Hisatomi, 2014, Chem. Soc. Rev., 43, 7520, 10.1039/C3CS60378D
Clavero, 2014, Nat. Photonics, 8, 95, 10.1038/nphoton.2013.238
Zou, 2001, Nature, 414, 625, 10.1038/414625a
Chandrasekaran, 2018, J. Mater. Chem. A, 6, 11078, 10.1039/C8TA03669A
Grätzel, 2001, Nature, 414, 338, 10.1038/35104607
Heller, 1981, Acc. Chem. Res., 14, 154, 10.1021/ar00065a004
Kudo, 2009, Chem. Soc. Rev., 38, 253, 10.1039/B800489G
Inoue, 2009, Energy Environ. Sci., 2, 364, 10.1039/b816677n
Ahmed, 2016, Inorg. Chem. Front., 3, 578, 10.1039/C5QI00202H
Menezes, 2019, Energy Environ. Sci., 12, 988, 10.1039/C8EE01669K
Navalon, 2013, ChemSusChem, 6, 562, 10.1002/cssc.201200670
Zhang, 2013, Catal. Sci. Technol., 3, 1672, 10.1039/c3cy00018d
Cheng, 2018, Energy Environ. Sci., 11, 1362, 10.1039/C7EE03640J
Voiry, 2018, Nat. Rev. Chem., 1, 0105, 10.1038/s41570-017-0105
Tachibana, 2012, Nat. Photonics, 6, 511, 10.1038/nphoton.2012.175
Chandran, 2018, Energy Environ. Sci., 11, 115, 10.1039/C7EE01360D
Abdi, 2013, Nat. Commun., 4, 2195, 10.1038/ncomms3195
Chen, 2019, J. Mater. Chem. A, 7, 7415, 10.1039/C9TA00768G
Li, 2019, Energy Environ. Sci., 12, 631, 10.1039/C8EE01299G
Moniz, 2015, Energy Environ. Sci., 8, 731, 10.1039/C4EE03271C
Xie, 2013, Adv. Mater., 25, 3820, 10.1002/adma.201301207
Liu, 2015, Science, 347, 970, 10.1126/science.aaa3145
Chandrasekaran, 2019, Mater. Res. Bull., 112, 95, 10.1016/j.materresbull.2018.12.010
Shiga, 2016, Chem. Commun., 52, 7470, 10.1039/C6CC03199D
Raebiger, 2007, Phys. Rev. B: Condens. Matter Mater. Phys., 76, 045209, 10.1103/PhysRevB.76.045209
Chandrasekaran, 2019, J. Mater. Chem. A, 7, 6161, 10.1039/C8TA12238E
Wang, 2012, Nat. Nanotechnol., 7, 699, 10.1038/nnano.2012.193
Chhowalla, 2013, Nat. Chem., 5, 263, 10.1038/nchem.1589
Wang, 1991, J. Phys. Chem., 95, 525, 10.1021/j100155a009
Hoffman, 1992, J. Phys. Chem., 96, 5546, 10.1021/j100192a067
Voiry, 2016, Nat. Mater., 15, 1003, 10.1038/nmat4660
Maeda, 2006, Nature, 440, 295, 10.1038/440295a
Wang, 2016, Nat. Mater., 15, 611, 10.1038/nmat4589
Li, 2013, Energy Environ. Sci., 6, 347, 10.1039/C2EE22618A
Wang, 2019, Angew. Chem., Int. Ed., 131, 2701, 10.1002/ange.201812387
Iwashina, 2015, J. Am. Chem. Soc., 137, 604, 10.1021/ja511615s
Rui, 2014, Nanoscale, 6, 9889, 10.1039/C4NR03057E
Xu, 2014, Nano Today, 9, 604, 10.1016/j.nantod.2014.09.005
Bebie, 1998, Geochim. Cosmochim. Acta, 62, 633, 10.1016/S0016-7037(98)00058-1
Zhao, 2017, Adv. Energy Mater., 7, 1601424, 10.1002/aenm.201601424
Li, 2011, J. Am. Chem. Soc., 133, 7296, 10.1021/ja201269b
Remskar, 2001, Science, 292, 479, 10.1126/science.1059011
Yu, 2018, Adv. Energy Mater., 8, 1701592, 10.1002/aenm.201701592
Zhao, 2012, Energy Environ. Sci., 5, 5564, 10.1039/C1EE02734D
Coughlan, 2017, Chem. Rev., 117, 5865, 10.1021/acs.chemrev.6b00376
Lai, 2012, J. Mater. Chem., 22, 19, 10.1039/C1JM13879K
Yu, 2016, Adv. Energy Mater., 6, 1501333, 10.1002/aenm.201501333
Chianelli, 2009, Catal. Today, 147, 275, 10.1016/j.cattod.2008.09.041
Geng, 2018, Adv. Energy Mater., 8, 1703259, 10.1002/aenm.201703259
Mitchell, 2002, Chem. Rev., 102, 1929, 10.1021/cr010319h
Si, 2016, Nat. Rev. Mater., 1, 16017, 10.1038/natrevmats.2016.17
Ruan, 2016, J. Mater. Chem. A, 4, 14509, 10.1039/C6TA05104A
T. Weber , H.Prins and R. A.van Santen , Transition metal sulphides: chemistry and catalysis , Springer Science & Business Media , 2013
Zhao, 2017, Chem. Rev., 117, 10121, 10.1021/acs.chemrev.7b00051
G. S. Rohrer , Structure and bonding in crystalline materials , Cambridge University Press , 2001
Vaughan, 2017, Elements, 13, 81, 10.2113/gselements.13.2.81
Hauck, 1998, J. Solid State Chem., 138, 334, 10.1006/jssc.1998.7793
Pakiari, 2010, J. Phys. Chem. A, 114, 9212, 10.1021/jp100423b
Heinrich, 1975, Angew. Chem., Int. Ed. Engl., 14, 322, 10.1002/anie.197503221
Rao, 1976, Prog. Solid State Chem., 10, 207, 10.1016/0079-6786(76)90009-1
J. B. Moffat , Theoretical Aspects of Heterogeneous Catalysis , Springer Science & Business Media , 2013
Kale, 2006, Adv. Funct. Mater., 16, 1349, 10.1002/adfm.200500525
Benco, 1999, J. Solid State Chem., 145, 503, 10.1006/jssc.1999.8195
Enokiya, 1977, J. Phys. Soc. Jpn., 42, 805, 10.1143/JPSJ.42.805
Shen, 2013, Chem. Mater., 25, 1166, 10.1021/cm302482d
Liu, 2016, Mater. Horiz., 3, 402, 10.1039/C6MH00075D
Zhou, 2018, ACS Catal., 8, 4928, 10.1021/acscatal.8b00104
Wang, 2018, J. Am. Chem. Soc., 140, 5037, 10.1021/jacs.8b02200
Guan, 2017, Adv. Mater., 29, 1605051, 10.1002/adma.201605051
Liu, 2019, Adv. Energy Mater., 9, 1803052, 10.1002/aenm.201803052
Wang, 2019, Angew. Chem., Int. Ed., 131, 770, 10.1002/ange.201810729
Zhang, 2019, Energy Environ. Sci., 12, 164, 10.1039/C8EE02538J
Park, 2018, ACS Nano, 12, 2827, 10.1021/acsnano.8b00118
Chao, 2016, ACS Nano, 10, 10211, 10.1021/acsnano.6b05566
Zhong, 2012, J. Phys. Chem. C, 116, 9319, 10.1021/jp301024d
Zhou, 2017, ACS Appl. Mater. Interfaces, 9, 6979, 10.1021/acsami.6b13613
Stephenson, 2014, Energy Environ. Sci., 7, 209, 10.1039/C3EE42591F
Yu, 2014, Nano Lett., 14, 553, 10.1021/nl403620g
Guo, 2018, Energy Environ. Sci., 11, 106, 10.1039/C7EE02464A
Wang, 2018, Appl. Catal., B, 221, 169, 10.1016/j.apcatb.2017.09.011
Huo, 2013, ChemPhysChem, 14, 4069, 10.1002/cphc.201300680
Arai, 2009, J. Phys. Chem. C, 113, 6602, 10.1021/jp8111342
Chandrasekaran, 2013, Sol. Energy Mater. Sol. Cells, 109, 220, 10.1016/j.solmat.2012.11.003
Meyers, 2006, Prog. Mater. Sci., 51, 427, 10.1016/j.pmatsci.2005.08.003
Tiwari, 2012, Prog. Mater. Sci., 57, 724, 10.1016/j.pmatsci.2011.08.003
Gleiter, 1995, Nanostruct. Mater., 6, 3, 10.1016/0965-9773(95)00025-9
Pokropivny, 2007, Mater. Sci. Eng., C, 27, 990, 10.1016/j.msec.2006.09.023
Şengül, 2008, J. Ind. Ecol., 12, 329, 10.1111/j.1530-9290.2008.00046.x
G. A. Ozin , A.
C.Arsenault and L.Cademartiri , Nanochemistry: A chemical approach to nanomaterials , Royal Society of Chemistry , 2009
M. Berger , Nanotechnology: The Future is Tiny , Royal Society of Chemistry , 2016
Eustis, 2006, Chem. Soc. Rev., 35, 209, 10.1039/B514191E
Dahl, 2007, Chem. Rev., 107, 2228, 10.1021/cr050943k
Kang, 2015, Nature, 520, 656, 10.1038/nature14417
Dahn, 2002, Chem. Mater., 14, 3519, 10.1021/cm020236x
Linsebigler, 1995, Chem. Rev., 95, 735, 10.1021/cr00035a013
Lindgren, 2003, J. Phys. Chem. B, 107, 5709, 10.1021/jp027345j
Ogawa, 1997, J. Phys. Chem. B, 101, 5707, 10.1021/jp970737j
Zeng, 2016, Sci. Rep., 6, 20343, 10.1038/srep20343
Tao, 2015, Nanoscale, 7, 2497, 10.1039/C4NR06411A
Gerein, 2006, Chem. Mater., 18, 6289, 10.1021/cm061452z
Weil, 2010, J. Am. Chem. Soc., 132, 6642, 10.1021/ja1020475
Cho, 2012, ACS Appl. Mater. Interfaces, 4, 849, 10.1021/am201524z
da Silva Filho, 2018, Sci. Rep., 8, 1563, 10.1038/s41598-018-19746-8
Kumar, 2006, J. Mater. Sci., 41, 5519, 10.1007/s10853-006-0307-1
Willeke, 1992, Thin Solid Films, 213, 271, 10.1016/0040-6090(92)90293-K
Susac, 2007, J. Phys. Chem. C, 111, 18715, 10.1021/jp073395i
Xiao, 2017, Adv. Energy Mater., 7, 1601329, 10.1002/aenm.201601329
Fei, 2016, Chem. Commun., 52, 1501, 10.1039/C5CC06957B
Virji, 2005, Small, 1, 624, 10.1002/smll.200400155
Greiner, 2007, Angew. Chem., Int. Ed., 46, 5670, 10.1002/anie.200604646
Zhang, 2015, J. Mater. Chem. B, 3, 2487, 10.1039/C4TB02092H
Kim, 2012, Carbon, 50, 2472, 10.1016/j.carbon.2012.01.069
Bao, 2010, Adv. Funct. Mater., 20, 782, 10.1002/adfm.200901658
Zhang, 2012, Sens. Actuators, B, 171, 580, 10.1016/j.snb.2012.05.037
Harilal, 2018, Langmuir, 34, 1873, 10.1021/acs.langmuir.7b03576
Zhang, 2018, Nano Energy, 48, 238, 10.1016/j.nanoen.2018.03.053
Hsu, 2013, CrystEngComm, 15, 4303, 10.1039/c3ce00052d
