, 10.1021/jp044350+

Panda, 2006, J. Am. Chem. Soc., 128, 2790, 10.1021/ja058148b

Patra, 2007, J. Solid State Electrochem., 11, 186, 10.1007/s10008-005-0086-7

Liu, 2016, Sci. Rep., 6, 22503, 10.1038/srep22503

Youn, 2014, Sci. Rep., 4, 5492, 10.1038/srep05492

Raubach, 2013, Dalton Trans., 42, 11111, 10.1039/c3dt50374g

A. Brenner , Electrodeposition of Alloys: Principles and Practice , Elsevier , 2013

Nielsch, 2000, Adv. Mater., 12, 582, 10.1002/(SICI)1521-4095(200004)12:8<582::AID-ADMA582>3.0.CO;2-3

Endres, 2002, ChemPhysChem, 3, 144, 10.1002/1439-7641(20020215)3:2<144::AID-CPHC144>3.0.CO;2-#

Faber, 2014, J. Am. Chem. Soc., 136, 10053, 10.1021/ja504099w

Sander, 2002, Adv. Mater., 14, 665, 10.1002/1521-4095(20020503)14:9<665::AID-ADMA665>3.0.CO;2-B

Faber, 2014, Energy Environ. Sci., 7, 3519, 10.1039/C4EE01760A

Chen, 2014, ACS Nano, 8, 9531, 10.1021/nn503814y

Ganesan, 2016, J. Mater. Chem. A, 4, 16394, 10.1039/C6TA04499A

Loglio, 2004, J. Electroanal. Chem., 562, 117, 10.1016/j.jelechem.2003.08.016

Lai, 2010, Nanotechnology, 21, 215602, 10.1088/0957-4484/21/21/215602

Singh, 2007, Chem. Mater., 19, 2446, 10.1021/cm0629356

Ghahremaninezhad, 2011, J. Phys. Chem. C, 115, 9320, 10.1021/jp108283z

Su, 2013, J. Phys. Chem. C, 118, 767, 10.1021/jp407185p

Lin, 2011, Electrochim. Acta, 56, 8818, 10.1016/j.electacta.2011.07.080

Li, 2015, J. Power Sources, 274, 943, 10.1016/j.jpowsour.2014.10.156

Boonsalee, 2008, Chem. Mater., 20, 5737, 10.1021/cm801502m

Abbott, 2013, Annu. Rev. Mater. Res., 43, 335, 10.1146/annurev-matsci-071312-121640

F. Endres , A.Abbott and D. R.MacFarlane , Electrodeposition from ionic liquids , John Wiley & Sons , 2017

Tian, 2010, Trans. Nonferrous Met. Soc. China, 20, 513, 10.1016/S1003-6326(09)60171-0

Chen, 2012, J. Mater. Chem., 22, 5295, 10.1039/c2jm16692e

Murugesan, 2013, ACS Nano, 7, 8199, 10.1021/nn4036624

Ma, 2016, Energy Environ. Sci., 9, 862, 10.1039/C5EE03772G

Tian, 2017, Appl. Catal., B, 209, 566, 10.1016/j.apcatb.2017.03.022

Bao, 2007, Chem. Mater., 20, 110, 10.1021/cm7029344

Wu, 2018, Nano Energy, 45, 439, 10.1016/j.nanoen.2018.01.024

Zhuo, 2013, Angew. Chem., Int. Ed., 125, 8764, 10.1002/ange.201303480

Sun, 2002, Nano Lett., 2, 481, 10.1021/nl025531v

Yu, 2015, Angew. Chem., Int. Ed., 154, 5331, 10.1002/anie.201500267

Liang, 2018, Chem. Eng. J., 344, 95, 10.1016/j.cej.2018.03.064

Li, 2009, Chem. Soc. Rev., 38, 1477, 10.1039/b802426j

Xie, 2013, Nano Energy, 2, 49, 10.1016/j.nanoen.2012.07.010

Zhang, 2018, Chem. Eng. J., 332, 370, 10.1016/j.cej.2017.09.092

Mao, 2004, Nano Lett., 4, 249, 10.1021/nl034966v

Yu, 2002, Adv. Mater., 14, 296, 10.1002/1521-4095(20020219)14:4<296::AID-ADMA296>3.0.CO;2-6

MacLachlan, 1999, Nature, 397, 681, 10.1038/17776

Jiang, 2001, Adv. Mater., 13, 1278, 10.1002/1521-4095(200108)13:16<1278::AID-ADMA1278>3.0.CO;2-W

Zhang, 2004, Chem. Mater., 16, 537, 10.1021/cm034760v

Ye, 2017, Adv. Funct. Mater., 27, 1702524, 10.1002/adfm.201702524

Lee, 2007, Nano Lett., 7, 778, 10.1021/nl0630539

Wan, 2008, Adv. Mater., 20, 2926, 10.1002/adma.200800466

Han, 2011, Adv. Energy Mater., 1, 798, 10.1002/aenm.201100340

Chen, 2008, Inorg. Chem., 47, 9766, 10.1021/ic800752t

Yu, 2008, Adv. Funct. Mater., 18, 1544, 10.1002/adfm.200701052

Lou, 2006, Adv. Mater., 18, 2325, 10.1002/adma.200600733

Yu, 2009, Chem. – Eur. J., 15, 6731, 10.1002/chem.200900204

Ling, 2018, Chem. Commun., 54, 2631, 10.1039/C7CC08962G

Yu, 2014, Angew. Chem., Int. Ed., 53, 3711, 10.1002/anie.201400226

Wang, 2018, Ceram. Int., 44, 11905, 10.1016/j.ceramint.2018.03.191

Vattikuti, 2018, Sci. Rep., 8, 4194, 10.1038/s41598-018-22622-0

Wang, 2018, Nano Res., 11, 831, 10.1007/s12274-017-1693-1

Greeley, 2006, Nat. Mater., 5, 909, 10.1038/nmat1752

Zeradjanin, 2016, Electroanalysis, 28, 2256, 10.1002/elan.201600270

Gong, 2014, Nat. Commun., 5, 4695, 10.1038/ncomms5695

Xiao, 2015, Adv. Energy Mater., 5, 1500985, 10.1002/aenm.201500985

McKone, 2014, Chem. Sci., 5, 865, 10.1039/C3SC51711J

Sivanantham, 2016, Adv. Funct. Mater., 26, 4661, 10.1002/adfm.201600566

Lewis, 2006, Proc. Natl. Acad. Sci. U. S. A., 103, 15729, 10.1073/pnas.0603395103

Lu, 2016, Adv. Mater., 28, 1917, 10.1002/adma.201503270

Vrubel, 2012, Angew. Chem., Int. Ed., 124, 12875, 10.1002/ange.201207111

Chandrasekaran, 2014, Mater. Lett., 136, 118, 10.1016/j.matlet.2014.07.179

Sheng, 2013, Energy Environ. Sci., 6, 1509, 10.1039/c3ee00045a

Gong, 2016, Nano Res., 9, 28, 10.1007/s12274-015-0965-x

S. Kotrel and S.Bräuninger , Handbook of Heterogeneous Catalysis , John Wiley & Sons , 2008

Laursen, 2012, Energy Environ. Sci., 5, 5577, 10.1039/c2ee02618j

Jaramillo, 2007, Science, 317, 100, 10.1126/science.1141483

Parsons, 1958, Trans. Faraday Soc., 54, 1053, 10.1039/tf9585401053

Eftekhari, 2017, Int. J. Hydrogen Energy, 42, 11053, 10.1016/j.ijhydene.2017.02.125

Zhang, 2018, Sci. Adv., 4, eaao6657, 10.1126/sciadv.aao6657

Kai, 2018, J. Mater. Chem. A, 6, 2895, 10.1039/C7TA10958J

Lee, 2009, Chem. Mater., 22, 922, 10.1021/cm901762h

Wang, 2015, J. Am. Chem. Soc., 137, 1587, 10.1021/ja511572q

Luo, 2014, Science, 345, 1593, 10.1126/science.1258307

Hou, 2013, Adv. Funct. Mater., 23, 1612, 10.1002/adfm.201202148

Yang, 2013, Acc. Chem. Res., 46, 1900, 10.1021/ar300227e

Walter, 2010, Chem. Rev., 110, 6446, 10.1021/cr1002326

Chandrasekaran, 2016, J. Electrochem. Sci. Technol., 7, 1, 10.33961/JECST.2016.7.1.7

Reece, 2011, Science, 334, 645, 10.1126/science.1209816

Z. Chen , H. N.Dinh and E.Miller , SpringerBriefs in Energy , New York , 2013 , pp. 49–61

Miller, 2015, Energy Environ. Sci., 8, 2809, 10.1039/C5EE90047F

Serpone, 1996, J. Photochem. Photobiol., A, 94, 191, 10.1016/1010-6030(95)04223-7