Ito, 1988, Jpn. J. Appl. Phys., 27, 2094, 10.1143/JJAP.27.2094
Mali, 2014, ACS Appl. Mater. Interfaces, 6, 1688, 10.1021/am404586n
Zhao, 2018, J. Energy Chem., 27, 1536, 10.1016/j.jechem.2018.01.009
Qiao, 2018, Coord. Chem. Rev., 372, 31, 10.1016/j.ccr.2018.06.001
Fu, 2018, Appl. Catal., B, 220, 148, 10.1016/j.apcatb.2017.08.034
Zhang, 2018, Nanoscale, 10, 4041, 10.1039/C7NR09415A
Yin, 2018, Chem. Eng. J., 346, 376, 10.1016/j.cej.2018.03.062
Zhong, 2016, ACS Appl. Mater. Interfaces, 8, 28671, 10.1021/acsami.6b10241
Jagadale, 2018, Sci. Rep., 8, 1602, 10.1038/s41598-018-19787-z
Rath, 2013, J. Mater. Chem. A, 1, 11135, 10.1039/c3ta12592k
Tada, 1998, J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.–Process., Meas., Phenom., 16, 3934, 10.1116/1.590440
Radha, 2011, J. Am. Chem. Soc., 133, 12706, 10.1021/ja2039612
Päivänranta, 2011, Nanotechnology, 22, 375302, 10.1088/0957-4484/22/37/375302
Saifullah, 2017, ACS Nano, 11, 9920, 10.1021/acsnano.7b03951
Roxlo, 1987, Science, 235, 1629, 10.1126/science.235.4796.1629
Zhang, 2004, Langmuir, 20, 6914, 10.1021/la049887t
Li, 2016, Appl. Surf. Sci., 384, 272, 10.1016/j.apsusc.2016.05.034
Han, 2003, J. Alloys Compd., 351, 273, 10.1016/S0925-8388(02)01037-X
Ambrosi, 2015, Electrochem. Commun., 54, 36, 10.1016/j.elecom.2015.02.017
Kaltzoglou, 2014, J. Electron. Mater., 43, 2029, 10.1007/s11664-013-2941-0
Li, 2015, J. Materiomics, 1, 33, 10.1016/j.jmat.2015.03.003
Ottaviano, 2017, 2D Mater., 4, 045013, 10.1088/2053-1583/aa8764
Yuan, 2016, AIP Adv., 6, 125201, 10.1063/1.4967967
Li, 2014, Acc. Chem. Res., 47, 1067, 10.1021/ar4002312
Sun, 2017, Crystals, 7, 198, 10.3390/cryst7070198
Voiry, 2013, Nat. Mater., 12, 850, 10.1038/nmat3700
Chen, 2013, ACS Nano, 7, 4610, 10.1021/nn401420h
Paton, 2014, Nat. Mater., 13, 624, 10.1038/nmat3944
Coleman, 2011, Science, 331, 568, 10.1126/science.1194975
Zheng, 2014, Nat. Commun., 5, 2995, 10.1038/ncomms3995
Varrla, 2015, Chem. Mater., 27, 1129, 10.1021/cm5044864
Forsberg, 2016, PLoS One, 11, e0154522, 10.1371/journal.pone.0154522
Gupta, 2016, J. Phys. Chem. Lett., 7, 4884, 10.1021/acs.jpclett.6b02405
Yao, 2012, J. Mater. Chem., 22, 13494, 10.1039/c2jm30587a
Huo, 2015, Sci. Bull., 60, 1994, 10.1007/s11434-015-0936-3
Yang, 2017, Nat. Commun., 8, 14224, 10.1038/ncomms14224
Zhang, 2015, Nano Res., 8, 1522, 10.1007/s12274-014-0637-2
Zhang, 2015, Nanoscale, 7, 10210, 10.1039/C5NR02253C
Lukowski, 2013, J. Am. Chem. Soc., 135, 10274, 10.1021/ja404523s
Liu, 2012, Small, 8, 3517, 10.1002/smll.201200999
Liu, 2014, ChemCatChem, 6, 2522, 10.1002/cctc.201402191
Ramakrishna Matte, 2010, Angew. Chem., Int. Ed., 49, 4059, 10.1002/anie.201000009
Kibsgaard, 2012, Nat. Mater., 11, 963, 10.1038/nmat3439
Chisung, 2015, Adv. Mater., 27, 5223, 10.1002/adma.201501678
Hollingsworth, 1999, Chem. Vap. Deposition, 5, 105, 10.1002/(SICI)1521-3862(199906)5:3<105::AID-CVDE105>3.0.CO;2-G
Song, 2014, Angew. Chem., Int. Ed., 53, 1266, 10.1002/anie.201309474
Whitham, 2014, Plasma Chem. Plasma Process., 34, 755, 10.1007/s11090-014-9542-4
Lim, 2016, Adv. Mater., 28, 5025, 10.1002/adma.201600606
Kumar, 2015, Nanoscale, 7, 7802, 10.1039/C4NR07080A
Wang, 2016, Sci. Rep., 6, 21536, 10.1038/srep21536
Zheng, 2015, Appl. Phys. Lett., 106, 063113, 10.1063/1.4908256
Ji, 2013, Nano Lett., 13, 3870, 10.1021/nl401938t
Zhang, 2013, ACS Nano, 7, 8963, 10.1021/nn403454e
Rong, 2014, Nanoscale, 6, 12096, 10.1039/C4NR04091K
Song, 2015, Nat. Commun., 6, 7817, 10.1038/ncomms8817
Lin, 2014, APL Mater., 2, 092514, 10.1063/1.4895469
George, 2014, Adv. Funct. Mater., 24, 7461, 10.1002/adfm.201402519
Yang, 2015, Nanoscale, 7, 650, 10.1039/C4NR06141A
Gurarslan, 2014, ACS Nano, 8, 11522, 10.1021/nn5057673
Sim, 2015, ACS Nano, 9, 12115, 10.1021/acsnano.5b05173
Moody, 2018, Chem. Mater., 30, 3628, 10.1021/acs.chemmater.8b01171
Kim, 2018, Nano Res., 11, 731, 10.1007/s12274-017-1682-4
Su, 2018, ACS Appl. Mater. Interfaces, 10, 8026-, 10.1021/acsami.7b19197
Shao, 2017, Angew. Chem., Int. Ed., 129, 3274, 10.1002/ange.201700449
Kuhs, 2018, J. Vac. Sci. Technol., A, 36, 01A113, 10.1116/1.5003339
Lim, 2003, Nat. Mater., 2, 749, 10.1038/nmat1000
Peters, 2015, ACS Nano, 9, 8484, 10.1021/acsnano.5b03429
Ihanus, 2002, Chem. Mater., 14, 1937, 10.1021/cm0111130
George, 2009, Chem. Rev., 110, 111, 10.1021/cr900056b
Zhu, 2010, J. Am. Chem. Soc., 132, 12619, 10.1021/ja1025112
Johnson, 2014, Mater. Today, 17, 236, 10.1016/j.mattod.2014.04.026
Tammenmaa, 1987, J. Cryst. Grow., 84, 151, 10.1016/0022-0248(87)90122-9
Sarkar, 2010, J. Phys. Chem. C, 114, 8032, 10.1021/jp9086943
Dasgupta, 2015, Acc. Chem. Res., 48, 341, 10.1021/ar500360d
Thimsen, 2013, Chem. Mater., 25, 313, 10.1021/cm3027225
Thimsen, 2012, Chem. Mater., 24, 3188, 10.1021/cm3015463
Afifi, 1995, Thin Solid Films, 263, 248, 10.1016/0040-6090(95)06565-2
Krunks, 2003, J. Therm. Anal. Calorim., 72, 497, 10.1023/A:1024561212883
Calixto-Rodriguez, 2009, Thin Solid Films, 517, 2497, 10.1016/j.tsf.2008.11.026
Patil, 1999, Mater. Chem. Phys., 59, 185, 10.1016/S0254-0584(99)00049-8
Naşcu, 1997, Mater. Lett., 32, 73, 10.1016/S0167-577X(97)00015-3
Raviprakash, 2009, Sol. Energy, 83, 1645, 10.1016/j.solener.2009.06.004
John, 2005, Sol. Energy Mater. Sol. Cells, 89, 27, 10.1016/j.solmat.2004.12.005
Zouaghi, 2001, Thin Solid Films, 382, 39, 10.1016/S0040-6090(00)01699-0
Pengfei, 2016, Rare Met. Mater. Eng., 45, 1700, 10.1016/S1875-5372(16)30143-6
Lee, 2015, Electrochim. Acta, 167, 287, 10.1016/j.electacta.2015.03.196
Yang, 2016, J. Mater. Chem. C, 4, 8859, 10.1039/C6TC01602B
Vanalakar, 2015, Sol. Energy Mater. Sol. Cells, 138, 1, 10.1016/j.solmat.2015.02.031
Deng, 2012, ACS Nano, 6, 3727, 10.1021/nn300900v
Feng, 2014, Adv. Mater., 26, 2648, 10.1002/adma.201306095
Serrao, 2015, Appl. Phys. Lett., 106, 052101, 10.1063/1.4907169
Loh, 2015, Sci. Rep., 5, 18116, 10.1038/srep18116
Loh, 2015, J. Phys. Chem. C, 119, 27496, 10.1021/acs.jpcc.5b09277
Li, 2017, Sci. Rep., 7, 11182, 10.1038/s41598-017-10632-3
Ettlinger, 2016, Appl. Phys. A: Mater. Sci. Process., 122, 466, 10.1007/s00339-016-9939-4
Liang, 2004, J. Phys. Chem. B, 108, 9728, 10.1021/jp037963f
Lu, 2009, J. Phys. Chem. C, 113, 12878, 10.1021/jp903350x
Shen, 2005, J. Phys. Chem. B, 109, 9294, 10.1021/jp044888f
Lu, 2009, ACS Nano, 3, 357, 10.1021/nn800804r
Lu, 2008, Appl. Phys. Lett., 93, 242503, 10.1063/1.3050537
Huang, 2014, Nanoscale, 6, 8787, 10.1039/C4NR01575D
Ma, 2003, Adv. Mater., 15, 228, 10.1002/adma.200390052
Jiang, 2003, Adv. Mater., 15, 323, 10.1002/adma.200390079
Jen-La Plante, 2010, J. Mater. Chem., 20, 6612, 10.1039/c0jm00439a
Ramasamy, 2012, Chem. Commun., 48, 5703, 10.1039/c2cc30792h
Mani, 2014, J. Chem. Sci., 126, 967, 10.1007/s12039-014-0629-5
Hosny, 2015, J. Mol. Struct., 1085, 78, 10.1016/j.molstruc.2014.11.074
Zhan, 2000, Adv. Mater., 12, 1348, 10.1002/1521-4095(200009)12:18<1348::AID-ADMA1348>3.0.CO;2-X
Liu, 2014, Mater. Res. Bull., 57, 29, 10.1016/j.materresbull.2014.05.027
Athanassiou, 2010, Nanotechnology, 21, 215603, 10.1088/0957-4484/21/21/215603
Freeda, 2017, J. Alloys Compd., 726, 1, 10.1016/j.jallcom.2017.07.128
Liu, 2014, Mater. Lett., 117, 158, 10.1016/j.matlet.2013.11.128
Malik, 2012, Arabian J. Chem., 5, 397, 10.1016/j.arabjc.2010.09.027
Bagwe, 2004, Langmuir, 20, 8336, 10.1021/la049137j
Hota, 2004, Colloids Surf., A, 232, 119, 10.1016/j.colsurfa.2003.10.021
Zhang, 2008, Chem. Commun., 5945, 10.1039/b814725f
Petit, 1990, J. Phys. Chem., 94, 1598, 10.1021/j100367a069
Dhlamini, 2008, J. Lumin., 128, 1997, 10.1016/j.jlumin.2008.06.016
Solanki, 2010, Solid State Sci., 12, 1560, 10.1016/j.solidstatesciences.2010.06.021
Ghows, 2011, Ultrason.