Li, 2015, Catal. Sci. Technol., 5, 1360, 10.1039/C4CY00974F

Wang, 2017, Phys. Chem. Chem. Phys., 19, 10125, 10.1039/C7CP00636E

Karunadasa, 2012, Science, 335, 698, 10.1126/science.1215868

Feldman, 1995, Science, 267, 222, 10.1126/science.267.5195.222

Seo, 2015, ACS Nano, 9, 3728, 10.1021/acsnano.5b00786

Wu, 2012, Appl. Catal., B, 125, 59, 10.1016/j.apcatb.2012.05.013

Mahler, 2014, J. Am. Chem. Soc., 136, 14121, 10.1021/ja506261t

Cabán-Acevedo, 2015, Nat. Mater., 14, 1245, 10.1038/nmat4410

Faber, 2014, J. Phys. Chem. C, 118, 21347, 10.1021/jp506288w

Kong, 2013, Energy Environ. Sci., 6, 3553, 10.1039/c3ee42413h

Hinnemann, 2005, J. Am. Chem. Soc., 127, 5308, 10.1021/ja0504690

Nørskov, 2005, J. Electrochem. Soc., 152, J23, 10.1149/1.1856988

Xie, 2013, Adv. Mater., 25, 5807, 10.1002/adma.201302685

Yan, 2013, ACS Appl. Mater. Interfaces, 5, 12794, 10.1021/am404843b

Morales-Guio, 2014, Acc. Chem. Res., 47, 2671, 10.1021/ar5002022

Merki, 2011, Chem. Sci., 2, 1262, 10.1039/C1SC00117E

Liang, 2014, Angew. Chem., Int. Ed., 53, 7860, 10.1002/anie.201402315

Zhao, 2016, ACS Nano, 10, 2159, 10.1021/acsnano.5b06653

Wang, 2016, Adv. Mater., 28, 215, 10.1002/adma.201502696

Wei, 2017, Electrochim. Acta, 246, 776, 10.1016/j.electacta.2017.06.068

Sun, 2013, J. Am. Chem. Soc., 135, 17699, 10.1021/ja4094764

Kornienko, 2015, J. Am. Chem. Soc., 137, 7448, 10.1021/jacs.5b03545

Ma, 2017, Nano Energy, 41, 148, 10.1016/j.nanoen.2017.09.036

Feng, 2015, J. Am. Chem. Soc., 137, 14023, 10.1021/jacs.5b08186

Ho, 2018, ACS Appl. Mater. Interfaces, 10, 12807, 10.1021/acsami.8b00813

Li, 2018, J. Mater. Chem. A, 6, 8233, 10.1039/C8TA01928B

Chung, 2015, Nanoscale, 7, 5157, 10.1039/C4NR07648F

Zhou, 2018, ACS Nano, 12, 4486, 10.1021/acsnano.8b00693

Pan, 2014, Sci. Rep., 4, 5348, 10.1038/srep05348

Tsai, 2015, Surf. Sci., 640, 133, 10.1016/j.susc.2015.01.019

Qu, 2015, Phys. Chem. Chem. Phys., 17, 24820, 10.1039/C5CP04118J

Jiangtan, 2015, Adv. Mater., 27, 5605, 10.1002/adma.201502075

Liang, 2016, Chem. Mater., 28, 5587, 10.1021/acs.chemmater.6b01963

Qu, 2017, J. Mater. Chem. A, 5, 15080, 10.1039/C7TA03172F

Shi, 2017, Nat. Commun., 8, 958, 10.1038/s41467-017-01089-z

Tran, 2012, Energy Environ. Sci., 5, 8912, 10.1039/c2ee22611a

Tran, 2013, Energy Environ. Sci., 6, 2452, 10.1039/c3ee40600h

Merki, 2012, Chem. Sci., 3, 2515, 10.1039/c2sc20539d

Lu, 2018, Appl. Surf. Sci., 445, 445, 10.1016/j.apsusc.2018.03.177

Shao, 2016, Electrochim. Acta, 213, 236, 10.1016/j.electacta.2016.07.113

Ren, 2018, Nano Res., 11, 2024, 10.1007/s12274-017-1818-6

Tie, 2018, Appl. Surf. Sci., 435, 187, 10.1016/j.apsusc.2017.11.086

Peng, 2015, Adv. Energy Mater., 5, 1402031, 10.1002/aenm.201402031

Xiong, 2017, ACS Energy Lett., 2, 2778, 10.1021/acsenergylett.7b01056

Yang, 2018, Chem. Commun., 54, 78, 10.1039/C7CC07259G

Jian, 2014, Adv. Energy Mater., 4, 1301875, 10.1002/aenm.201301875

Seo, 2018, Nanoscale, 10, 3838, 10.1039/C7NR08161H

Chia, 2016, J. Mater. Chem. A, 4, 14241, 10.1039/C6TA05110C

Long, 2015, J. Am. Chem. Soc., 137, 11900, 10.1021/jacs.5b07728

Kagkoura, 2019, Chem. Commun., 55, 2078, 10.1039/C9CC00051H

Deng, 2018, Adv. Sci., 5, 1700772, 10.1002/advs.201700772

Liu, 2017, ACS Appl. Mater. Interfaces, 9, 15364, 10.1021/acsami.7b00019

Liu, 2018, ACS Appl. Mater. Interfaces, 10, 10890, 10.1021/acsami.8b00296

Lu, 2018, Chem. Commun., 54, 646, 10.1039/C7CC08446C

Zhang, 2017, RSC Adv., 7, 46286, 10.1039/C7RA07667C

Cao, 2018, ACS Appl. Mater. Interfaces, 10, 1752, 10.1021/acsami.7b16407

Chen, 2018, J. Phys. Chem. C, 122, 2618, 10.1021/acs.jpcc.7b12040

Li, 2016, ACS Catal., 6, 2797, 10.1021/acscatal.6b00014

Zhong, 2017, J. Mater. Chem. A, 5, 17954, 10.1039/C7TA04755J

Qu, 2017, ACS Appl. Mater. Interfaces, 9, 29660, 10.1021/acsami.7b06377

Yang, 2016, ACS Appl. Mater. Interfaces, 8, 13966, 10.1021/acsami.6b04045

Zhou, 2017, J. Mater. Chem. A, 5, 15552, 10.1039/C7TA03041J

Tan, 2016, ACS Appl. Mater. Interfaces, 8, 3948, 10.1021/acsami.5b11109

Yuanyuan, 2016, Adv. Funct. Mater., 26, 4839, 10.1002/adfm.201601315

Gao, 2015, Nat. Commun., 6, 5982, 10.1038/ncomms6982

Xie, 2013, J. Am. Chem. Soc., 135, 17881, 10.1021/ja408329q

Sun, 2014, Nanoscale, 6, 8359, 10.1039/C4NR01894J

Zhong, 2018, Electrochim. Acta, 269, 55, 10.1016/j.electacta.2018.02.131

Hou, 2018, ACS Catal., 8, 4612, 10.1021/acscatal.8b00668

Qu, 2017, ACS Appl. Mater. Interfaces, 9, 5959, 10.1021/acsami.6b13244

Zhang, 2018, ACS Catal., 8, 5431, 10.1021/acscatal.8b00413

Zeng, 2014, Energy Environ. Sci., 7, 797, 10.1039/C3EE42620C

Liang, 2011, Nat. Mater., 10, 780, 10.1038/nmat3087

Roy, 2013, Nat. Nanotechnol., 8, 826, 10.1038/nnano.2013.206

Sun, 2015, Nat. Nanotechnol., 10, 980, 10.1038/nnano.2015.194

Li, 2016, Nat. Commun., 7, 11204, 10.1038/ncomms11204

Li, 2014, Nano Lett., 14, 1228, 10.1021/nl404108a