Sonochem., 18, 629, 10.1016/j.ultsonch.2010.08.003
Vaidya, 2010, Colloids Surf., A, 363, 130, 10.1016/j.colsurfa.2010.04.030
Zhang, 2018, Colloids Surf., A, 546, 203, 10.1016/j.colsurfa.2018.03.020
Malikov, 2018, Fullerenes, Nanotubes, Carbon Nanostruct., 26, 255, 10.1080/1536383X.2018.1432602
Loukanov, 2004, Colloids Surf., A, 245, 9, 10.1016/j.colsurfa.2004.06.016
Ovits, 2009, J. Mater. Chem., 19, 7650, 10.1039/b908609a
Liu, 2015, ACS Appl. Mater. Interfaces, 7, 13849, 10.1021/acsami.5b04128
Vacassy, 1998, J. Am. Ceram. Soc., 81, 2699, 10.1111/j.1151-2916.1998.tb02679.x
Pecoraro, 1981, J. Catal., 67, 430, 10.1016/0021-9517(81)90303-1
Vattikuti, 2015, Appl. Phys. A: Mater. Sci. Process., 119, 813, 10.1007/s00339-015-9163-7
Rickard, 1995, Geochim. Cosmochim. Acta, 59, 4367, 10.1016/0016-7037(95)00251-T
Yadav, 2017, Nano-Struct. Nano-Objects, 10, 151, 10.1016/j.nanoso.2017.03.009
Zhang, 2007, Int. J. Hydrogen Energy, 32, 4685, 10.1016/j.ijhydene.2007.08.022
Jiang, 2014, Appl. Surf. Sci., 295, 164, 10.1016/j.apsusc.2014.01.022
Chen, 2007, J. Phys. Chem. Solids, 68, 2317, 10.1016/j.jpcs.2007.07.059
Zhan, 2018, Inorg. Chem., 57, 5791, 10.1021/acs.inorgchem.8b00108
Lei, 2003, Chem. Commun., 2142, 10.1039/b306813g
Ratha, 2013, ACS Appl. Mater. Interfaces, 5, 11427, 10.1021/am403663f
Li, 2010, J. Alloys Compd., 504, L31, 10.1016/j.jallcom.2010.05.149
Dong, 2011, Dalton Trans., 40, 243, 10.1039/C0DT01107J
Xing, 2014, Electrochim. Acta, 149, 285, 10.1016/j.electacta.2014.10.069
Kamila, 2017, Sci. Rep., 7, 8378, 10.1038/s41598-017-08677-5
Zhang, 2014, Energy Environ. Sci., 7, 3302, 10.1039/C4EE01932F
Zhang, 2006, J. Phys. Chem. B, 110, 8978, 10.1021/jp060769j
Yang, 2016, RSC Adv., 6, 83012, 10.1039/C6RA14847F
Shi, 2015, Chem. Commun., 51, 17144, 10.1039/C5CC05323D
Mahadik, 2015, J. Mater. Chem. A, 3, 23597, 10.1039/C5TA07454A
Zhu, 2012, J. Mater. Chem., 22, 7851, 10.1039/c2jm30437f
Karthikeyan, 2014, Dalton Trans., 43, 17445, 10.1039/C4DT02059F
Zhang, 2015, J. Mater. Chem. A, 3, 15020, 10.1039/C5TA03410H
Peng, 2016, Adv. Funct. Mater., 26, 2666, 10.1002/adfm.201504942
Sun, 2009, Angew. Chem., Int. Ed., 48, 2881, 10.1002/anie.200806082
Yu, 2016, J. Energy Storage, 7, 295, 10.1016/j.est.2016.08.004
Bhattacharjya, 2015, Chem. Commun., 51, 13350, 10.1039/C5CC04289E
Mei, 2014, Nano Energy, 3, 36, 10.1016/j.nanoen.2013.10.004
Michel, 2006, Chem. Mater., 18, 1726, 10.1021/cm048320v
Tao, 2007, Mater. Lett., 61, 4973, 10.1016/j.matlet.2007.03.084
Gui, 2011, Mater. Chem. Phys., 125, 698, 10.1016/j.matchemphys.2010.09.071
Liu, 2017, Appl. Surf. Sci., 416, 858, 10.1016/j.apsusc.2017.04.230
Tang, 2017, J. Power Sources, 362, 1, 10.1016/j.jpowsour.2017.07.019
Tang, 2015, J. Mater. Chem. A, 3, 12913, 10.1039/C5TA02480C
Qiu, 2011, J. Mater. Chem., 21, 13327, 10.1039/c1jm11616a
Zhou, 2014, Sci. Rep., 4, 4027, 10.1038/srep04027
Lampkin, 2016, J. Solid State Chem., 243, 44, 10.1016/j.jssc.2016.08.007
Wang, 2017, J. Mater. Chem. A, 5, 8451, 10.1039/C7TA01914A
Wang, 2011, J. Mater. Chem., 21, 327, 10.1039/C0JM03121F
Dutta, 2012, ACS Appl. Mater. Interfaces, 4, 1919, 10.1021/am300408r
Wei, 2006, Cryst. Growth Des., 6, 1942, 10.1021/cg050456y
Yang, 2009, CrystEngComm, 11, 1383, 10.1039/b900444k
Huang, 2018, ACS Nano, 12, 3030, 10.1021/acsnano.8b00901
Bhorde, 2018, Appl. Phys. A: Mater. Sci. Process., 124, 133, 10.1007/s00339-017-1529-6
Lin, 2010, Microporous Mesoporous Mater., 132, 328, 10.1016/j.micromeso.2010.03.010
Yuan, 2017, J. Mater. Chem. A, 5, 15771, 10.1039/C7TA04410K
Sun, 2010, Nanoscale Res. Lett., 5, 364, 10.1007/s11671-009-9489-1
Tu, 2018, Nanoscale, 10, 4735, 10.1039/C7NR09413B
Zhang, 2018, New J. Chem., 42, 1467, 10.1039/C7NJ03581K
Wang, 2017, Energy Storage Materials, 6, 180, 10.1016/j.ensm.2016.11.005
Li, 2015, RSC Adv., 5, 46941, 10.1039/C5RA07292A
Li, 2018, J. Power Sources, 373, 103, 10.1016/j.jpowsour.2017.10.094
Ding, 2011, ACS Appl. Mater. Interfaces, 4, 306, 10.1021/am201343q
Yao, 2009, Cryst. Growth Des., 9, 3821, 10.1021/cg9000335
Thalmann, 2014, Environ. Sci. Technol., 48, 4885, 10.1021/es5003378
Bonde, 2009, Faraday Discuss., 140, 219, 10.1039/B803857K
Shen, 2015, Nat. Commun., 6, 6694, 10.1038/ncomms7694
Mrowec, 1985, Oxid. Met., 23, 107, 10.1007/BF00659899
Cabán-Acevedo, 2013, ACS Nano, 7, 1731, 10.1021/nn305833u
Cabán-Acevedo, 2012, Nano Lett., 12, 1977, 10.1021/nl2045364
Li, 2017, J. Mater. Chem. A, 5, 20428, 10.1039/C7TA06180C
Bara, 2016, J. Catal., 344, 591, 10.1016/j.jcat.2016.10.001
Cummins, 2013, Nano Lett., 13, 2423, 10.1021/nl400325s
Chen, 2011, Dalton Trans., 40, 880, 10.1039/C0DT00906G
Levard, 2011, Environ. Sci. Technol., 45, 5260, 10.1021/es2007758
Chen, 2013, Anal. Methods, 5, 6579, 10.1039/c3ay41573b
Ma, 2014, Environ. Sci.: Nano, 1, 347
Ding, 2013, J. Mater. Chem. A, 1, 11880, 10.1039/c3ta12049j
Ding, 2012, J. Mater. Chem., 22, 23169, 10.1039/c2jm34916g
Han, 2017, Sci. Rep., 7, 42536, 10.1038/srep42536
Ranjith, 2017, Catal. Sci. Technol., 7, 1167, 10.1039/C6CY02556K
Piña-Pérez, 2018, Appl. Catal., B, 230, 125, 10.1016/j.apcatb.2018.02.047
Tian, 2019, Chem. Commun., 55, 3243, 10.1039/C9CC00486F
Guan, 2017, Small Methods, 1, 1700158, 10.1002/smtd.201700158
Yu, 2017, Small Methods, 1, 1600020, 10.1002/smtd.201600020
Yang, 2019, J. Mater. Chem. A, 7, 3432, 10.1039/C8TA11489G
Heift, 2018, ChemNanoMat, 4, 663, 10.1002/cnma.201800027
Vu, 2017, Phys. Chem. Chem. Phys., 19, 29429, 10.1039/C7CP06085H
Yin, 2006, Adv. Funct. Mater., 16, 1389, 10.1002/adfm.200600256
Kung, 2012, ACS Nano, 6, 7016, 10.1021/nn302063s
Chen, 2013, J. Mater. Chem. A, 1, 13759, 10.1039/c3ta13415f
Jiang, 2014, J. Mater. Chem. A, 2, 8603, 10.1039/C3TA14430E
Su, 2017, J. Mater. Chem. A, 5, 8680, 10.1039/C7TA00855D
Yu, 2014, Adv. Funct. Mater., 24, 7440, 10.1002/adfm.201402560
Yu, 2016, Angew. Chem., Int. Ed., 55, 13422, 10.1002/anie.201606776
Zhang, 2017, Angew. Chem., Int. Ed., 56, 7141, 10.1002/anie.201702649
Chen, 2016, Sci. Rep., 6, 25151, 10.1038/srep25151
Wu, 2015, Adv. Mater., 27, 3038, 10.1002/adma.201500783
Jin, 2017, J. Power Sources, 341, 294, 10.1016/j.jpowsour.2016.12.013
Zhu, 2014, Chem. Rev., 114, 6462, 10.1021/cr400366s
Qin, 2013, Sens. Actuators, B, 184, 156, 10.1016/j.snb.2013.04.079
Pang, 2014, Sci. Rep., 4, 3577, 10.1038/srep03577
Nadagouda, 2011, Acc. Chem. Res., 44, 469, 10.1021/ar1001457
Chen, 2003, Mater. Chem. Phys., 82, 206, 10.1016/S0254-0584(03)00206-2
Butala, 2017, Solid State Sci., 74, 8, 10.1016/j.solidstatesciences.2017.09.010
Krylova, 2015, Cryst. Growth Des., 15, 2859, 10.1021/acs.cgd.5b00284
You, 2015, Chem. Commun., 51, 4252, 10.1039/C4CC09849H
Jiang, 2005, J. Phys. Chem. B, 109, 4361, 10.1021/jp044350+
Panda, 2006, J. Am. Chem. Soc., 128, 2790, 10.1021/ja058148b
Patra, 2007, J. Solid State Electrochem., 11, 186, 10.1007/s10008-005-0086-7
Liu, 2016, Sci. Rep., 6, 22503, 10.1038/srep22503
Youn, 2014, Sci. Rep., 4, 5492, 10.1038/srep05492
Raubach, 2013, Dalton Trans., 42, 11111, 10.1039/c3dt50374g
A. Brenner , Electrodeposition of Alloys: Principles and Practice , Elsevier , 2013
Nielsch, 2000, Adv. Mater., 12, 582, 10.1002/(SICI)1521-4095(200004)12:8<582::AID-ADMA582>3.0.CO;2-3
Endres, 2002, ChemPhysChem, 3, 144, 10.1002/1439-7641(20020215)3:2<144::AID-CPHC144>3.0.CO;2-#
Faber, 2014, J. Am. Chem. Soc., 136, 10053, 10.1021/ja504099w
Sander, 2002, Adv. Mater., 14, 665, 10.1002/1521-4095(20020503)14:9<665::AID-ADMA665>3.0.CO;2-B
Faber, 2014, Energy Environ. Sci., 7, 3519, 10.1039/C4EE01760A
Chen, 2014, ACS Nano, 8, 9531, 10.1021/nn503814y
Ganesan, 2016, J. Mater. Chem. A, 4, 16394, 10.1039/C6TA04499A
Loglio, 2004, J. Electroanal. Chem., 562, 117, 10.1016/j.jelechem.2003.08.016
Lai, 2010, Nanotechnology, 21, 215602, 10.1088/0957-4484/21/21/215602
Singh, 2007, Chem. Mater., 19, 2446, 10.1021/cm0629356
Ghahremaninezhad, 2011, J. Phys. Chem. C, 115, 9320, 10.1021/jp108283z
Su, 2013, J. Phys. Chem. C, 118, 767, 10.1021/jp407185p
Lin, 2011, Electrochim. Acta, 56, 8818, 10.1016/j.electacta.2011.07.080
Li, 2015, J. Power Sources, 274, 943, 10.1016/j.jpowsour.2014.10.156
Boonsalee, 2008, Chem. Mater., 20, 5737, 10.1021/cm801502m
Abbott, 2013, Annu. Rev. Mater. Res., 43, 335, 10.1146/annurev-matsci-071312-121640
F. Endres , A.Abbott and D. R.MacFarlane , Electrodeposition from ionic liquids , John Wiley & Sons , 2017
Tian, 2010, Trans. Nonferrous Met. Soc. China, 20, 513, 10.1016/S1003-6326(09)60171-0