Yang, 2013, Angew. Chem., Int. Ed., 52, 13751, 10.1002/anie.201307475

Pu, 2014, Electrochim. Acta, 134, 8, 10.1016/j.electacta.2014.04.092

Hou, 2014, J. Mater. Chem. A, 2, 13795, 10.1039/C4TA02254H

Pramoda, 2017, ACS Appl. Mater. Interfaces, 9, 10664, 10.1021/acsami.7b00085

Chang, 2013, Adv. Mater., 25, 756, 10.1002/adma.201202920

Lee, 2017, Sci. Rep., 7, 41190, 10.1038/srep41190

Kumar, 2017, ACS Omega, 2, 7532, 10.1021/acsomega.7b00678

Ghosh, 2017, ChemistrySelect, 2, 11590, 10.1002/slct.201702737

Li, 2015, J. Power Sources, 292, 15, 10.1016/j.jpowsour.2015.04.173

Guo, 2017, Adv. Funct. Mater., 27, 1602699, 10.1002/adfm.201602699

Zhang, 2015, Nanoscale, 7, 10391, 10.1039/C5NR01896J

Chen, 2018, Nano Energy, 47, 66, 10.1016/j.nanoen.2018.02.023

Feng, 2018, J. Am. Chem. Soc., 140, 610, 10.1021/jacs.7b08521

Duan, 2015, Adv. Mater., 27, 4234, 10.1002/adma.201501692

Hui, 2016, Adv. Mater., 28, 8945, 10.1002/adma.201602502

Wu, 2015, RSC Adv., 5, 32976, 10.1039/C5RA01414J

Yu, 2015, ACS Appl. Mater. Interfaces, 7, 28116, 10.1021/acsami.5b09447

Shinde, 2015, Chem. Commun., 51, 15716, 10.1039/C5CC05644F

Hong, 2015, Nat. Commun., 6, 6293, 10.1038/ncomms7293

Zhou, 2013, Nano Lett., 13, 2615, 10.1021/nl4007479

Vrubel, 2012, Energy Environ. Sci., 5, 6136, 10.1039/c2ee02835b

Chang, 2018, Appl. Catal., B, 232, 446, 10.1016/j.apcatb.2018.03.087

Liu, 2018, Chem. Mater., 30, 1055, 10.1021/acs.chemmater.7b04976

Singh, 2018, ACS Catal., 8, 4017, 10.1021/acscatal.8b00106

Suzuki, 2018, Appl. Catal., B, 224, 572, 10.1016/j.apcatb.2017.10.053

Zhang, 2018, J. Mater. Chem. A, 6, 7977, 10.1039/C8TA01163J

Fronzi, 2018, Phys. Chem. Chem. Phys., 20, 2356, 10.1039/C7CP06637F

Fang, 2018, Adv. Energy Mater., 1703155, 10.1002/aenm.201703155

Ou, 2018, Nano Res., 11, 751, 10.1007/s12274-017-1684-2

Ye, 2016, Nano Lett., 16, 1097, 10.1021/acs.nanolett.5b04331

Yin, 2016, J. Am. Chem. Soc., 138, 7965, 10.1021/jacs.6b03714

Liu, 2017, Nanoscale, 9, 16616, 10.1039/C7NR06111K

Zhang, 2017, J. Phys. Chem. C, 121, 1530, 10.1021/acs.jpcc.6b11987

Zhang, 2018, Small, 14, 1703098, 10.1002/smll.201703098

Niazi, 2001, J. Phys.: Condens. Matter, 13, 6787

Gopalakrishnan, 2018, Sustainable Energy Fuels, 2, 96, 10.1039/C7SE00376E

Huan, 2018, Adv. Mater., 30, 1705916, 10.1002/adma.201705916

Liu, 2017, ACS Nano, 11, 11574, 10.1021/acsnano.7b06501

He, 2018, J. Mater. Res., 33, 519, 10.1557/jmr.2017.270

Klaine, 2008, Environ. Toxicol. Chem., 27, 1825, 10.1897/08-090.1

Zhao, 2013, Nat. Commun., 4, 2390, 10.1038/ncomms3390

Sobczynski, 1991, J. Catal., 131, 156, 10.1016/0021-9517(91)90332-X

Lukowski, 2014, Energy Environ. Sci., 7, 2608, 10.1039/C4EE01329H

Zhou, 2016, J. Mater. Chem. A, 4, 9472, 10.1039/C6TA02876D

Huang, 2016, J. Am. Chem. Soc., 138, 1359, 10.1021/jacs.5b11986

Wu, 2018, Nat. Commun., 9, 1425, 10.1038/s41467-018-03858-w

Bai, 2018, ACS Appl. Mater. Interfaces, 10, 1678, 10.1021/acsami.7b14997

Norskov, 2006, Science, 312, 1322, 10.1126/science.1127180

Miao, 2017, J. Am. Chem. Soc., 139, 13604, 10.1021/jacs.7b07044

Ouyang, 2015, Electrochim. Acta, 174, 297, 10.1016/j.electacta.2015.05.186

Jiang, 2018, ACS Appl. Mater. Interfaces, 10, 9379, 10.1021/acsami.7b18439

Wang, 2016, ACS Catal., 6, 6585, 10.1021/acscatal.6b01927

Worsley, 2015, ACS Nano, 9, 4698, 10.1021/acsnano.5b00087

Liu, 2018, Nano Energy, 44, 7, 10.1016/j.nanoen.2017.11.063

Chen, 2016, Catal. Commun., 85, 26, 10.1016/j.catcom.2016.07.010

Zhu, 2018, ACS Sustainable Chem. Eng., 6, 5011, 10.1021/acssuschemeng.7b04663

Chandrasekaran, 2017, Dalton Trans., 46, 13912, 10.1039/C7DT02936E

Chang, 2014, ACS Nano, 8, 7078, 10.1021/nn5019945

He, 2013, Nano Lett., 13, 2931, 10.1021/nl4013166

Peng, 2016, ACS Catal., 6, 6723, 10.1021/acscatal.6b02076

Lei, 2018, Chem. Commun., 54, 603, 10.1039/C7CC08178B

Yanagida, 1982, Chem. Lett., 1069, 10.1246/cl.1982.1069

Kalyanasundaram, 1981, Helv. Chim. Acta, 64, 362, 10.1002/hlca.19810640137

Reber, 1984, J. Phys. Chem., 88, 5903, 10.1021/j150668a032

Zheng, 2017, Adv. Funct. Mater., 27, 1605846, 10.1002/adfm.201605846

Fu, 2018, ACS Appl. Nano Mater., 1, 162923

Silva, 2008, J. Phys. Chem. C, 112, 12069, 10.1021/jp8037279

Jing, 2006, J. Phys. Chem. B, 110, 11139, 10.1021/jp060905k

Yu, 2018, ACS Sustainable Chem. Eng., 6, 5513, 10.1021/acssuschemeng.8b00398

Toe, 2018, J. Phys. Chem. C, 122, 14072, 10.1021/acs.jpcc.8b01169

Li, 2015, Int. J. Hydrogen Energy, 40, 15503, 10.1016/j.ijhydene.2015.08.110

Bessekhouad, 2002, Sol. Energy Mater. Sol. Cells, 73, 339, 10.1016/S0927-0248(01)00218-5

Fu, 2010, Appl. Catal., B, 95, 393, 10.1016/j.apcatb.2010.01.018

Yu, 2014, ACS Appl. Mater. Interfaces, 6, 22370, 10.1021/am506396z

Zhuang, 2013, Phys. Rev. B: Condens. Matter Mater. Phys., 88, 115314, 10.1103/PhysRevB.88.115314