Chen, 2012, J. Mater. Chem., 22, 5295, 10.1039/c2jm16692e
Murugesan, 2013, ACS Nano, 7, 8199, 10.1021/nn4036624
Ma, 2016, Energy Environ. Sci., 9, 862, 10.1039/C5EE03772G
Tian, 2017, Appl. Catal., B, 209, 566, 10.1016/j.apcatb.2017.03.022
Bao, 2007, Chem. Mater., 20, 110, 10.1021/cm7029344
Wu, 2018, Nano Energy, 45, 439, 10.1016/j.nanoen.2018.01.024
Zhuo, 2013, Angew. Chem., Int. Ed., 125, 8764, 10.1002/ange.201303480
Sun, 2002, Nano Lett., 2, 481, 10.1021/nl025531v
Yu, 2015, Angew. Chem., Int. Ed., 154, 5331, 10.1002/anie.201500267
Liang, 2018, Chem. Eng. J., 344, 95, 10.1016/j.cej.2018.03.064
Li, 2009, Chem. Soc. Rev., 38, 1477, 10.1039/b802426j
Xie, 2013, Nano Energy, 2, 49, 10.1016/j.nanoen.2012.07.010
Zhang, 2018, Chem. Eng. J., 332, 370, 10.1016/j.cej.2017.09.092
Mao, 2004, Nano Lett., 4, 249, 10.1021/nl034966v
Yu, 2002, Adv. Mater., 14, 296, 10.1002/1521-4095(20020219)14:4<296::AID-ADMA296>3.0.CO;2-6
MacLachlan, 1999, Nature, 397, 681, 10.1038/17776
Jiang, 2001, Adv. Mater., 13, 1278, 10.1002/1521-4095(200108)13:16<1278::AID-ADMA1278>3.0.CO;2-W
Zhang, 2004, Chem. Mater., 16, 537, 10.1021/cm034760v
Ye, 2017, Adv. Funct. Mater., 27, 1702524, 10.1002/adfm.201702524
Lee, 2007, Nano Lett., 7, 778, 10.1021/nl0630539
Wan, 2008, Adv. Mater., 20, 2926, 10.1002/adma.200800466
Han, 2011, Adv. Energy Mater., 1, 798, 10.1002/aenm.201100340
Chen, 2008, Inorg. Chem., 47, 9766, 10.1021/ic800752t
Yu, 2008, Adv. Funct. Mater., 18, 1544, 10.1002/adfm.200701052
Lou, 2006, Adv. Mater., 18, 2325, 10.1002/adma.200600733
Yu, 2009, Chem. – Eur. J., 15, 6731, 10.1002/chem.200900204
Ling, 2018, Chem. Commun., 54, 2631, 10.1039/C7CC08962G
Yu, 2014, Angew. Chem., Int. Ed., 53, 3711, 10.1002/anie.201400226
Wang, 2018, Ceram. Int., 44, 11905, 10.1016/j.ceramint.2018.03.191
Vattikuti, 2018, Sci. Rep., 8, 4194, 10.1038/s41598-018-22622-0
Wang, 2018, Nano Res., 11, 831, 10.1007/s12274-017-1693-1
Greeley, 2006, Nat. Mater., 5, 909, 10.1038/nmat1752
Zeradjanin, 2016, Electroanalysis, 28, 2256, 10.1002/elan.201600270
Gong, 2014, Nat. Commun., 5, 4695, 10.1038/ncomms5695
Xiao, 2015, Adv. Energy Mater., 5, 1500985, 10.1002/aenm.201500985
McKone, 2014, Chem. Sci., 5, 865, 10.1039/C3SC51711J
Sivanantham, 2016, Adv. Funct. Mater., 26, 4661, 10.1002/adfm.201600566
Lewis, 2006, Proc. Natl. Acad. Sci. U. S. A., 103, 15729, 10.1073/pnas.0603395103
Lu, 2016, Adv. Mater., 28, 1917, 10.1002/adma.201503270
Vrubel, 2012, Angew. Chem., Int. Ed., 124, 12875, 10.1002/ange.201207111
Chandrasekaran, 2014, Mater. Lett., 136, 118, 10.1016/j.matlet.2014.07.179
Sheng, 2013, Energy Environ. Sci., 6, 1509, 10.1039/c3ee00045a
Gong, 2016, Nano Res., 9, 28, 10.1007/s12274-015-0965-x
S. Kotrel and S.Bräuninger , Handbook of Heterogeneous Catalysis , John Wiley & Sons , 2008
Laursen, 2012, Energy Environ. Sci., 5, 5577, 10.1039/c2ee02618j
Jaramillo, 2007, Science, 317, 100, 10.1126/science.1141483
Parsons, 1958, Trans. Faraday Soc., 54, 1053, 10.1039/tf9585401053
Eftekhari, 2017, Int. J. Hydrogen Energy, 42, 11053, 10.1016/j.ijhydene.2017.02.125
Zhang, 2018, Sci. Adv., 4, eaao6657, 10.1126/sciadv.aao6657
Kai, 2018, J. Mater. Chem. A, 6, 2895, 10.1039/C7TA10958J
Lee, 2009, Chem. Mater., 22, 922, 10.1021/cm901762h
Wang, 2015, J. Am. Chem. Soc., 137, 1587, 10.1021/ja511572q
Luo, 2014, Science, 345, 1593, 10.1126/science.1258307
Hou, 2013, Adv. Funct. Mater., 23, 1612, 10.1002/adfm.201202148
Yang, 2013, Acc. Chem. Res., 46, 1900, 10.1021/ar300227e
Walter, 2010, Chem. Rev., 110, 6446, 10.1021/cr1002326
Chandrasekaran, 2016, J. Electrochem. Sci. Technol., 7, 1, 10.33961/JECST.2016.7.1.7
Reece, 2011, Science, 334, 645, 10.1126/science.1209816
Z. Chen , H. N.Dinh and E.Miller , SpringerBriefs in Energy , New York , 2013 , pp. 49–61
Miller, 2015, Energy Environ. Sci., 8, 2809, 10.1039/C5EE90047F
Serpone, 1996, J. Photochem. Photobiol., A, 94, 191, 10.1016/1010-6030(95)04223-7
Li, 2015, Catal. Sci. Technol., 5, 1360, 10.1039/C4CY00974F
Wang, 2017, Phys. Chem. Chem. Phys., 19, 10125, 10.1039/C7CP00636E
Karunadasa, 2012, Science, 335, 698, 10.1126/science.1215868
Feldman, 1995, Science, 267, 222, 10.1126/science.267.5195.222
Seo, 2015, ACS Nano, 9, 3728, 10.1021/acsnano.5b00786
Wu, 2012, Appl. Catal., B, 125, 59, 10.1016/j.apcatb.2012.05.013
Mahler, 2014, J. Am. Chem. Soc., 136, 14121, 10.1021/ja506261t
Cabán-Acevedo, 2015, Nat. Mater., 14, 1245, 10.1038/nmat4410
Faber, 2014, J. Phys. Chem. C, 118, 21347, 10.1021/jp506288w
Kong, 2013, Energy Environ. Sci., 6, 3553, 10.1039/c3ee42413h
Hinnemann, 2005, J. Am. Chem. Soc., 127, 5308, 10.1021/ja0504690
Nørskov, 2005, J. Electrochem. Soc., 152, J23, 10.1149/1.1856988
Xie, 2013, Adv. Mater., 25, 5807, 10.1002/adma.201302685
Yan, 2013, ACS Appl. Mater. Interfaces, 5, 12794, 10.1021/am404843b
Morales-Guio, 2014, Acc. Chem. Res., 47, 2671, 10.1021/ar5002022
Merki, 2011, Chem. Sci., 2, 1262, 10.1039/C1SC00117E
Liang, 2014, Angew. Chem., Int. Ed., 53, 7860, 10.1002/anie.201402315
Zhao, 2016, ACS Nano, 10, 2159, 10.1021/acsnano.5b06653
Wang, 2016, Adv. Mater., 28, 215, 10.1002/adma.201502696
Wei, 2017, Electrochim. Acta, 246, 776, 10.1016/j.electacta.2017.06.068
Sun, 2013, J. Am. Chem. Soc., 135, 17699, 10.1021/ja4094764
Kornienko, 2015, J. Am. Chem. Soc., 137, 7448, 10.1021/jacs.5b03545
Ma, 2017, Nano Energy, 41, 148, 10.1016/j.nanoen.2017.09.036
Feng, 2015, J. Am. Chem. Soc., 137, 14023, 10.1021/jacs.5b08186
Ho, 2018, ACS Appl. Mater. Interfaces, 10, 12807, 10.1021/acsami.8b00813
Li, 2018, J. Mater. Chem. A, 6, 8233, 10.1039/C8TA01928B
Chung, 2015, Nanoscale, 7, 5157, 10.1039/C4NR07648F
Zhou, 2018, ACS Nano, 12, 4486, 10.1021/acsnano.8b00693
Pan, 2014, Sci. Rep., 4, 5348, 10.1038/srep05348
Tsai, 2015, Surf. Sci., 640, 133, 10.1016/j.susc.2015.01.019
Qu, 2015, Phys. Chem. Chem. Phys., 17, 24820, 10.1039/C5CP04118J
Jiangtan, 2015, Adv. Mater., 27, 5605, 10.1002/adma.201502075
Liang, 2016, Chem. Mater., 28, 5587, 10.1021/acs.chemmater.6b01963
Qu, 2017, J. Mater. Chem. A, 5, 15080, 10.1039/C7TA03172F
Shi, 2017, Nat. Commun., 8, 958, 10.1038/s41467-017-01089-z
Tran, 2012, Energy Environ. Sci., 5, 8912, 10.1039/c2ee22611a
Tran, 2013, Energy Environ. Sci., 6, 2452, 10.1039/c3ee40600h
Merki, 2012, Chem. Sci., 3, 2515, 10.1039/c2sc20539d
Lu, 2018, Appl. Surf. Sci., 445, 445, 10.1016/j.apsusc.2018.03.177
Shao, 2016, Electrochim. Acta, 213, 236, 10.1016/j.electacta.2016.07.113
Ren, 2018, Nano Res., 11, 2024, 10.1007/s12274-017-1818-6
Tie, 2018, Appl. Surf. Sci., 435, 187, 10.1016/j.apsusc.2017.11.086
Peng, 2015, Adv. Energy Mater., 5, 1402031, 10.1002/aenm.201402031
Xiong, 2017, ACS Energy Lett., 2, 2778, 10.1021/acsenergylett.7b01056
Yang, 2018, Chem. Commun., 54, 78, 10.1039/C7CC07259G
Jian, 2014, Adv. Energy Mater., 4, 1301875, 10.1002/aenm.201301875
Seo, 2018, Nanoscale, 10, 3838, 10.1039/C7NR08161H
Chia, 2016, J. Mater. Chem. A, 4, 14241, 10.1039/C6TA05110C
Long, 2015, J. Am. Chem. Soc., 137, 11900, 10.1021/jacs.5b07728
Kagkoura, 2019, Chem. Commun., 55, 2078, 10.1039/C9CC00051H
Deng, 2018, Adv. Sci., 5, 1700772, 10.1002/advs.201700772
Liu, 2017, ACS Appl. Mater. Interfaces, 9, 15364, 10.1021/acsami.7b00019
Liu, 2018, ACS Appl. Mater. Interfaces, 10, 10890, 10.1021/acsami.8b00296
Lu, 2018, Chem. Commun., 54, 646, 10.1039/C7CC08446C
Zhang, 2017, RSC Adv., 7, 46286, 10.1039/C7RA07667C
Cao, 2018, ACS Appl. Mater. Interfaces, 10, 1752, 10.1021/acsami.7b16407
Chen, 2018, J. Phys. Chem. C, 122, 2618, 10.1021/acs.jpcc.7b12040
Li, 2016, ACS Catal., 6, 2797, 10.1021/acscatal.6b00014
Zhong, 2017, J. Mater. Chem. A, 5, 17954, 10.1039/C7TA04755J
Qu, 2017, ACS Appl. Mater. Interfaces, 9, 29660, 10.1021/acsami.7b06377
Yang, 2016, ACS Appl. Mater. Interfaces, 8, 13966, 10.1021/acsami.6b04045
Zhou, 2017, J. Mater. Chem. A, 5, 15552, 10.1039/C7TA03041J
Tan, 2016, ACS Appl. Mater. Interfaces, 8, 3948, 10.1021/acsami.5b11109
Yuanyuan, 2016, Adv. Funct. Mater., 26, 4839, 10.1002/adfm.201601315
Gao, 2015, Nat. Commun., 6, 5982, 10.1038/ncomms6982
Xie, 2013, J. Am. Chem. Soc., 135, 17881, 10.1021/ja408329q
Sun, 2014, Nanoscale, 6, 8359, 10.1039/C4NR01894J
Zhong, 2018, Electrochim. Acta, 269, 55, 10.1016/j.electacta.2018.02.131
Hou, 2018, ACS Catal., 8, 4612, 10.1021/acscatal.8b00668
Qu, 2017, ACS Appl. Mater. Interfaces, 9, 5959, 10.1021/acsami.6b13244
Zhang, 2018, ACS Catal., 8, 5431, 10.1021/acscatal.8b00413
Zeng, 2014, Energy Environ. Sci., 7, 797, 10.1039/C3EE42620C
Liang, 2011, Nat. Mater., 10, 780, 10.1038/nmat3087
Roy, 2013, Nat. Nanotechnol., 8, 826, 10.1038/nnano.2013.206
Sun, 2015, Nat. Nanotechnol., 10, 980, 10.1038/nnano.2015.194
Li, 2016, Nat. Commun., 7, 11204, 10.1038/ncomms11204
Li, 2014, Nano Lett., 14, 1228, 10.1021/nl404108a
Yang, 2013, Angew. Chem., Int. Ed., 52, 13751, 10.1002/anie.201307475
Pu, 2014, Electrochim. Acta, 134, 8, 10.1016/j.electacta.2014.04.092
Hou, 2014, J. Mater. Chem. A, 2, 13795, 10.1039/C4TA02254H
Pramoda, 2017, ACS Appl. Mater. Interfaces, 9, 10664, 10.1021/acsami.7b00085
Chang, 2013, Adv. Mater., 25, 756, 10.1002/adma.201202920
Lee, 2017, Sci. Rep., 7, 41190, 10.1038/srep41190
Kumar, 2017, ACS Omega, 2, 7532, 10.1021/acsomega.7b00678
Ghosh, 2017, ChemistrySelect, 2, 11590, 10.1002/slct.201702737
Li, 2015, J. Power Sources, 292, 15, 10.1016/j.jpowsour.2015.04.173
Guo, 2017, Adv. Funct. Mater., 27, 1602699, 10.1002/adfm.201602699
Zhang, 2015, Nanoscale, 7, 10391, 10.1039/C5NR01896J
Chen, 2018, Nano Energy, 47, 66, 10.1016/j.nanoen.2018.02.023
Feng, 2018, J. Am. Chem. Soc., 140, 610, 10.1021/jacs.7b08521
Duan, 2015, Adv. Mater., 27, 4234, 10.1002/adma.201501692
Hui, 2016, Adv. Mater., 28, 8945, 10.1002/adma.201602502
Wu, 2015, RSC Adv., 5, 32976, 10.1039/C5RA01414J
Yu, 2015, ACS Appl. Mater. Interfaces, 7, 28116, 10.1021/acsami.5b09447
Shinde, 2015, Chem. Commun., 51, 15716, 10.1039/C5CC05644F
Hong, 2015, Nat. Commun., 6, 6293, 10.1038/ncomms7293
Zhou, 2013, Nano Lett., 13, 2615, 10.1021/nl4007479
Vrubel, 2012, Energy Environ. Sci., 5, 6136, 10.1039/c2ee02835b
Chang, 2018, Appl. Catal., B, 232, 446, 10.1016/j.apcatb.2018.03.087
Liu, 2018, Chem. Mater., 30, 1055, 10.1021/acs.chemmater.7b04976
Singh, 2018, ACS Catal., 8, 4017, 10.1021/acscatal.8b00106
Suzuki, 2018, Appl. Catal., B, 224, 572, 10.1016/j.apcatb.2017.10.053
Zhang, 2018, J. Mater. Chem. A, 6, 7977, 10.1039/C8TA01163J
Fronzi, 2018, Phys. Chem. Chem. Phys., 20, 2356, 10.1039/C7CP06637F
Fang, 2018, Adv. Energy Mater., 1703155, 10.1002/aenm.201703155
Ou, 2018, Nano Res., 11, 751, 10.1007/s12274-017-1684-2
Ye, 2016, Nano Lett., 16, 1097, 10.1021/acs.nanolett.5b04331
Yin, 2016, J. Am. Chem. Soc., 138, 7965, 10.1021/jacs.6b03714
Liu, 2017, Nanoscale, 9, 16616, 10.1039/C7NR06111K
Zhang, 2017, J. Phys. Chem. C, 121, 1530, 10.1021/acs.jpcc.6b11987
Zhang, 2018, Small, 14, 1703098, 10.1002/smll.201703098
Niazi, 2001, J. Phys.: Condens. Matter, 13, 6787
Gopalakrishnan, 2018, Sustainable Energy Fuels, 2, 96, 10.1039/C7SE00376E
Huan, 2018, Adv. Mater., 30, 1705916, 10.1002/adma.201705916
Liu, 2017, ACS Nano, 11, 11574, 10.1021/acsnano.7b06501
He, 2018, J. Mater. Res., 33, 519, 10.1557/jmr.2017.270
Klaine, 2008, Environ. Toxicol. Chem., 27, 1825, 10.1897/08-090.1
Zhao, 2013, Nat. Commun., 4, 2390, 10.1038/ncomms3390
Sobczynski, 1991, J. Catal., 131, 156, 10.1016/0021-9517(91)90332-X
Lukowski, 2014, Energy Environ. Sci., 7, 2608, 10.1039/C4EE01329H
Zhou, 2016, J. Mater. Chem. A, 4, 9472, 10.1039/C6TA02876D
Huang, 2016, J. Am. Chem. Soc., 138, 1359, 10.1021/jacs.5b11986
Wu, 2018, Nat. Commun., 9, 1425, 10.1038/s41467-018-03858-w
Bai, 2018, ACS Appl. Mater. Interfaces, 10, 1678, 10.1021/acsami.7b14997
Norskov, 2006, Science, 312, 1322, 10.1126/science.1127180
Miao, 2017, J. Am. Chem. Soc., 139, 13604, 10.1021/jacs.7b07044
Ouyang, 2015, Electrochim. Acta, 174, 297, 10.1016/j.electacta.2015.05.186
Jiang, 2018, ACS Appl. Mater. Interfaces, 10, 9379, 10.1021/acsami.7b18439
Wang, 2016, ACS Catal., 6, 6585, 10.1021/acscatal.6b01927
Worsley, 2015, ACS Nano, 9, 4698, 10.1021/acsnano.5b00087
Liu, 2018, Nano Energy, 44, 7, 10.1016/j.nanoen.2017.11.063
Chen, 2016, Catal. Commun., 85, 26, 10.1016/j.catcom.2016.07.010
Zhu, 2018, ACS Sustainable Chem. Eng., 6, 5011, 10.1021/acssuschemeng.7b04663
Chandrasekaran, 2017, Dalton Trans., 46, 13912, 10.1039/C7DT02936E
Chang, 2014, ACS Nano, 8, 7078, 10.1021/nn5019945
He, 2013, Nano Lett., 13, 2931, 10.1021/nl4013166
Peng, 2016, ACS Catal., 6, 6723, 10.1021/acscatal.6b02076
Lei, 2018, Chem. Commun., 54, 603, 10.1039/C7CC08178B
Yanagida, 1982, Chem. Lett., 1069, 10.1246/cl.1982.1069
Kalyanasundaram, 1981, Helv. Chim. Acta, 64, 362, 10.1002/hlca.19810640137
Reber, 1984, J. Phys. Chem., 88, 5903, 10.1021/j150668a032
Zheng, 2017, Adv. Funct. Mater., 27, 1605846, 10.1002/adfm.201605846
Fu, 2018, ACS Appl. Nano Mater., 1, 162923
Silva, 2008, J. Phys. Chem. C, 112, 12069, 10.1021/jp8037279
Jing, 2006, J. Phys. Chem. B, 110, 11139, 10.1021/jp060905k
Yu, 2018, ACS Sustainable Chem. Eng., 6, 5513, 10.1021/acssuschemeng.8b00398
Toe, 2018, J. Phys. Chem. C, 122, 14072, 10.1021/acs.jpcc.8b01169
Li, 2015, Int. J. Hydrogen Energy, 40, 15503, 10.1016/j.ijhydene.2015.08.110
Bessekhouad, 2002, Sol. Energy Mater. Sol. Cells, 73, 339, 10.1016/S0927-0248(01)00218-5
Fu, 2010, Appl. Catal., B, 95, 393, 10.1016/j.apcatb.2010.01.018
Yu, 2014, ACS Appl. Mater. Interfaces, 6, 22370, 10.1021/am506396z
Zhuang, 2013, Phys. Rev. B: Condens. Matter Mater. Phys., 88, 115314, 10.1103/PhysRevB.88.115314
Gou, 2006, J. Am. Chem. Soc., 128, 7222, 10.1021/ja0580845
Shen, 2008, J. Phys. Chem. Solids, 69, 2426, 10.1016/j.jpcs.2008.04.035
Chai, 2011, J. Phys. Chem. C, 115, 6149, 10.1021/jp1112729
Chaudhari, 2011, Green Chem., 13, 2500, 10.1039/c1gc15515f
Shi, 2013, Langmuir, 29, 12818, 10.1021/la402473k
Carević, 2017, Mater. Res. Bull., 87, 140, 10.1016/j.materresbull.2016.11.037
Song, 2015, J. Solid State Chem., 232, 138, 10.1016/j.jssc.2015.09.025
Chen, 2016, Catal. Commun., 87, 1, 10.1016/j.catcom.2016.08.031
Shen, 2008, Int. J. Hydrogen Energy, 33, 4501, 10.1016/j.ijhydene.2008.05.043
Shen, 2009, Mater. Res. Bull., 44, 100, 10.1016/j.materresbull.2008.03.027
Bhirud, 2011, Int. J. Hydrogen Energy, 36, 11628, 10.1016/j.ijhydene.2011.06.061
Ding, 2013, Int. J. Hydrogen Energy, 38, 13153, 10.1016/j.ijhydene.2013.07.109
Zheng, 2009, Inorg. Chem., 48, 4003, 10.1021/ic802399f
Kudo, 2002, Chem. Lett., 882, 10.1246/cl.2002.882
Shang, 2013, J. Mater. Chem. A, 1, 4552, 10.1039/c3ta01685d
Chen, 2013, J. Mater. Chem. A, 1, 4316, 10.1039/c3ta01491f
Dal Santo, 2012, Catal. Today, 197, 190, 10.1016/j.cattod.2012.07.037
Kaur, 2017, ACS Sustainable Chem. Eng., 5, 4293, 10.1021/acssuschemeng.7b00325
Zhao, 2018, Chin. J. Catal., 39, 495, 10.1016/S1872-2067(17)62946-2
Chen, 2017, J. Mater. Chem. A, 5, 24116, 10.1039/C7TA07587A
Ikeue, 2009, Chem. Mater., 22, 743, 10.1021/cm9026013
Takayama, 2017, Chem. Lett., 46, 616, 10.1246/cl.161192
Kudo, 1999, Catal. Lett., 58, 241, 10.1023/A:1019067025917
Kale, 2011, J. Mater. Chem., 21, 2624, 10.1039/C0JM02890H
Chen, 2011, Science, 331, 746, 10.1126/science.1200448
Yi, 2010, Nat. Mater., 9, 559, 10.1038/nmat2780
Fujishima, 1972, Nature, 238, 37, 10.1038/238037a0
Lee, 2018, Int. J. Hydrogen Energy, 43, 748, 10.1016/j.ijhydene.2017.10.169
Yu, 2014, J. Am. Chem. Soc., 136, 9236-, 10.1021/ja502076b
Yuan, 2014, Energy Environ. Sci., 7, 3934, 10.1039/C4EE02914C
Zhang, 2013, Rep. Prog. Phys., 76, 046401, 10.1088/0034-4885/76/4/046401
Yan, 2009, J. Catal., 266, 165, 10.1016/j.jcat.2009.06.024
Shemesh, 2011, Angew. Chem., Int. Ed., 123, 1217, 10.1002/ange.201006407
Meng, 2013, J. Am. Chem. Soc., 135, 10286, 10.1021/ja404851s
Jia, 2011, J. Phys. Chem. C, 115, 11466, 10.1021/jp2023617
Kang, 2015, Nanoscale, 7, 4482, 10.1039/C4NR07303G
Raza, 2017, J. Am. Chem. Soc., 139, 14767, 10.1021/jacs.7b08619
Kudo, 2000, Chem. Commun., 1371, 10.1039/b003297m
Tsuji, 2003, J. Photochem. Photobiol., A, 156, 249, 10.1016/S1010-6030(02)00433-1
Zhang, 2011, J. Mater. Chem., 21, 14655, 10.1039/c1jm12596f
Arai, 2008, Chem. Mater., 20, 1997, 10.1021/cm071803p
Zhang, 2013, ACS Appl. Mater. Interfaces, 5, 1031, 10.1021/am302726y
Kuang, 2016, Small, 12, 6735, 10.1002/smll.201602870
Shen, 2008, J. Phys. Chem. C, 112, 16148, 10.1021/jp804525q
Jing, 2010, Catal. Lett., 140, 167, 10.1007/s10562-010-0442-9
Tian, 2014, Int. J. Hydrogen Energy, 39, 6335, 10.1016/j.ijhydene.2014.01.188
Shen, 2012, J. Phys. Chem. Solids, 73, 79, 10.1016/j.jpcs.2011.09.027
Shen, 2011, J. Power Sources, 196, 10112, 10.1016/j.jpowsour.2011.08.103
Bai, 2018, J. Photochem. Photobiol., A, 356, 355, 10.1016/j.jphotochem.2018.01.014
Hao, 2016, ACS Sustainable Chem. Eng., 5, 1165, 10.1021/acssuschemeng.6b02499
Ding, 2016, J. Mater. Chem. A, 4, 12630, 10.1039/C6TA04468A
Shi, 2018, Adv. Mater., 30, 1705941, 10.1002/adma.201705941