Gou, 2006, J. Am. Chem. Soc., 128, 7222, 10.1021/ja0580845

Shen, 2008, J. Phys. Chem. Solids, 69, 2426, 10.1016/j.jpcs.2008.04.035

Chai, 2011, J. Phys. Chem. C, 115, 6149, 10.1021/jp1112729

Chaudhari, 2011, Green Chem., 13, 2500, 10.1039/c1gc15515f

Shi, 2013, Langmuir, 29, 12818, 10.1021/la402473k

Carević, 2017, Mater. Res. Bull., 87, 140, 10.1016/j.materresbull.2016.11.037

Song, 2015, J. Solid State Chem., 232, 138, 10.1016/j.jssc.2015.09.025

Chen, 2016, Catal. Commun., 87, 1, 10.1016/j.catcom.2016.08.031

Shen, 2008, Int. J. Hydrogen Energy, 33, 4501, 10.1016/j.ijhydene.2008.05.043

Shen, 2009, Mater. Res. Bull., 44, 100, 10.1016/j.materresbull.2008.03.027

Bhirud, 2011, Int. J. Hydrogen Energy, 36, 11628, 10.1016/j.ijhydene.2011.06.061

Ding, 2013, Int. J. Hydrogen Energy, 38, 13153, 10.1016/j.ijhydene.2013.07.109

Zheng, 2009, Inorg. Chem., 48, 4003, 10.1021/ic802399f

Kudo, 2002, Chem. Lett., 882, 10.1246/cl.2002.882

Shang, 2013, J. Mater. Chem. A, 1, 4552, 10.1039/c3ta01685d

Chen, 2013, J. Mater. Chem. A, 1, 4316, 10.1039/c3ta01491f

Dal Santo, 2012, Catal. Today, 197, 190, 10.1016/j.cattod.2012.07.037

Kaur, 2017, ACS Sustainable Chem. Eng., 5, 4293, 10.1021/acssuschemeng.7b00325

Zhao, 2018, Chin. J. Catal., 39, 495, 10.1016/S1872-2067(17)62946-2

Chen, 2017, J. Mater. Chem. A, 5, 24116, 10.1039/C7TA07587A

Ikeue, 2009, Chem. Mater., 22, 743, 10.1021/cm9026013

Takayama, 2017, Chem. Lett., 46, 616, 10.1246/cl.161192

Kudo, 1999, Catal. Lett., 58, 241, 10.1023/A:1019067025917

Kale, 2011, J. Mater. Chem., 21, 2624, 10.1039/C0JM02890H

Chen, 2011, Science, 331, 746, 10.1126/science.1200448

Yi, 2010, Nat. Mater., 9, 559, 10.1038/nmat2780

Fujishima, 1972, Nature, 238, 37, 10.1038/238037a0

Lee, 2018, Int. J. Hydrogen Energy, 43, 748, 10.1016/j.ijhydene.2017.10.169

Yu, 2014, J. Am. Chem. Soc., 136, 9236-, 10.1021/ja502076b

Yuan, 2014, Energy Environ. Sci., 7, 3934, 10.1039/C4EE02914C

Zhang, 2013, Rep. Prog. Phys., 76, 046401, 10.1088/0034-4885/76/4/046401

Yan, 2009, J. Catal., 266, 165, 10.1016/j.jcat.2009.06.024

Shemesh, 2011, Angew. Chem., Int. Ed., 123, 1217, 10.1002/ange.201006407

Meng, 2013, J. Am. Chem. Soc., 135, 10286, 10.1021/ja404851s

Jia, 2011, J. Phys. Chem. C, 115, 11466, 10.1021/jp2023617

Kang, 2015, Nanoscale, 7, 4482, 10.1039/C4NR07303G

Raza, 2017, J. Am. Chem. Soc., 139, 14767, 10.1021/jacs.7b08619

Kudo, 2000, Chem. Commun., 1371, 10.1039/b003297m

Tsuji, 2003, J. Photochem. Photobiol., A, 156, 249, 10.1016/S1010-6030(02)00433-1

Zhang, 2011, J. Mater. Chem., 21, 14655, 10.1039/c1jm12596f

Arai, 2008, Chem. Mater., 20, 1997, 10.1021/cm071803p

Zhang, 2013, ACS Appl. Mater. Interfaces, 5, 1031, 10.1021/am302726y

Kuang, 2016, Small, 12, 6735, 10.1002/smll.201602870

Shen, 2008, J. Phys. Chem. C, 112, 16148, 10.1021/jp804525q

Jing, 2010, Catal. Lett., 140, 167, 10.1007/s10562-010-0442-9

Tian, 2014, Int. J. Hydrogen Energy, 39, 6335, 10.1016/j.ijhydene.2014.01.188

Shen, 2012, J. Phys. Chem. Solids, 73, 79, 10.1016/j.jpcs.2011.09.027

Shen, 2011, J. Power Sources, 196, 10112, 10.1016/j.jpowsour.2011.08.103

Bai, 2018, J. Photochem. Photobiol., A, 356, 355, 10.1016/j.jphotochem.2018.01.014

Hao, 2016, ACS Sustainable Chem. Eng., 5, 1165, 10.1021/acssuschemeng.6b02499

Ding, 2016, J. Mater. Chem. A, 4, 12630, 10.1039/C6TA04468A

Shi, 2018, Adv. Mater., 30, 1705941, 10.1002/adma.201705941

Ye, 2018, Appl. Catal., B, 233, 70, 10.1016/j.apcatb.2018.03.060

Yu, 2014, Adv. Mater., 26, 892, 10.1002/adma.201304173

Zhang, 2012, ACS Appl. Mater. Interfaces, 4, 593, 10.1021/am2017199

Zhang, 2014, ACS Catal., 4, 3724, 10.1021/cs500794j

Li, 2016, Nat. Commun., 7, 11480, 10.1038/ncomms11480

Lin, 2018, Appl. Catal., B, 220, 542, 10.1016/j.apcatb.2017.08.071

Chen, 2013, Int. J. Photoenergy, 2013, 5

Zhang, 2013, Phys. Chem. Chem. Phys., 15, 12088, 10.1039/c3cp50734c

Chen, 2014, Appl. Catal., B, 152–153, 68, 10.1016/j.apcatb.2014.01.022

Zhang, 2013, Int. J. Hydrogen Energy, 38, 11811, 10.1016/j.ijhydene.2013.06.115

Jing, 2007, Catal. Commun., 8, 795, 10.1016/j.catcom.2006.09.009

Akple, 2015, Appl. Surf. Sci., 358, 196, 10.1016/j.apsusc.2015.08.250

Zhao, 2016, Appl. Catal., B, 185, 242, 10.1016/j.apcatb.2015.12.023

Wei, 2014, Appl. Catal., B, 144, 521, 10.1016/j.apcatb.2013.07.064

Chen, 2014, Appl. Catal., B, 160–161, 614, 10.1016/j.apcatb.2014.05.028

Zhang, 2017, Radiat. Phys. Chem., 137, 104, 10.1016/j.radphyschem.2016.09.026

Swain, 2017, ACS Omega, 2, 3745, 10.1021/acsomega.7b00492

Liu, 2019, Appl. Catal., B, 241, 236, 10.1016/j.apcatb.2018.09.040

Zirak, 2015, Sol. Energy Mater. Sol. Cells, 141, 260, 10.1016/j.solmat.2015.05.051

Reddy, 2017, ChemSusChem, 10, 1563, 10.1002/cssc.201601799

Liu, 2018, Chem. Eng. J., 339, 117, 10.1016/j.cej.2018.01.124

Yang, 2017, ACS Appl. Mater. Interfaces, 9, 6950, 10.1021/acsami.6b09873

Chava, 2018, ACS Sustainable Chem. Eng., 6, 6445, 10.1021/acssuschemeng.8b00249

Zong, 2008, J. Am. Chem. Soc., 130, 7176, 10.1021/ja8007825

Tang, 2011, Angew. Chem., Int. Ed., 123, 10385, 10.1002/ange.201104412

Bai, 2018, ChemCatChem, 10, 2107, 10.1002/cctc.201701998

Guo, 2018, J. Alloys Compd., 749, 473, 10.1016/j.jallcom.2018.03.329

Xiao, 2018, Prog. Nat. Sci.: Mater. Int., 28, 189, 10.1016/j.pnsc.2018.02.003

Ho, 2004, Langmuir, 20, 5865, 10.1021/la049838g

Hou, 2013, Angew. Chem., Int. Ed., 52, 3621, 10.1002/anie.201210294

Yang, 2009, J. Solid State Chem., 182, 807, 10.1016/j.jssc.2008.12.018

Wang, 2016, J. Photochem. Photobiol., A, 325, 55, 10.1016/j.jphotochem.2016.04.008

Zhou, 2013, Small, 9, 140, 10.1002/smll.201201161

Frame, 2010, J. Phys. Chem. C, 114, 10628, 10.1021/jp101308e

Liao, 2014, J. Phys. Chem. C, 118, 17594, 10.1021/jp5038014

Ma, 2017, Dalton Trans., 46, 3877, 10.1039/C6DT04916H

He, 2016, Ind. Eng. Chem. Res., 55, 8327, 10.1021/acs.iecr.6b01511

Zong, 2011, J. Phys. Chem. C, 115, 12202, 10.1021/jp2006777

Chen, 2015, Angew. Chem., Int. Ed., 54, 1210, 10.1002/anie.201410172

Sun, 2016, J. Mater. Chem. A, 4, 1598, 10.1039/C5TA07561K

Zhen, 2018, Appl. Catal., B, 221, 243, 10.1016/j.apcatb.2017.09.024

Qin, 2016, ACS Appl. Mater. Interfaces, 8, 1264, 10.1021/acsami.5b09943

Zhang, 2018, Appl. Catal., B, 224, 1000, 10.1016/j.apcatb.2017.11.043

Peng, 2017, Phys. Chem. Chem. Phys., 19, 25919, 10.1039/C7CP05147F

Wang, 2017, Catal. Sci. Technol., 7, 2524, 10.1039/C7CY00476A

Hou, 2012, RSC Adv., 2, 10330, 10.1039/c2ra21641h

Zou, 2015, ACS Appl. Mater. Interfaces, 7, 28429, 10.1021/acsami.5b09255

Park, 2017, Chem. Commun., 53, 3277, 10.1039/C7CC00071E

Nguyen, 2018, ACS Appl. Mater. Interfaces, 10, 30035-, 10.1021/acsami.8b10010

Liu, 2018, Appl. Catal., B, 221, 433, 10.1016/j.apcatb.2017.09.043

Wang, 2018, J. Am. Chem. Soc., 140, 15145, 10.1021/jacs.8b07721

Qin, 2016, J. Phys. Chem. C, 120, 14581, 10.1021/acs.jpcc.6b05230

Yuan, 2013, Int. J. Hydrogen Energy, 38, 7218, 10.1016/j.ijhydene.2013.03.169

Tabata, 2010, J. Phys. Chem. C, 114, 11215, 10.1021/jp103158f

Wang, 2013, Int. J. Hydrogen Energy, 38, 10739, 10.1016/j.ijhydene.2013.02.131

Wang, 2014, Int. J. Hydrogen Energy, 39, 13421, 10.1016/j.ijhydene.2014.04.020

Yu, 2014, Int. J. Hydrogen Energy, 39, 15387, 10.1016/j.ijhydene.2014.07.165

Qiu, 2017, Angew. Chem., Int. Ed., 129, 2728, 10.1002/ange.201612551

Prakash, 2018, Sol. Energy Mater. Sol. Cells, 180, 205, 10.1016/j.solmat.2018.03.011

Tsuji, 2006, Chem. Mater., 18, 1969, 10.1021/cm0527017

Chandra, 2018, Inorg. Chem., 57, 4524, 10.1021/acs.inorgchem.8b00283

Sandroni, 2018, Energy Environ. Sci., 11, 1752, 10.1039/C8EE00120K

Kang, 2017, Adv. Powder Technol., 28, 2438, 10.1016/j.apt.2017.07.001

Katsumata, 2015, Ind. Eng. Chem. Res., 54, 3532, 10.1021/acs.iecr.5b00451

Du, 2016, ACS Appl. Mater. Interfaces, 8, 4023, 10.1021/acsami.5b11377

Nguyen, 2013, Nanoscale, 5, 1479, 10.1039/c2nr34037b

Tsuji, 2005, J. Phys. Chem. B, 109, 7323, 10.1021/jp044722e

Li, 2010, Int. J. Hydrogen Energy, 35, 7116, 10.1016/j.ijhydene.2010.02.017

Wei, 2013, Beilstein J. Nanotechnol., 4, 949, 10.3762/bjnano.4.107

Mei, 2013, Dalton Trans., 42, 2687, 10.1039/c2dt32271d

Li, 2017, Dalton Trans., 46, 10620, 10.1039/C7DT00819H

Bernardi, 2013, Nano Lett., 13, 3664, 10.1021/nl401544y

Guo, 2014, Int. J. Hydrogen Energy, 39, 16832, 10.1016/j.ijhydene.2014.08.088

Ye, 2014, ACS Appl. Mater. Interfaces, 6, 3483, 10.1021/am5004415

Xia, 2017, Appl. Catal., B, 206, 344, 10.1016/j.apcatb.2017.01.060

Mahadadalkar, 2016, RSC Adv., 6, 34724, 10.1039/C6RA02002J

Zhou, 2013, Chem. Commun., 49, 2237, 10.1039/c3cc38999e

Ye, 2014, Appl. Catal., B, 160, 552, 10.1016/j.apcatb.2014.06.012

Kale, 2015, Phys. Chem. Chem. Phys., 17, 31850, 10.1039/C5CP05546F

Zhang, 2012, Nano Lett., 12, 4584, 10.1021/nl301831h

Chai, 2012, Dalton Trans., 41, 1179, 10.1039/C1DT11308A

Xia, 2017, Appl. Surf. Sci., 391, 565, 10.1016/j.apsusc.2016.06.062

Zhang, 2013, ACS Appl. Mater. Interfaces, 5, 10317, 10.1021/am403327g

Jiang, 2015, ACS Appl. Mater. Interfaces, 7, 19234, 10.1021/acsami.5b05118

Shen, 2018, ACS Appl. Energy Mater., 1, 2232, 10.1021/acsaem.8b00311

Wang, 2017, Appl. Catal., B, 204, 577, 10.1016/j.apcatb.2016.12.008

Hu, 2016, ACS Sustainable Chem. Eng., 4, 2269, 10.1021/acssuschemeng.5b01742

Xiang, 2012, J. Am. Chem. Soc., 134, 6575, 10.1021/ja302846n

Lu, 2018, Nano Energy, 47, 8, 10.1016/j.nanoen.2018.02.021

Chang, 2018, Int. J. Hydrogen Energy, 10.1016/j.ijhydene.2018.04.229

Yuan, 2016, Appl. Catal., B, 188, 13, 10.1016/j.apcatb.2016.01.061

Liu, 2014, Chem. Commun., 50, 11004, 10.1039/C4CC04653F

Gogoi, 2018, ACS Sustainable Chem. Eng., 6, 6718, 10.1021/acssuschemeng.8b00512

Zhang, 2018, J. Colloid Interface Sci., 526, 374, 10.1016/j.jcis.2018.05.003

Xiang, 2016, ChemSusChem, 9, 996, 10.1002/cssc.201501702

Ha, 2017, Sci. Rep., 7, 39411, 10.1038/srep39411

Zhu, 2017, Renewable Energy, 113, 1503, 10.1016/j.renene.2017.06.042

Zhang, 2014, Adv. Energy Mater., 4, 1301925, 10.1002/aenm.201301925

Yao, 2018, Bioresour. Technol., 256, 208, 10.1016/j.biortech.2018.02.027

Wang, 2018, Appl. Surf. Sci., 448, 539, 10.1016/j.apsusc.2018.04.153

Yang, 2014, ACS Appl. Mater. Interfaces, 6, 9078, 10.1021/am5020953

Tian, 2015, Int. J. Hydrogen Energy, 40, 2141, 10.1016/j.ijhydene.2014.12.025

Zhang, 2011, Nano Lett., 11, 4774, 10.1021/nl202587b

Bai, 2011, Mater. Res. Bull., 46, 1028, 10.1016/j.materresbull.2011.03.012

Ding, 2014, J. Phys. Chem. C, 118, 27690, 10.1021/jp508497a

Yu, 2013, Int. J. Hydrogen Energy, 38, 1278, 10.1016/j.ijhydene.2012.11.020

Fang, 2015, ACS Appl. Mater. Interfaces, 7, 13915, 10.1021/acsami.5b02641

Feng, 2017, J. Mater. Chem. A, 5, 1387, 10.1039/C6TA09633F

Hao, 2018, Appl. Catal., B, 221, 302, 10.1016/j.apcatb.2017.09.006

Zhang, 2018, Appl. Catal., B, 229, 227, 10.1016/j.apcatb.2018.02.025

Zhang, 2017, ACS Appl. Mater. Interfaces, 9, 23635, 10.1021/acsami.7b03673

Bao, 2007, J. Phys. Chem. C, 111, 17527, 10.1021/jp076566s

Wang, 2018, Appl. Catal., B, 236, 233, 10.1016/j.apcatb.2018.05.005

Jiang, 2017, ACS Sustainable Chem. Eng., 6, 854, 10.1021/acssuschemeng.7b03201

Xing, 2006, Int. J. Hydrogen Energy, 31, 2018, 10.1016/j.ijhydene.2006.02.003

Chen, 2012, Appl. Catal., A, 443, 138, 10.1016/j.apcata.2012.07.033

Tian, 2015, Mater. Res. Bull., 70, 645, 10.1016/j.materresbull.2015.05.033

Kim, 2014, Science, 1245026

Park, 2006, Nano Lett., 6, 24, 10.1021/nl051807y

Tilley, 2010, Angew. Chem., Int. Ed., 122, 6549, 10.1002/ange.201003110

Swierk, 2013, Chem. Soc. Rev., 42, 2357, 10.1039/C2CS35246J

Ai, 2015, Adv. Funct. Mater., 25, 5706, 10.1002/adfm.201502461

Pareek, 2016, J. Phys.: Conf. Ser., 755, 012006

Zhang, 2015, J. Mater. Chem. A, 3, 12769, 10.1039/C5TA01948F

Zhang, 2015, J. Phys. Chem. C, 119, 27875, 10.1021/acs.jpcc.5b07533

Zeng, 2014, Nano Energy, 9, 152, 10.1016/j.nanoen.2014.06.023

Pawar, 1984, Mater. Chem. Phys., 11, 401, 10.1016/0254-0584(84)90064-6

Jin-nouchi, 2010, ChemPhysChem, 11, 3592, 10.1002/cphc.201000593

Trevisan, 2012, J. Phys. Chem. Lett., 4, 141, 10.1021/jz301890m

Wu, 2015, J. Alloys Compd., 633, 83, 10.1016/j.jallcom.2015.02.023

Patel, 2014, RSC Adv., 4, 39343, 10.1039/C4RA06219A

Antunez, 2014, Chem. Mater., 26, 5444, 10.1021/cm503124u

Vequizo, 2016, Appl. Phys. Express, 9, 067101, 10.7567/APEX.9.067101

Gao, 2016, J. Alloys Compd., 688, 668, 10.1016/j.jallcom.2016.07.083

Kabouche, 2017, Appl. Phys. A: Mater. Sci. Process., 123, 545, 10.1007/s00339-017-1155-3