Ye, 2018, Appl. Catal., B, 233, 70, 10.1016/j.apcatb.2018.03.060
Yu, 2014, Adv. Mater., 26, 892, 10.1002/adma.201304173
Zhang, 2012, ACS Appl. Mater. Interfaces, 4, 593, 10.1021/am2017199
Zhang, 2014, ACS Catal., 4, 3724, 10.1021/cs500794j
Li, 2016, Nat. Commun., 7, 11480, 10.1038/ncomms11480
Lin, 2018, Appl. Catal., B, 220, 542, 10.1016/j.apcatb.2017.08.071
Chen, 2013, Int. J. Photoenergy, 2013, 5
Zhang, 2013, Phys. Chem. Chem. Phys., 15, 12088, 10.1039/c3cp50734c
Chen, 2014, Appl. Catal., B, 152–153, 68, 10.1016/j.apcatb.2014.01.022
Zhang, 2013, Int. J. Hydrogen Energy, 38, 11811, 10.1016/j.ijhydene.2013.06.115
Jing, 2007, Catal. Commun., 8, 795, 10.1016/j.catcom.2006.09.009
Akple, 2015, Appl. Surf. Sci., 358, 196, 10.1016/j.apsusc.2015.08.250
Zhao, 2016, Appl. Catal., B, 185, 242, 10.1016/j.apcatb.2015.12.023
Wei, 2014, Appl. Catal., B, 144, 521, 10.1016/j.apcatb.2013.07.064
Chen, 2014, Appl. Catal., B, 160–161, 614, 10.1016/j.apcatb.2014.05.028
Zhang, 2017, Radiat. Phys. Chem., 137, 104, 10.1016/j.radphyschem.2016.09.026
Swain, 2017, ACS Omega, 2, 3745, 10.1021/acsomega.7b00492
Liu, 2019, Appl. Catal., B, 241, 236, 10.1016/j.apcatb.2018.09.040
Zirak, 2015, Sol. Energy Mater. Sol. Cells, 141, 260, 10.1016/j.solmat.2015.05.051
Reddy, 2017, ChemSusChem, 10, 1563, 10.1002/cssc.201601799
Liu, 2018, Chem. Eng. J., 339, 117, 10.1016/j.cej.2018.01.124
Yang, 2017, ACS Appl. Mater. Interfaces, 9, 6950, 10.1021/acsami.6b09873
Chava, 2018, ACS Sustainable Chem. Eng., 6, 6445, 10.1021/acssuschemeng.8b00249
Zong, 2008, J. Am. Chem. Soc., 130, 7176, 10.1021/ja8007825
Tang, 2011, Angew. Chem., Int. Ed., 123, 10385, 10.1002/ange.201104412
Bai, 2018, ChemCatChem, 10, 2107, 10.1002/cctc.201701998
Guo, 2018, J. Alloys Compd., 749, 473, 10.1016/j.jallcom.2018.03.329
Xiao, 2018, Prog. Nat. Sci.: Mater. Int., 28, 189, 10.1016/j.pnsc.2018.02.003
Ho, 2004, Langmuir, 20, 5865, 10.1021/la049838g
Hou, 2013, Angew. Chem., Int. Ed., 52, 3621, 10.1002/anie.201210294
Yang, 2009, J. Solid State Chem., 182, 807, 10.1016/j.jssc.2008.12.018
Wang, 2016, J. Photochem. Photobiol., A, 325, 55, 10.1016/j.jphotochem.2016.04.008
Zhou, 2013, Small, 9, 140, 10.1002/smll.201201161
Frame, 2010, J. Phys. Chem. C, 114, 10628, 10.1021/jp101308e
Liao, 2014, J. Phys. Chem. C, 118, 17594, 10.1021/jp5038014
Ma, 2017, Dalton Trans., 46, 3877, 10.1039/C6DT04916H
He, 2016, Ind. Eng. Chem. Res., 55, 8327, 10.1021/acs.iecr.6b01511
Zong, 2011, J. Phys. Chem. C, 115, 12202, 10.1021/jp2006777
Chen, 2015, Angew. Chem., Int. Ed., 54, 1210, 10.1002/anie.201410172
Sun, 2016, J. Mater. Chem. A, 4, 1598, 10.1039/C5TA07561K
Zhen, 2018, Appl. Catal., B, 221, 243, 10.1016/j.apcatb.2017.09.024
Qin, 2016, ACS Appl. Mater. Interfaces, 8, 1264, 10.1021/acsami.5b09943
Zhang, 2018, Appl. Catal., B, 224, 1000, 10.1016/j.apcatb.2017.11.043
Peng, 2017, Phys. Chem. Chem. Phys., 19, 25919, 10.1039/C7CP05147F
Wang, 2017, Catal. Sci. Technol., 7, 2524, 10.1039/C7CY00476A
Hou, 2012, RSC Adv., 2, 10330, 10.1039/c2ra21641h
Zou, 2015, ACS Appl. Mater. Interfaces, 7, 28429, 10.1021/acsami.5b09255
Park, 2017, Chem. Commun., 53, 3277, 10.1039/C7CC00071E
Nguyen, 2018, ACS Appl. Mater. Interfaces, 10, 30035-, 10.1021/acsami.8b10010
Liu, 2018, Appl. Catal., B, 221, 433, 10.1016/j.apcatb.2017.09.043
Wang, 2018, J. Am. Chem. Soc., 140, 15145, 10.1021/jacs.8b07721
Qin, 2016, J. Phys. Chem. C, 120, 14581, 10.1021/acs.jpcc.6b05230
Yuan, 2013, Int. J. Hydrogen Energy, 38, 7218, 10.1016/j.ijhydene.2013.03.169
Tabata, 2010, J. Phys. Chem. C, 114, 11215, 10.1021/jp103158f
Wang, 2013, Int. J. Hydrogen Energy, 38, 10739, 10.1016/j.ijhydene.2013.02.131
Wang, 2014, Int. J. Hydrogen Energy, 39, 13421, 10.1016/j.ijhydene.2014.04.020
Yu, 2014, Int. J. Hydrogen Energy, 39, 15387, 10.1016/j.ijhydene.2014.07.165
Qiu, 2017, Angew. Chem., Int. Ed., 129, 2728, 10.1002/ange.201612551
Prakash, 2018, Sol. Energy Mater. Sol. Cells, 180, 205, 10.1016/j.solmat.2018.03.011
Tsuji, 2006, Chem. Mater., 18, 1969, 10.1021/cm0527017
Chandra, 2018, Inorg. Chem., 57, 4524, 10.1021/acs.inorgchem.8b00283
Sandroni, 2018, Energy Environ. Sci., 11, 1752, 10.1039/C8EE00120K
Kang, 2017, Adv. Powder Technol., 28, 2438, 10.1016/j.apt.2017.07.001
Katsumata, 2015, Ind. Eng. Chem. Res., 54, 3532, 10.1021/acs.iecr.5b00451
Du, 2016, ACS Appl. Mater. Interfaces, 8, 4023, 10.1021/acsami.5b11377
Nguyen, 2013, Nanoscale, 5, 1479, 10.1039/c2nr34037b
Tsuji, 2005, J. Phys. Chem. B, 109, 7323, 10.1021/jp044722e
Li, 2010, Int. J. Hydrogen Energy, 35, 7116, 10.1016/j.ijhydene.2010.02.017
Wei, 2013, Beilstein J. Nanotechnol., 4, 949, 10.3762/bjnano.4.107
Mei, 2013, Dalton Trans., 42, 2687, 10.1039/c2dt32271d
Li, 2017, Dalton Trans., 46, 10620, 10.1039/C7DT00819H
Bernardi, 2013, Nano Lett., 13, 3664, 10.1021/nl401544y
Guo, 2014, Int. J. Hydrogen Energy, 39, 16832, 10.1016/j.ijhydene.2014.08.088
Ye, 2014, ACS Appl. Mater. Interfaces, 6, 3483, 10.1021/am5004415
Xia, 2017, Appl. Catal., B, 206, 344, 10.1016/j.apcatb.2017.01.060
Mahadadalkar, 2016, RSC Adv., 6, 34724, 10.1039/C6RA02002J
Zhou, 2013, Chem. Commun., 49, 2237, 10.1039/c3cc38999e
Ye, 2014, Appl. Catal., B, 160, 552, 10.1016/j.apcatb.2014.06.012
Kale, 2015, Phys. Chem. Chem. Phys., 17, 31850, 10.1039/C5CP05546F
Zhang, 2012, Nano Lett., 12, 4584, 10.1021/nl301831h
Chai, 2012, Dalton Trans., 41, 1179, 10.1039/C1DT11308A
Xia, 2017, Appl. Surf. Sci., 391, 565, 10.1016/j.apsusc.2016.06.062
Zhang, 2013, ACS Appl. Mater. Interfaces, 5, 10317, 10.1021/am403327g
Jiang, 2015, ACS Appl. Mater. Interfaces, 7, 19234, 10.1021/acsami.5b05118
Shen, 2018, ACS Appl. Energy Mater., 1, 2232, 10.1021/acsaem.8b00311
Wang, 2017, Appl. Catal., B, 204, 577, 10.1016/j.apcatb.2016.12.008
Hu, 2016, ACS Sustainable Chem. Eng., 4, 2269, 10.1021/acssuschemeng.5b01742
Xiang, 2012, J. Am. Chem. Soc., 134, 6575, 10.1021/ja302846n
Lu, 2018, Nano Energy, 47, 8, 10.1016/j.nanoen.2018.02.021
Chang, 2018, Int. J. Hydrogen Energy, 10.1016/j.ijhydene.2018.04.229
Yuan, 2016, Appl. Catal., B, 188, 13, 10.1016/j.apcatb.2016.01.061
Liu, 2014, Chem. Commun., 50, 11004, 10.1039/C4CC04653F
Gogoi, 2018, ACS Sustainable Chem. Eng., 6, 6718, 10.1021/acssuschemeng.8b00512
Zhang, 2018, J. Colloid Interface Sci., 526, 374, 10.1016/j.jcis.2018.05.003
Xiang, 2016, ChemSusChem, 9, 996, 10.1002/cssc.201501702
Ha, 2017, Sci. Rep., 7, 39411, 10.1038/srep39411
Zhu, 2017, Renewable Energy, 113, 1503, 10.1016/j.renene.2017.06.042
Zhang, 2014, Adv. Energy Mater., 4, 1301925, 10.1002/aenm.201301925
Yao, 2018, Bioresour. Technol., 256, 208, 10.1016/j.biortech.2018.02.027
Wang, 2018, Appl. Surf. Sci., 448, 539, 10.1016/j.apsusc.2018.04.153
Yang, 2014, ACS Appl. Mater. Interfaces, 6, 9078, 10.1021/am5020953
Tian, 2015, Int. J. Hydrogen Energy, 40, 2141, 10.1016/j.ijhydene.2014.12.025
Zhang, 2011, Nano Lett., 11, 4774, 10.1021/nl202587b
Bai, 2011, Mater. Res. Bull., 46, 1028, 10.1016/j.materresbull.2011.03.012
Ding, 2014, J. Phys. Chem. C, 118, 27690, 10.1021/jp508497a
Yu, 2013, Int. J. Hydrogen Energy, 38, 1278, 10.1016/j.ijhydene.2012.11.020
Fang, 2015, ACS Appl. Mater. Interfaces, 7, 13915, 10.1021/acsami.5b02641
Feng, 2017, J. Mater. Chem. A, 5, 1387, 10.1039/C6TA09633F
Hao, 2018, Appl. Catal., B, 221, 302, 10.1016/j.apcatb.2017.09.006
Zhang, 2018, Appl. Catal., B, 229, 227, 10.1016/j.apcatb.2018.02.025
Zhang, 2017, ACS Appl. Mater. Interfaces, 9, 23635, 10.1021/acsami.7b03673
Bao, 2007, J. Phys. Chem. C, 111, 17527, 10.1021/jp076566s
Wang, 2018, Appl. Catal., B, 236, 233, 10.1016/j.apcatb.2018.05.005
Jiang, 2017, ACS Sustainable Chem. Eng., 6, 854, 10.1021/acssuschemeng.7b03201
Xing, 2006, Int. J. Hydrogen Energy, 31, 2018, 10.1016/j.ijhydene.2006.02.003
Chen, 2012, Appl. Catal., A, 443, 138, 10.1016/j.apcata.2012.07.033
Tian, 2015, Mater. Res. Bull., 70, 645, 10.1016/j.materresbull.2015.05.033
Kim, 2014, Science, 1245026
Park, 2006, Nano Lett., 6, 24, 10.1021/nl051807y
Tilley, 2010, Angew. Chem., Int. Ed., 122, 6549, 10.1002/ange.201003110
Swierk, 2013, Chem. Soc. Rev., 42, 2357, 10.1039/C2CS35246J
Ai, 2015, Adv. Funct. Mater., 25, 5706, 10.1002/adfm.201502461
Pareek, 2016, J. Phys.: Conf. Ser., 755, 012006
Zhang, 2015, J. Mater. Chem. A, 3, 12769, 10.1039/C5TA01948F
Zhang, 2015, J. Phys. Chem. C, 119, 27875, 10.1021/acs.jpcc.5b07533
Zeng, 2014, Nano Energy, 9, 152, 10.1016/j.nanoen.2014.06.023
Pawar, 1984, Mater. Chem. Phys., 11, 401, 10.1016/0254-0584(84)90064-6