Jing, 2017, J. Alloys Compd., 726, 720, 10.1016/j.jallcom.2017.07.303

Wei, 2018, Adv. Sci., 5, 1700362, 10.1002/advs.201700362

Patel, 2017, J. Phys. Chem. Lett., 8, 6099, 10.1021/acs.jpclett.7b02998

Zhang, 2016, ACS Appl. Mater. Interfaces, 8, 9684, 10.1021/acsami.6b00429

Guo, 2015, J. Power Sources, 285, 185, 10.1016/j.jpowsour.2015.03.112

Luo, 2015, Nano Lett., 15, 1395, 10.1021/nl504746b

Yu, 2014, ACS Appl. Mater. Interfaces, 6, 8467, 10.1021/am501336u

Bo, 2015, J. Nanopart. Res., 17, 295, 10.1007/s11051-015-3098-y

Hou, 2011, Nat. Mater., 10, 434, 10.1038/nmat3008

Sun, 2008, J. Am. Chem. Soc., 130, 1124, 10.1021/ja0777741

Chi, 2008, Nanotechnology, 19, 125704, 10.1088/0957-4484/19/12/125704

Yamada, 2005, J. Electroanal. Chem., 585, 105, 10.1016/j.jelechem.2005.07.025

Wang, 2010, Nano Lett., 10, 1088, 10.1021/nl100250z

Cao, 2016, Nano Energy, 24, 25, 10.1016/j.nanoen.2016.04.001

Chen, 2011, J. Phys. Chem. C, 115, 21971, 10.1021/jp204291b

Moriya, 2013, J. Am. Chem. Soc., 135, 3733, 10.1021/ja312653y

Wang, 2013, ACS Appl. Mater. Interfaces, 5, 4021, 10.1021/am400851q

Zhang, 2015, J. Mater. Chem. A, 3, 535, 10.1039/C4TA04951A

Zhang, 2016, Sci. Rep., 6, 27241, 10.1038/srep27241

Robel, 2005, Adv. Mater., 17, 2458, 10.1002/adma.200500418

Tachibana, 2009, J. Phys. Chem. C, 113, 6852, 10.1021/jp809042z

Navarro, 2008, Int. J. Hydrogen Energy, 33, 4265, 10.1016/j.ijhydene.2008.05.048

Hetrick, 1971, J. Appl. Phys., 42, 2882, 10.1063/1.1660644

Peter, 2002, Chem. Commun., 1030, 10.1039/b201661c

Chen, 2011, J. Mater. Chem., 21, 16430, 10.1039/c1jm13616j

Vaddipalli, 2016, ACS Appl. Mater. Interfaces, 8, 23049, 10.1021/acsami.6b06851

Pareek, 2013, Int. J. Hydrogen Energy, 38, 36, 10.1016/j.ijhydene.2012.10.057

Chi, 2009, Nanotechnology, 21, 025202, 10.1088/0957-4484/21/2/025202

Ni, 2007, Renewable Sustainable Energy Rev., 11, 401, 10.1016/j.rser.2005.01.009

Vogel, 1994, J. Phys. Chem., 98, 3183, 10.1021/j100063a022

Baker, 2009, Adv. Funct. Mater., 19, 805, 10.1002/adfm.200801173

Chen, 2014, Nanoscale Res. Lett., 9, 605, 10.1186/1556-276X-9-605

Yu, 2015, Langmuir, 31, 10555, 10.1021/acs.langmuir.5b02490

Kurnia, 2016, Sol. Energy Mater. Sol. Cells, 153, 179, 10.1016/j.solmat.2016.04.021

Meng, 2013, Phys. Chem. Chem. Phys., 15, 9531, 10.1039/c3cp50330e

Hong, 2012, Nanoscale, 4, 2859, 10.1039/c2nr30150d

Kurnia, 2016, Cryst. Growth Des., 16, 2461, 10.1021/acs.cgd.5b01590

Huang, 2009, Mater. Chem. Phys., 117, 156, 10.1016/j.matchemphys.2009.05.026

Maity, 2004, Nanotechnology, 15, 812, 10.1088/0957-4484/15/7/017

Liu, 2013, Microelectron. Eng., 103, 12, 10.1016/j.mee.2012.09.006

Zhou, 2015, Phys. Chem. Chem. Phys., 17, 1870, 10.1039/C4CP03736G

Liu, 2015, Nano Res., 8, 2891, 10.1007/s12274-015-0794-y

Prasert, 2014, Adv. Energy Mater., 4, 1400496, 10.1002/aenm.201400496

Noguchi, 1994, Sol. Energy Mater. Sol. Cells, 35, 325, 10.1016/0927-0248(94)90158-9

Lu, 2009, Adv. Mater. Res., 60–61, 11, 10.4028/www.scientific.net/AMR.60-61.11

Devika, 2006, J. Electrochem. Soc., 153, G727, 10.1149/1.2204870

Akkari, 2012, J. Mater. Sci., 47, 1365, 10.1007/s10853-011-5912-y

Sunil, 2014, Chin. Phys. Lett., 31, 106102, 10.1088/0256-307X/31/10/106102

Seal, 2015, J. Phys. Chem. C, 119, 6471, 10.1021/jp512927y

Ren, 2018, Opt. Commun., 406, 118, 10.1016/j.optcom.2017.07.033

Yuzhu, 2017, Nanotechnology, 28, 415202, 10.1088/1361-6528/aa8686

Liu, 2013, J. Phys. Chem. C, 117, 12949, 10.1021/jp4009652

Jiang, 2015, J. Mater. Chem. A, 3, 18406, 10.1039/C5TA04258E

Liu, 2017, ACS Appl. Mater. Interfaces, 9, 18369, 10.1021/acsami.7b04310

Wang, 2017, ACS Appl. Mater. Interfaces, 9, 40235, 10.1021/acsami.7b11510

Liu, 2016, Int. J. Hydrogen Energy, 41, 5878, 10.1016/j.ijhydene.2016.01.171

Liu, 2016, Sci. Rep., 6, 23451, 10.1038/srep23451

Wan, 2016, CrystEngComm, 18, 1577, 10.1039/C5CE02252E

Ennaoui, 1993, Sol. Energy Mater. Sol. Cells, 29, 289, 10.1016/0927-0248(93)90095-K

Barawi, 2016, J. Phys. Chem. C, 120, 9547, 10.1021/acs.jpcc.5b11482

Kmentova, 2018, Catal. Today, 313, 224, 10.1016/j.cattod.2017.11.004

Kuo, 2018, Green Chem., 20, 1640, 10.1039/C7GC03173D

Ehsan, 2013, Dalton Trans., 42, 10919, 10.1039/c3dt50781e

Li, 2018, Nano-Micro Lett., 10, 45, 10.1007/s40820-018-0199-z

Li, 2012, Int. J. Hydrogen Energy, 37, 15029, 10.1016/j.ijhydene.2012.07.117

Lin, 2017, Electrochim. Acta, 252, 235, 10.1016/j.electacta.2017.09.007

Wang, 2017, Nano Res., 10, 2699, 10.1007/s12274-017-1473-y

Cheng, 2011, Sol. Energy Mater. Sol. Cells, 95, 1859, 10.1016/j.solmat.2011.02.008

Cheng, 2016, J. Power Sources, 317, 81, 10.1016/j.jpowsour.2016.03.086

Guo, 2016, RSC Adv., 6, 104041, 10.1039/C6RA22674D

Liu, 2015, ACS Appl. Mater. Interfaces, 7, 10763, 10.1021/acsami.5b00830

Li, 2010, J. Mater. Chem., 20, 3656, 10.1039/b927279h

Li, 2011, J. Mater. Chem., 21, 5089, 10.1039/c0jm04276e

Li, 2008, Int. J. Hydrogen Energy, 33, 2891, 10.1016/j.ijhydene.2008.04.008

David, 2018, Electrochim. Acta, 276, 223, 10.1016/j.electacta.2018.04.110

Yuan, 2014, J. Mater. Chem. A, 2, 14401, 10.1039/C4TA02670E

Pawar, 2016, Solid State Sci., 61, 89, 10.1016/j.solidstatesciences.2016.09.011

DeAngelis, 2016, ACS Appl. Mater. Interfaces, 8, 8445, 10.1021/acsami.5b12178

Flores, 2018, ACS Appl. Energy Mater., 1, 2333, 10.1021/acsaem.8b00449

Pathak, 2018, J. Phys. Chem. C, 122, 13659, 10.1021/acs.jpcc.8b00120

Paracchino, 2012, Energy Environ. Sci., 5, 8673, 10.1039/c2ee22063f

Zhang, 2012, J. Mater. Chem., 22, 2456, 10.1039/C1JM14478B

Oh, 2011, Energy Environ. Sci., 4, 1690, 10.1039/c1ee01124c

Paracchino, 2011, Nat. Mater., 10, 456, 10.1038/nmat3017

Brillet, 2012, Nat. Photonics, 6, 824, 10.1038/nphoton.2012.265

Verlage, 2015, Energy Environ. Sci., 8, 3166, 10.1039/C5EE01786F

Hu, 2013, Energy Environ. Sci., 6, 2984, 10.1039/c3ee40453f

Urbain, 2016, Energy Environ. Sci., 9, 145, 10.1039/C5EE02393A

Wang, 2013, Proc. Natl. Acad. Sci. U. S. A., 110, 19701, 10.1073/pnas.1316792110

Fontana, 2013, Sci. Rep., 3, 1634, 10.1038/srep01634

Phong, 2012, Chem. – Eur. J., 18, 13994, 10.1002/chem.201202214

Ding, 2014, J. Am. Chem. Soc., 136, 8504, 10.1021/ja5025673

Mensur, 2018, Adv. Sustainable Syst., 2, 1700142, 10.1002/adsu.201700142

Fan, 2017, ACS Appl. Mater. Interfaces, 9, 6123, 10.1021/acsami.6b15854

Qingwei, 2018, Nanotechnology, 29, 105402, 10.1088/1361-6528/aaa48c

Tan, 2018, ACS Appl. Mater. Interfaces, 10, 10898, 10.1021/acsami.8b00305

Chen, 2015, ACS Nano, 9, 3829, 10.1021/nn506819m

Xu, 2013, Chem. Commun., 49, 9803, 10.1039/c3cc46342g

Deshmukh, 1994, J. Phys. D: Appl. Phys., 27, 1786, 10.1088/0022-3727/27/8/031

Pareek, 2014, Int. J. Hydrogen Energy, 39, 4170, 10.1016/j.ijhydene.2013.12.185

Wang, 2013, Nanoscale, 5, 1876, 10.1039/c2nr33755j

Song, 2017, Nanoscale, 9, 6296, 10.1039/C7NR01170A

Huo, 2011, Appl. Catal., B, 106, 69

Jiang, 2015, J. Am. Chem. Soc., 137, 13691, 10.1021/jacs.5b09015

Simon, 2016, ACS Energy Lett., 1, 1137, 10.1021/acsenergylett.6b00468

Zhou, 2018, ACS Energy Lett., 3, 177, 10.1021/acsenergylett.7b01062

Yu, 2018, ACS Energy Lett., 3, 760, 10.1021/acsenergylett.7b01326

Septina, 2017, Chem. Mater., 29, 1735, 10.1021/acs.chemmater.6b05248

Yokoyama, 2010, Electrochem. Commun., 12, 851, 10.1016/j.elecom.2010.04.004

Zhang, 2015, Chem. Sci., 6, 894, 10.1039/C4SC02346C

Yang, 2016, ACS Energy Lett., 1, 1127, 10.1021/acsenergylett.6b00453

Mukherjee, 2017, Mater. Res., 20, 430, 10.1590/1980-5373-mr-2016-0628

Martin, 1970, Phys. Rev. B: Solid State, 1, 4005, 10.1103/PhysRevB.1.4005

Fang, 2010, Adv. Funct. Mater., 20, 500, 10.1002/adfm.200901878

Fathy, 2005, Sol. Energy Mater. Sol. Cells, 87, 747, 10.1016/j.solmat.2004.07.048

Macdonald, 2015, J. Mater. Chem. A, 3, 13324, 10.1039/C5TA01821H

Macdonald, 2016, J. Mater. Chem. C, 4, 3379, 10.1039/C5TC03833B

Chae, 2016, J. Am. Chem. Soc., 138, 15673, 10.1021/jacs.6b09595

Goto, 2017, J. Mater. Chem. A, 5, 21242, 10.1039/C7TA06663E

Subramanian, 2001, Mater. Chem. Phys., 71, 40, 10.1016/S0254-0584(00)00526-5

Tanuševski, 2003, Sol. Energy Mater. Sol. Cells, 80, 297, 10.1016/j.solmat.2003.06.002