Jin-nouchi, 2010, ChemPhysChem, 11, 3592, 10.1002/cphc.201000593
Trevisan, 2012, J. Phys. Chem. Lett., 4, 141, 10.1021/jz301890m
Wu, 2015, J. Alloys Compd., 633, 83, 10.1016/j.jallcom.2015.02.023
Patel, 2014, RSC Adv., 4, 39343, 10.1039/C4RA06219A
Antunez, 2014, Chem. Mater., 26, 5444, 10.1021/cm503124u
Vequizo, 2016, Appl. Phys. Express, 9, 067101, 10.7567/APEX.9.067101
Gao, 2016, J. Alloys Compd., 688, 668, 10.1016/j.jallcom.2016.07.083
Kabouche, 2017, Appl. Phys. A: Mater. Sci. Process., 123, 545, 10.1007/s00339-017-1155-3
Jing, 2017, J. Alloys Compd., 726, 720, 10.1016/j.jallcom.2017.07.303
Wei, 2018, Adv. Sci., 5, 1700362, 10.1002/advs.201700362
Patel, 2017, J. Phys. Chem. Lett., 8, 6099, 10.1021/acs.jpclett.7b02998
Zhang, 2016, ACS Appl. Mater. Interfaces, 8, 9684, 10.1021/acsami.6b00429
Guo, 2015, J. Power Sources, 285, 185, 10.1016/j.jpowsour.2015.03.112
Luo, 2015, Nano Lett., 15, 1395, 10.1021/nl504746b
Yu, 2014, ACS Appl. Mater. Interfaces, 6, 8467, 10.1021/am501336u
Bo, 2015, J. Nanopart. Res., 17, 295, 10.1007/s11051-015-3098-y
Hou, 2011, Nat. Mater., 10, 434, 10.1038/nmat3008
Sun, 2008, J. Am. Chem. Soc., 130, 1124, 10.1021/ja0777741
Chi, 2008, Nanotechnology, 19, 125704, 10.1088/0957-4484/19/12/125704
Yamada, 2005, J. Electroanal. Chem., 585, 105, 10.1016/j.jelechem.2005.07.025
Wang, 2010, Nano Lett., 10, 1088, 10.1021/nl100250z
Cao, 2016, Nano Energy, 24, 25, 10.1016/j.nanoen.2016.04.001
Chen, 2011, J. Phys. Chem. C, 115, 21971, 10.1021/jp204291b
Moriya, 2013, J. Am. Chem. Soc., 135, 3733, 10.1021/ja312653y
Wang, 2013, ACS Appl. Mater. Interfaces, 5, 4021, 10.1021/am400851q
Zhang, 2015, J. Mater. Chem. A, 3, 535, 10.1039/C4TA04951A
Zhang, 2016, Sci. Rep., 6, 27241, 10.1038/srep27241
Robel, 2005, Adv. Mater., 17, 2458, 10.1002/adma.200500418
Tachibana, 2009, J. Phys. Chem. C, 113, 6852, 10.1021/jp809042z
Navarro, 2008, Int. J. Hydrogen Energy, 33, 4265, 10.1016/j.ijhydene.2008.05.048
Hetrick, 1971, J. Appl. Phys., 42, 2882, 10.1063/1.1660644
Peter, 2002, Chem. Commun., 1030, 10.1039/b201661c
Chen, 2011, J. Mater. Chem., 21, 16430, 10.1039/c1jm13616j
Vaddipalli, 2016, ACS Appl. Mater. Interfaces, 8, 23049, 10.1021/acsami.6b06851
Pareek, 2013, Int. J. Hydrogen Energy, 38, 36, 10.1016/j.ijhydene.2012.10.057
Chi, 2009, Nanotechnology, 21, 025202, 10.1088/0957-4484/21/2/025202
Ni, 2007, Renewable Sustainable Energy Rev., 11, 401, 10.1016/j.rser.2005.01.009
Vogel, 1994, J. Phys. Chem., 98, 3183, 10.1021/j100063a022
Baker, 2009, Adv. Funct. Mater., 19, 805, 10.1002/adfm.200801173
Chen, 2014, Nanoscale Res. Lett., 9, 605, 10.1186/1556-276X-9-605
Yu, 2015, Langmuir, 31, 10555, 10.1021/acs.langmuir.5b02490
Kurnia, 2016, Sol. Energy Mater. Sol. Cells, 153, 179, 10.1016/j.solmat.2016.04.021
Meng, 2013, Phys. Chem. Chem. Phys., 15, 9531, 10.1039/c3cp50330e
Hong, 2012, Nanoscale, 4, 2859, 10.1039/c2nr30150d
Kurnia, 2016, Cryst. Growth Des., 16, 2461, 10.1021/acs.cgd.5b01590
Huang, 2009, Mater. Chem. Phys., 117, 156, 10.1016/j.matchemphys.2009.05.026
Maity, 2004, Nanotechnology, 15, 812, 10.1088/0957-4484/15/7/017
Liu, 2013, Microelectron. Eng., 103, 12, 10.1016/j.mee.2012.09.006
Zhou, 2015, Phys. Chem. Chem. Phys., 17, 1870, 10.1039/C4CP03736G
Liu, 2015, Nano Res., 8, 2891, 10.1007/s12274-015-0794-y
Prasert, 2014, Adv. Energy Mater., 4, 1400496, 10.1002/aenm.201400496
Noguchi, 1994, Sol. Energy Mater. Sol. Cells, 35, 325, 10.1016/0927-0248(94)90158-9
Lu, 2009, Adv. Mater. Res., 60–61, 11, 10.4028/www.scientific.net/AMR.60-61.11
Devika, 2006, J. Electrochem. Soc., 153, G727, 10.1149/1.2204870
Akkari, 2012, J. Mater. Sci., 47, 1365, 10.1007/s10853-011-5912-y
Sunil, 2014, Chin. Phys. Lett., 31, 106102, 10.1088/0256-307X/31/10/106102
Seal, 2015, J. Phys. Chem. C, 119, 6471, 10.1021/jp512927y
Ren, 2018, Opt. Commun., 406, 118, 10.1016/j.optcom.2017.07.033
Yuzhu, 2017, Nanotechnology, 28, 415202, 10.1088/1361-6528/aa8686
Liu, 2013, J. Phys. Chem. C, 117, 12949, 10.1021/jp4009652
Jiang, 2015, J. Mater. Chem. A, 3, 18406, 10.1039/C5TA04258E
Liu, 2017, ACS Appl. Mater. Interfaces, 9, 18369, 10.1021/acsami.7b04310
Wang, 2017, ACS Appl. Mater. Interfaces, 9, 40235, 10.1021/acsami.7b11510
Liu, 2016, Int. J. Hydrogen Energy, 41, 5878, 10.1016/j.ijhydene.2016.01.171
Liu, 2016, Sci. Rep., 6, 23451, 10.1038/srep23451
Wan, 2016, CrystEngComm, 18, 1577, 10.1039/C5CE02252E
Ennaoui, 1993, Sol. Energy Mater. Sol. Cells, 29, 289, 10.1016/0927-0248(93)90095-K
Barawi, 2016, J. Phys. Chem. C, 120, 9547, 10.1021/acs.jpcc.5b11482
Kmentova, 2018, Catal. Today, 313, 224, 10.1016/j.cattod.2017.11.004
Kuo, 2018, Green Chem., 20, 1640, 10.1039/C7GC03173D
Ehsan, 2013, Dalton Trans., 42, 10919, 10.1039/c3dt50781e
Li, 2018, Nano-Micro Lett., 10, 45, 10.1007/s40820-018-0199-z
Li, 2012, Int. J. Hydrogen Energy, 37, 15029, 10.1016/j.ijhydene.2012.07.117
Lin, 2017, Electrochim. Acta, 252, 235, 10.1016/j.electacta.2017.09.007
Wang, 2017, Nano Res., 10, 2699, 10.1007/s12274-017-1473-y
Cheng, 2011, Sol. Energy Mater. Sol. Cells, 95, 1859, 10.1016/j.solmat.2011.02.008
Cheng, 2016, J. Power Sources, 317, 81, 10.1016/j.jpowsour.2016.03.086
Guo, 2016, RSC Adv., 6, 104041, 10.1039/C6RA22674D
Liu, 2015, ACS Appl. Mater. Interfaces, 7, 10763, 10.1021/acsami.5b00830
Li, 2010, J. Mater. Chem., 20, 3656, 10.1039/b927279h
Li, 2011, J. Mater. Chem., 21, 5089, 10.1039/c0jm04276e
Li, 2008, Int. J. Hydrogen Energy, 33, 2891, 10.1016/j.ijhydene.2008.04.008
David, 2018, Electrochim. Acta, 276, 223, 10.1016/j.electacta.2018.04.110
Yuan, 2014, J. Mater. Chem. A, 2, 14401, 10.1039/C4TA02670E
Pawar, 2016, Solid State Sci., 61, 89, 10.1016/j.solidstatesciences.2016.09.011
DeAngelis, 2016, ACS Appl. Mater. Interfaces, 8, 8445, 10.1021/acsami.5b12178
Flores, 2018, ACS Appl. Energy Mater., 1, 2333, 10.1021/acsaem.8b00449
Pathak, 2018, J. Phys. Chem. C, 122, 13659, 10.1021/acs.jpcc.8b00120
Paracchino, 2012, Energy Environ. Sci., 5, 8673, 10.1039/c2ee22063f
Zhang, 2012, J. Mater. Chem., 22, 2456, 10.1039/C1JM14478B
Oh, 2011, Energy Environ. Sci., 4, 1690, 10.1039/c1ee01124c
Paracchino, 2011, Nat. Mater., 10, 456, 10.1038/nmat3017
Brillet, 2012, Nat. Photonics, 6, 824, 10.1038/nphoton.2012.265
Verlage, 2015, Energy Environ. Sci., 8, 3166, 10.1039/C5EE01786F
Hu, 2013, Energy Environ. Sci., 6, 2984, 10.1039/c3ee40453f
Urbain, 2016, Energy Environ. Sci., 9, 145, 10.1039/C5EE02393A
Wang, 2013, Proc. Natl. Acad. Sci. U. S. A., 110, 19701, 10.1073/pnas.1316792110
Fontana, 2013, Sci. Rep., 3, 1634, 10.1038/srep01634
Phong, 2012, Chem. – Eur. J., 18, 13994, 10.1002/chem.201202214
Ding, 2014, J. Am. Chem. Soc., 136, 8504, 10.1021/ja5025673
Mensur, 2018, Adv. Sustainable Syst., 2, 1700142, 10.1002/adsu.201700142
Fan, 2017, ACS Appl. Mater. Interfaces, 9, 6123, 10.1021/acsami.6b15854
Qingwei, 2018, Nanotechnology, 29, 105402, 10.1088/1361-6528/aaa48c
Tan, 2018, ACS Appl. Mater. Interfaces, 10, 10898, 10.1021/acsami.8b00305
Chen, 2015, ACS Nano, 9, 3829, 10.1021/nn506819m
Xu, 2013, Chem. Commun., 49, 9803, 10.1039/c3cc46342g
Deshmukh, 1994, J. Phys. D: Appl. Phys., 27, 1786, 10.1088/0022-3727/27/8/031
Pareek, 2014, Int. J. Hydrogen Energy, 39, 4170, 10.1016/j.ijhydene.2013.12.185
Wang, 2013, Nanoscale, 5, 1876, 10.1039/c2nr33755j
Song, 2017, Nanoscale, 9, 6296, 10.1039/C7NR01170A
Huo, 2011, Appl. Catal., B, 106, 69
Jiang, 2015, J. Am. Chem. Soc., 137, 13691, 10.1021/jacs.5b09015
Simon, 2016, ACS Energy Lett., 1, 1137, 10.1021/acsenergylett.6b00468
Zhou, 2018, ACS Energy Lett., 3, 177, 10.1021/acsenergylett.7b01062
Yu, 2018, ACS Energy Lett., 3, 760, 10.1021/acsenergylett.7b01326
Septina, 2017, Chem. Mater., 29, 1735, 10.1021/acs.chemmater.6b05248
Yokoyama, 2010, Electrochem. Commun., 12, 851, 10.1016/j.elecom.2010.04.004
Zhang, 2015, Chem. Sci., 6, 894, 10.1039/C4SC02346C
Yang, 2016, ACS Energy Lett., 1, 1127, 10.1021/acsenergylett.6b00453
Mukherjee, 2017, Mater. Res., 20, 430, 10.1590/1980-5373-mr-2016-0628
Martin, 1970, Phys. Rev. B: Solid State, 1, 4005, 10.1103/PhysRevB.1.4005
Fang, 2010, Adv. Funct. Mater., 20, 500, 10.1002/adfm.200901878
Fathy, 2005, Sol. Energy Mater. Sol. Cells, 87, 747, 10.1016/j.solmat.2004.07.048
Macdonald, 2015, J. Mater. Chem. A, 3, 13324, 10.1039/C5TA01821H
Macdonald, 2016, J. Mater. Chem. C, 4, 3379, 10.1039/C5TC03833B
Chae, 2016, J. Am. Chem. Soc., 138, 15673, 10.1021/jacs.6b09595
Goto, 2017, J. Mater. Chem. A, 5, 21242, 10.1039/C7TA06663E