Sato, 2005, Sol. Energy Mater. Sol. Cells, 85, 153, 10.1016/j.solmat.2004.04.014

Xu, 2018, Nano Energy, 48, 337, 10.1016/j.nanoen.2018.03.078

Dhaygude, 2017, Ionics, 23, 223, 10.1007/s11581-016-1797-8

Huang, 2015, J. Mater. Chem. A, 3, 15824, 10.1039/C5TA03594E

Krunks, 1999, Thin Solid Films, 338, 125, 10.1016/S0040-6090(98)01069-4

Yuan, 2014, Vacuum, 99, 196, 10.1016/j.vacuum.2013.06.005

Zhao, 2014, Angew. Chem., Int. Ed., 53, 11808, 10.1002/anie.201406483

Yang, 2013, J. Mater. Chem. A, 1, 6407

Kaga, 2014, J. Catal., 310, 31, 10.1016/j.jcat.2013.08.025

Iwase, 2015, J. Mater. Chem. A, 3, 8566, 10.1039/C5TA01237F

Quintans, 2015, J. Mater. Chem. A, 3, 14239, 10.1039/C5TA02114F

Li, 2018, Mater. Lett., 210, 70, 10.1016/j.matlet.2017.08.128

Mathews, 2013, J. Mater. Sci.: Mater. Electron., 24, 4060

Wang, 2016, J. Alloys Compd., 688, 923, 10.1016/j.jallcom.2016.07.012

Kato, 2015, J. Phys. Chem. Lett., 6, 1042, 10.1021/acs.jpclett.5b00137

Zheng, 2016, Sci. Adv., 2, e1501602, 10.1126/sciadv.1501602

Ivanovskaya, 2012, Langmuir, 29, 480, 10.1021/la3032489

Jiang, 2016, Catal. Sci. Technol., 6, 1077, 10.1039/C5CY01111F

Jiao, 2015, Chem. Soc. Rev., 44, 2060, 10.1039/C4CS00470A

Züttel, 2003, Mater. Today, 6, 24, 10.1016/S1369-7021(03)00922-2

van de Krol, 2008, J. Mater. Chem., 18, 2311, 10.1039/b718969a

Gao, 2015, Nat. Commun., 6, 7493, 10.1038/ncomms8493

Morales-Guio, 2014, Chem. Soc. Rev., 43, 6555, 10.1039/C3CS60468C

Lee, 2018, NPG Asia Mater., 10, 441, 10.1038/s41427-018-0037-2

Di Giovanni, 2014, ACS Catal., 4, 681, 10.1021/cs4011698

Shi, 2015, J. Am. Chem. Soc., 137, 7365, 10.1021/jacs.5b01732

Cui, 2017, Small, 13, 1602235, 10.1002/smll.201602235

Chen, 2011, Nano Lett., 11, 4168, 10.1021/nl2020476

Zhu, 2016, Chem. Commun., 52, 1486, 10.1039/C5CC08064A

Chen, 2015, Nano Energy, 11, 11, 10.1016/j.nanoen.2014.09.022

Miao, 2015, Sci. Adv., 1, e1500259, 10.1126/sciadv.1500259

Wang, 2016, ACS Nano, 10, 2342, 10.1021/acsnano.5b07126

Staszak-Jirkovský, 2016, Nat. Mater., 15, 197, 10.1038/nmat4481

Jang, 2007, Int. J. Hydrogen Energy, 32, 4786, 10.1016/j.ijhydene.2007.06.026

Wang, 2009, Nat. Mater., 8, 76, 10.1038/nmat2317

Chen, 2010, Chem. Rev., 110, 6503, 10.1021/cr1001645

Xie, 2014, Energy Environ. Sci., 7, 1895, 10.1039/c3ee43750g

Han, 2017, Appl. Catal., B, 202, 298, 10.1016/j.apcatb.2016.09.023

Jang, 2006, Chem. Phys. Lett., 425, 278, 10.1016/j.cplett.2006.05.031

Su, 2017, Sol. Energy, 147, 240, 10.1016/j.solener.2017.03.037

Ding, 2016, J. Appl. Phys., 119, 205704, 10.1063/1.4952377

Simon, 2014, Nat. Mater., 13, 1013, 10.1038/nmat4049

Brahimi, 2007, Catal. Today, 122, 62, 10.1016/j.cattod.2007.01.030

Liang, 2017, Appl. Catal., B, 218, 452, 10.1016/j.apcatb.2017.06.075

Kapinus, 2006, Theor. Exp. Chem., 42, 282, 10.1007/s11237-006-0054-z

Seger, 2012, Angew. Chem., Int. Ed., 51, 9128, 10.1002/anie.201203585

Benck, 2014, Adv. Energy Mater., 4, 1400739, 10.1002/aenm.201400739

Morales-Guio, 2014, Nat. Commun., 5, 3059, 10.1038/ncomms4059

Kumagai, 2015, J. Mater. Chem. A, 3, 8300, 10.1039/C5TA01058F

Yang, 2002, J. Mater. Chem., 12, 1459, 10.1039/b105796k

Fukuzumi, 2017, ChemSusChem, 10, 4264, 10.1002/cssc.201701381

Turner, 2004, Science, 305, 972, 10.1126/science.1103197

Dionigi, 2016, ChemSusChem, 9, 962, 10.1002/cssc.201501581

Hsu, 2018, Adv. Mater., 30, 1707261, 10.1002/adma.201707261

Luo, 2011, Energy Environ. Sci., 4, 4046, 10.1039/c1ee01812d

Cheng, 2017, J. Taiwan Inst. Chem. Eng., 75, 209, 10.1016/j.jtice.2017.04.008

Li, 2011, Int. J. Hydrogen Energy, 36, 4291, 10.1016/j.ijhydene.2011.01.038

Jiang, 2014, J. Mater. Chem. A, 2, 19407, 10.1039/C4TA04339A

Debe, 2012, Nature, 486, 43, 10.1038/nature11115

Cheng, 2011, Nat. Chem., 3, 79, 10.1038/nchem.931

Chandrasekaran, 2016, J. Mater. Chem. A, 4, 13271, 10.1039/C6TA05043C

Khandelwal, 2018, J. Power Sources, 407, 70, 10.1016/j.jpowsour.2018.10.055

Chen, 2011, Energy Environ. Sci., 4, 3167, 10.1039/c0ee00558d

Qu, 2010, ACS Nano, 4, 1321, 10.1021/nn901850u

Li, 2013, Nat. Commun., 4, 1805, 10.1038/ncomms2812

McCloskey, 2011, J. Am. Chem. Soc., 133, 18038, 10.1021/ja207229n

Sadakane, 1998, Chem. Rev., 98, 219, 10.1021/cr960403a

Bianchini, 2009, Chem. Rev., 109, 4183, 10.1021/cr9000995

Shao, 2006, J. Am. Chem. Soc., 128, 3526, 10.1021/ja060167d

Stamenkovic, 2007, Nat. Mater., 6, 241, 10.1038/nmat1840

Cui, 2013, Nat. Mater., 12, 765, 10.1038/nmat3668

Greeley, 2009, Nat. Chem., 1, 552, 10.1038/nchem.367

Gorlin, 2010, J. Am. Chem. Soc., 132, 13612, 10.1021/ja104587v

Amiinu, 2017, Adv. Funct. Mater., 27, 1702300, 10.1002/adfm.201702300

Liu, 2016, Adv. Mater., 28, 3000, 10.1002/adma.201506112

Liu, 2016, Adv. Energy Mater., 6, 3000, 10.1002/adma.201506112

Chua, 2016, ACS Catal., 6, 5724, 10.1021/acscatal.6b01593

Pesci, 2017, ACS Catal., 7, 4990, 10.1021/acscatal.7b01517

Wu, 2013, Acc. Chem. Res., 46, 1878, 10.1021/ar400011z

Li, 2016, J. Power Sources, 307, 1, 10.1016/j.jpowsour.2015.12.115

Rohrbach, 2003, J. Phys.: Condens. Matter, 15, 979

Knipe, 1995, Geochim. Cosmochim. Acta, 59, 1079, 10.1016/0016-7037(95)00025-U

Dou, 2016, Energy Environ. Sci., 9, 1320, 10.1039/C6EE00054A

Shen, 2015, ACS Appl. Mater. Interfaces, 7, 1207, 10.1021/am507033x

Liu, 2013, ACS Appl. Mater. Interfaces, 5, 5002, 10.1021/am4007897

Cao, 2016, Electrochim. Acta, 191, 776, 10.1016/j.electacta.2016.01.137

Shen, 2015, Adv. Energy Mater., 5, 1400977, 10.1002/aenm.201400977

Kuang, 2016, Small, 12, 5656, 10.1002/smll.201600977

Lee, 2016, J. Mater. Chem. A, 4, 7107, 10.1039/C6TA00173D

Mamtani, 2018, Appl. Catal., B, 220, 88, 10.1016/j.apcatb.2017.07.086

Hong, 2019, Carbon, 145, 53, 10.1016/j.carbon.2019.01.002

Zhao, 2019, J. Mater. Chem. A, 7, 7389, 10.1039/C8TA12116H

Yang, 2018, Adv. Energy Mater., 8, 1801839, 10.1002/aenm.201801839

Sumboja, 2019, ChemCatChem, 11, 1205, 10.1002/cctc.201802013

Fu, 2018, Adv. Energy Mater., 8, 1802263, 10.1002/aenm.201802263

Jiang, 2017, Green Chem., 19, 3023, 10.1039/C7GC01012E

Wu, 2017, New J. Chem., 41, 115, 10.1039/C6NJ02184K

Tingting, 2016, Electrochim. Acta, 211, 59, 10.1016/j.electacta.2016.06.028

Mercier, 1997, Adv. Mater., 9, 500, 10.1002/adma.19970090611

Law, 2017, Science, 356, 148, 10.1126/science.aam6274

Manos, 2008, Proc. Natl. Acad. Sci. U. S. A., 105, 3696, 10.1073/pnas.0711528105

Basu, 2010, Environ. Sci. Technol., 44, 6313, 10.1021/es101323w

Apte, 2011, J. Mater. Chem., 21, 19241, 10.1039/c1jm14067a

Li, 2012, Appl. Catal., B, 123, 174, 10.1016/j.apcatb.2012.04.009

Rajendran, 2018, Appl. Nanosci., 8, 61, 10.1007/s13204-018-0652-9

Wu, 2018, Powder Technol., 329, 217, 10.1016/j.powtec.2018.01.046

Dashairya, 2018, J. Alloys Compd., 735, 234, 10.1016/j.jallcom.2017.11.063

Shamraiz, 2016, J. Photochem. Photobiol., B, 159, 33, 10.1016/j.jphotobiol.2016.03.013

Cheriyan, 2018, Superlattices Microstruct., 116, 238, 10.1016/j.spmi.2018.02.032

Wu, 2018, Nano Energy, 46, 372, 10.1016/j.nanoen.2018.02.010

Hu, 2018, ACS Sustainable Chem. Eng., 6, 2676, 10.1021/acssuschemeng.7b04270

Dutta, 2017, ACS Sustainable Chem. Eng., 6, 835, 10.1021/acssuschemeng.7b03186

Bhar, 2013, J. Colloid Interface Sci., 393, 286, 10.1016/j.jcis.2012.10.049

Pourahmad, 2009, J. Alloys Compd., 484, 314, 10.1016/j.jallcom.2009.04.089

Luo, 2012, ACS Appl. Mater. Interfaces, 4, 1813, 10.1021/am3000903

Mondal, 2014, Langmuir, 30, 4157, 10.1021/la500509c

Windle, 2012, Coord. Chem. Rev., 256, 2562, 10.1016/j.ccr.2012.03.010

Morris, 2009, Acc. Chem. Res., 42, 1983, 10.1021/ar9001679

Varghese, 2009, Nano Lett., 9, 731, 10.1021/nl803258p

Jin, 2013, J. Phys. Chem. C, 117, 23848, 10.1021/jp4085525

Chong, 2018, J. Catal., 363, 92, 10.1016/j.jcat.2018.04.020

Xiong, 2017, J. CO2 Util., 18, 53, 10.1016/j.jcou.2017.01.013

Jiao, 2017, J. Am. Chem. Soc., 139, 18044, 10.1021/jacs.7b10287

Wang, 2017, J. Am. Chem. Soc., 139, 17305, 10.1021/jacs.7b10733

Dai, 2017, Appl. Surf. Sci., 403, 230, 10.1016/j.apsusc.2017.01.171

Meng, 2018, Appl. Catal., B, 237, 68, 10.1016/j.apcatb.2018.05.066

Zhao, 2018, Appl. Catal., B, 226, 252, 10.1016/j.apcatb.2017.12.054

Chen, 2017, Mater. Lett., 198, 1, 10.1016/j.matlet.2017.03.164

Jiao, 2017, J. Am. Chem. Soc., 139, 7586, 10.1021/jacs.7b02290

Merki, 2011, Energy Environ. Sci., 4, 3878, 10.1039/c1ee01970h

Feng, 2015, ACS Appl. Mater. Interfaces, 7, 980, 10.1021/am507811a