Subramanian, 2001, Mater. Chem. Phys., 71, 40, 10.1016/S0254-0584(00)00526-5
Tanuševski, 2003, Sol. Energy Mater. Sol. Cells, 80, 297, 10.1016/j.solmat.2003.06.002
Sato, 2005, Sol. Energy Mater. Sol. Cells, 85, 153, 10.1016/j.solmat.2004.04.014
Xu, 2018, Nano Energy, 48, 337, 10.1016/j.nanoen.2018.03.078
Dhaygude, 2017, Ionics, 23, 223, 10.1007/s11581-016-1797-8
Huang, 2015, J. Mater. Chem. A, 3, 15824, 10.1039/C5TA03594E
Krunks, 1999, Thin Solid Films, 338, 125, 10.1016/S0040-6090(98)01069-4
Yuan, 2014, Vacuum, 99, 196, 10.1016/j.vacuum.2013.06.005
Zhao, 2014, Angew. Chem., Int. Ed., 53, 11808, 10.1002/anie.201406483
Yang, 2013, J. Mater. Chem. A, 1, 6407
Kaga, 2014, J. Catal., 310, 31, 10.1016/j.jcat.2013.08.025
Iwase, 2015, J. Mater. Chem. A, 3, 8566, 10.1039/C5TA01237F
Quintans, 2015, J. Mater. Chem. A, 3, 14239, 10.1039/C5TA02114F
Li, 2018, Mater. Lett., 210, 70, 10.1016/j.matlet.2017.08.128
Mathews, 2013, J. Mater. Sci.: Mater. Electron., 24, 4060
Wang, 2016, J. Alloys Compd., 688, 923, 10.1016/j.jallcom.2016.07.012
Kato, 2015, J. Phys. Chem. Lett., 6, 1042, 10.1021/acs.jpclett.5b00137
Zheng, 2016, Sci. Adv., 2, e1501602, 10.1126/sciadv.1501602
Ivanovskaya, 2012, Langmuir, 29, 480, 10.1021/la3032489
Jiang, 2016, Catal. Sci. Technol., 6, 1077, 10.1039/C5CY01111F
Jiao, 2015, Chem. Soc. Rev., 44, 2060, 10.1039/C4CS00470A
Züttel, 2003, Mater. Today, 6, 24, 10.1016/S1369-7021(03)00922-2
van de Krol, 2008, J. Mater. Chem., 18, 2311, 10.1039/b718969a
Gao, 2015, Nat. Commun., 6, 7493, 10.1038/ncomms8493
Morales-Guio, 2014, Chem. Soc. Rev., 43, 6555, 10.1039/C3CS60468C
Lee, 2018, NPG Asia Mater., 10, 441, 10.1038/s41427-018-0037-2
Di Giovanni, 2014, ACS Catal., 4, 681, 10.1021/cs4011698
Shi, 2015, J. Am. Chem. Soc., 137, 7365, 10.1021/jacs.5b01732
Cui, 2017, Small, 13, 1602235, 10.1002/smll.201602235
Chen, 2011, Nano Lett., 11, 4168, 10.1021/nl2020476
Zhu, 2016, Chem. Commun., 52, 1486, 10.1039/C5CC08064A
Chen, 2015, Nano Energy, 11, 11, 10.1016/j.nanoen.2014.09.022
Miao, 2015, Sci. Adv., 1, e1500259, 10.1126/sciadv.1500259
Wang, 2016, ACS Nano, 10, 2342, 10.1021/acsnano.5b07126
Staszak-Jirkovský, 2016, Nat. Mater., 15, 197, 10.1038/nmat4481
Jang, 2007, Int. J. Hydrogen Energy, 32, 4786, 10.1016/j.ijhydene.2007.06.026
Wang, 2009, Nat. Mater., 8, 76, 10.1038/nmat2317
Chen, 2010, Chem. Rev., 110, 6503, 10.1021/cr1001645
Xie, 2014, Energy Environ. Sci., 7, 1895, 10.1039/c3ee43750g
Han, 2017, Appl. Catal., B, 202, 298, 10.1016/j.apcatb.2016.09.023
Jang, 2006, Chem. Phys. Lett., 425, 278, 10.1016/j.cplett.2006.05.031
Su, 2017, Sol. Energy, 147, 240, 10.1016/j.solener.2017.03.037
Ding, 2016, J. Appl. Phys., 119, 205704, 10.1063/1.4952377
Simon, 2014, Nat. Mater., 13, 1013, 10.1038/nmat4049
Brahimi, 2007, Catal. Today, 122, 62, 10.1016/j.cattod.2007.01.030
Liang, 2017, Appl. Catal., B, 218, 452, 10.1016/j.apcatb.2017.06.075
Kapinus, 2006, Theor. Exp. Chem., 42, 282, 10.1007/s11237-006-0054-z
Seger, 2012, Angew. Chem., Int. Ed., 51, 9128, 10.1002/anie.201203585
Benck, 2014, Adv. Energy Mater., 4, 1400739, 10.1002/aenm.201400739
Morales-Guio, 2014, Nat. Commun., 5, 3059, 10.1038/ncomms4059
Kumagai, 2015, J. Mater. Chem. A, 3, 8300, 10.1039/C5TA01058F
Yang, 2002, J. Mater. Chem., 12, 1459, 10.1039/b105796k
Fukuzumi, 2017, ChemSusChem, 10, 4264, 10.1002/cssc.201701381
Turner, 2004, Science, 305, 972, 10.1126/science.1103197
Dionigi, 2016, ChemSusChem, 9, 962, 10.1002/cssc.201501581
Hsu, 2018, Adv. Mater., 30, 1707261, 10.1002/adma.201707261
Luo, 2011, Energy Environ. Sci., 4, 4046, 10.1039/c1ee01812d
Cheng, 2017, J. Taiwan Inst. Chem. Eng., 75, 209, 10.1016/j.jtice.2017.04.008
Li, 2011, Int. J. Hydrogen Energy, 36, 4291, 10.1016/j.ijhydene.2011.01.038
Jiang, 2014, J. Mater. Chem. A, 2, 19407, 10.1039/C4TA04339A
Debe, 2012, Nature, 486, 43, 10.1038/nature11115
Cheng, 2011, Nat. Chem., 3, 79, 10.1038/nchem.931
Chandrasekaran, 2016, J. Mater. Chem. A, 4, 13271, 10.1039/C6TA05043C
Khandelwal, 2018, J. Power Sources, 407, 70, 10.1016/j.jpowsour.2018.10.055
Chen, 2011, Energy Environ. Sci., 4, 3167, 10.1039/c0ee00558d
Qu, 2010, ACS Nano, 4, 1321, 10.1021/nn901850u
Li, 2013, Nat. Commun., 4, 1805, 10.1038/ncomms2812
McCloskey, 2011, J. Am. Chem. Soc., 133, 18038, 10.1021/ja207229n
Sadakane, 1998, Chem. Rev., 98, 219, 10.1021/cr960403a
Bianchini, 2009, Chem. Rev., 109, 4183, 10.1021/cr9000995
Shao, 2006, J. Am. Chem. Soc., 128, 3526, 10.1021/ja060167d
Stamenkovic, 2007, Nat. Mater., 6, 241, 10.1038/nmat1840
Cui, 2013, Nat. Mater., 12, 765, 10.1038/nmat3668
Greeley, 2009, Nat. Chem., 1, 552, 10.1038/nchem.367
Gorlin, 2010, J. Am. Chem. Soc., 132, 13612, 10.1021/ja104587v
Amiinu, 2017, Adv. Funct. Mater., 27, 1702300, 10.1002/adfm.201702300
Liu, 2016, Adv. Mater., 28, 3000, 10.1002/adma.201506112
Liu, 2016, Adv. Energy Mater., 6, 3000, 10.1002/adma.201506112
Chua, 2016, ACS Catal., 6, 5724, 10.1021/acscatal.6b01593
Pesci, 2017, ACS Catal., 7, 4990, 10.1021/acscatal.7b01517
Wu, 2013, Acc. Chem. Res., 46, 1878, 10.1021/ar400011z
Li, 2016, J. Power Sources, 307, 1, 10.1016/j.jpowsour.2015.12.115
Rohrbach, 2003, J. Phys.: Condens. Matter, 15, 979
Knipe, 1995, Geochim. Cosmochim. Acta, 59, 1079, 10.1016/0016-7037(95)00025-U
Dou, 2016, Energy Environ. Sci., 9, 1320, 10.1039/C6EE00054A
Shen, 2015, ACS Appl. Mater. Interfaces, 7, 1207, 10.1021/am507033x
Liu, 2013, ACS Appl. Mater. Interfaces, 5, 5002, 10.1021/am4007897
Cao, 2016, Electrochim. Acta, 191, 776, 10.1016/j.electacta.2016.01.137
Shen, 2015, Adv. Energy Mater., 5, 1400977, 10.1002/aenm.201400977
Kuang, 2016, Small, 12, 5656, 10.1002/smll.201600977
Lee, 2016, J. Mater. Chem. A, 4, 7107, 10.1039/C6TA00173D
Mamtani, 2018, Appl. Catal., B, 220, 88, 10.1016/j.apcatb.2017.07.086
Hong, 2019, Carbon, 145, 53, 10.1016/j.carbon.2019.01.002
Zhao, 2019, J. Mater. Chem. A, 7, 7389, 10.1039/C8TA12116H
Yang, 2018, Adv. Energy Mater., 8, 1801839, 10.1002/aenm.201801839
Sumboja, 2019, ChemCatChem, 11, 1205, 10.1002/cctc.201802013
Fu, 2018, Adv. Energy Mater., 8, 1802263, 10.1002/aenm.201802263
Jiang, 2017, Green Chem., 19, 3023, 10.1039/C7GC01012E
Wu, 2017, New J. Chem., 41, 115, 10.1039/C6NJ02184K
Tingting, 2016, Electrochim. Acta, 211, 59, 10.1016/j.electacta.2016.06.028
Mercier, 1997, Adv. Mater., 9, 500, 10.1002/adma.19970090611
Law, 2017, Science, 356, 148, 10.1126/science.aam6274
Manos, 2008, Proc. Natl. Acad. Sci. U. S. A., 105, 3696, 10.1073/pnas.0711528105
Basu, 2010, Environ. Sci. Technol., 44, 6313, 10.1021/es101323w
Apte, 2011, J. Mater. Chem., 21, 19241, 10.1039/c1jm14067a
Li, 2012, Appl. Catal., B, 123, 174, 10.1016/j.apcatb.2012.04.009
Rajendran, 2018, Appl. Nanosci., 8, 61, 10.1007/s13204-018-0652-9
Wu, 2018, Powder Technol., 329, 217, 10.1016/j.powtec.2018.01.046
Dashairya, 2018, J. Alloys Compd., 735, 234, 10.1016/j.jallcom.2017.11.063
Shamraiz, 2016, J. Photochem. Photobiol., B, 159, 33, 10.1016/j.jphotobiol.2016.03.013
Cheriyan, 2018, Superlattices Microstruct., 116, 238, 10.1016/j.spmi.2018.02.032
Wu, 2018, Nano Energy, 46, 372, 10.1016/j.nanoen.2018.02.010
Hu, 2018, ACS Sustainable Chem. Eng., 6, 2676, 10.1021/acssuschemeng.7b04270
Dutta, 2017, ACS Sustainable Chem. Eng., 6, 835, 10.1021/acssuschemeng.7b03186
Bhar, 2013, J. Colloid Interface Sci., 393, 286, 10.1016/j.jcis.2012.10.049
Pourahmad, 2009, J. Alloys Compd., 484, 314, 10.1016/j.jallcom.2009.04.089
Luo, 2012, ACS Appl. Mater. Interfaces, 4, 1813, 10.1021/am3000903
Mondal, 2014, Langmuir, 30, 4157, 10.1021/la500509c
Windle, 2012, Coord. Chem. Rev., 256, 2562, 10.1016/j.ccr.2012.03.010
Morris, 2009, Acc. Chem. Res., 42, 1983, 10.1021/ar9001679
Varghese, 2009, Nano Lett., 9, 731, 10.1021/nl803258p
Jin, 2013, J. Phys. Chem. C, 117, 23848, 10.1021/jp4085525
Chong, 2018, J. Catal., 363, 92, 10.1016/j.jcat.2018.04.020
Xiong, 2017, J. CO2 Util., 18, 53, 10.1016/j.jcou.2017.01.013
Jiao, 2017, J. Am. Chem. Soc., 139, 18044, 10.1021/jacs.7b10287
Wang, 2017, J. Am. Chem. Soc., 139, 17305, 10.1021/jacs.7b10733
Dai, 2017, Appl. Surf. Sci., 403, 230, 10.1016/j.apsusc.2017.01.171
Meng, 2018, Appl. Catal., B, 237, 68, 10.1016/j.apcatb.2018.05.066
Zhao, 2018, Appl. Catal., B, 226, 252, 10.1016/j.apcatb.2017.12.054
Chen, 2017, Mater. Lett., 198, 1, 10.1016/j.matlet.2017.03.164
Jiao, 2017, J. Am. Chem. Soc., 139, 7586, 10.1021/jacs.7b02290
Merki, 2011, Energy Environ. Sci., 4, 3878, 10.1039/c1ee01970h
Feng, 2015, ACS Appl. Mater. Interfaces, 7, 980, 10.1021/am507811a