Recent advances in imaging crustal fault zones: a review
Tóm tắt
Crustal faults usually have a fault core and surrounding regions of brittle damage, forming a low-velocity zone (LVZ) in the immediate vicinity of the main slip interface. The LVZ may amplify ground motion, influence rupture propagation, and hold important information of earthquake physics. A number of geophysical and geodetic methods have been developed to derive high-resolution structure of the LVZ. Here, I review a few recent approaches, including ambient noise cross-correlation on dense across-fault arrays and GPS recordings of fault-zone trapped waves. Despite the past efforts, many questions concerning the LVZ structure remain unclear, such as the depth extent of the LVZ. High-quality data from larger and denser arrays and new seismic imaging technique using larger portion of recorded waveforms, which are currently under active development, may be able to better resolve the LVZ structure. In addition, effects of the along-strike segmentation and gradational velocity changes across the boundaries between the LVZ and the host rock on rupture propagation should be investigated by conducting comprehensive numerical experiments. Furthermore, high-quality active sources such as recently developed large-volume air-gun arrays provide a powerful tool to continuously monitor temporal changes of fault-zone properties, and thus can advance our understanding of fault zone evolution.
Tài liệu tham khảo
Allam AA, Ben-Zion Y (2012) Seismic velocity structures in the southern California plate-boundary environment from double-difference tomography. Geophys J Int 190:1181–1196. doi:10.1111/j.1365-246X.2012.05544.x
Allam AA, Ben-Zion Y, Kurzon I, Vernon F (2014a) Seismic velocity structure in the Hot Springs and trifurcation areas of the San Jacinto Fault Zone, California, from double-difference tomography. Geophys J Int 198(2):978–999. doi:10.1093/gji/ggu176
Allam AA, Ben-Zion Y, Peng Z (2014b) Seismic imaging of a bimaterial interface along the Hayward Fault, CA, with fault zone head waves and direct P arrivals. Pure appl Geophys 171:2993–3011. doi:10.1007/s00024-014-0784-0
Avallone A, Rovelli A, Giulio GD, Improta L, Ben-Zion Y, Milana G, Cara F (2014) Wave-guide effects in very high rate GPS record of the 6 April 2009, M W 6.1 L’Aquila, central Italy earthquake. J Geophys Res. doi:10.1002/2013JB010475
Barbot S, Fialko Y, Sandwell D (2009) Three-dimensional models of elastostatic deformation in heterogeneous media, with applications to the Eastern California Shear Zone. Geophys J Int 179:500–520. doi:10.1111/j.1365-246X.2009.04194.x
Ben-Zion Y, Ampuero J-P (2009) Seismic radiation from regions sustaining material damage. Geophys J Int 178(3):1351–1356. doi:10.1111/j.1365-246X.2009.04285.x
Ben-Zion Y, Malin P (1991) San Andreas fault zone head wave near Parkfield, California. Science 251:1592–1594
Ben-Zion Y, Sammis CG (2003) Characterization of fault zones. Pure appl Geophys 160:677–715
Ben-Zion Y, Sammis C (2009) Mechanics, structure and evolution of fault zones. Pure appl Geophys 166:1533–1536. doi:10.1007/s00024-009-0509-y
Ben-Zion Y, Shi Z (2005) Dynamic rupture on a material interface with spontaneous generation of plastic strain in the bulk. Earth Planet Sci Lett 236:486–496. doi:10.1016/j.epsl.2005.03.025
Ben-Zion Y, Katz S, Leary P (1992) Joint inversion of fault zone head waves and direct P arrivals for crustal structure near major faults. J Geophys Res 97:1943–1951
Ben-Zion Y, Peng Z, Okaya D, Seeber L, Armbruster JG, Ozer N, Michael J, Baris S, Aktar M (2003) A shallow fault-zone structure illuminated by trapped waves in the Karadere-Duzce branch of the North Anatolian fault, western Turkey. Geophys J Int 152(3):699–717. doi:10.1046/j.1365-246X.2003.01870.x
Bleibinhaus F, Hole JA, Ryberg T, Fuis GS (2007) Structure of the California Coast Ranges and San Andreas fault at SAFOD from seismic waveform inversion and reflection imaging. J Geophys Res. doi:10.1029/2006JB004611
Brenguier F, Campillo M, Hadziioannou C, Shapiro NM, Nadeau RM, Larose E (2008) Postseismic relaxation along the San Andreas Fault at Parkfield from continuous seismological observations. Science 321:1478–1481. doi:10.1126/science.1160943
Calderoni G, Giovambattista RD, Vannoli P, Pucillo S, Rovelli A (2012) Fault-trapped waves depict continuity of the fault system responsible for the 6 April 2009 M W 6.3 L’Aquila earthquake, central Italy. Earth Planet Sci Lett 323:1–8. doi:10.1016/j.epsl.2012.01.003
Campillo M, Paul A (2003) Long-range correlations in the diffuse seismic coda. Science 299:547–549. doi:10.1126/science.1078551
Chen H, Ge H, Niu F (2014) Semiannual velocity variations around the 2008 M W 7.9 Wenchuan Earthquake fault zone revealed by ambient noise and ACROSS active source data. Earthq Sci 27:529–540. doi:10.1007/s11589-014-0089-5
Chester FM, Logan JM (1986) Implications for mechanical properties of brittle faults from observations of the Punchbowl Fault zone, California. Pure appl Geophys 124:79–106
Chester FM, Evans JP, Biegel RL (1993) Internal structure and weakening mechanisms of the San Andreas fault. J Geophys Res 98:771–786
Cochran ES, Li Y, Shearer PM, Barbot S, Fialko Y, Vidale JE (2009) Seismic and geodetic evidence for extensive, long-lived fault damage zones. Geology 37:315–318. doi:10.1130/G25306A.1
Dor O, Rockwell TK, Ben-Zion Y (2006) Geological observations of damage asymmetry in the structure of San Jacinto, San Andreas and Punchbowl faults in southern California: a possible indicator for preferred rupture propagation direction. Pure appl Geophys 163:301–349
Duan B (2010) Inelastic response of compliant fault zones to nearby earthquakes. Geophys Res Lett. doi:10.1029/2010GL044150
Eberhart-Phillips D, Stanley WD, Rodriguez BD, Lutter WJ (1995) Surface seismic and electrical methods to detect fluids related to faulting. J Geophys Res 97:12919–12936
Evans JP, Chester FM (1995) Fluid-rock interaction in faults of the San Andreas system: inferences from San Gabriel fault rock geochemistry and microstructures. J Geophys Res 100(B7):13007–13020
Faulkner DR, Jackson CAL, Lunn RJ, Schlische RW, Shipton ZK, Wibberley CAJ, Withjack MO (2010) A review of recent developments concerning the structure, mechanics and fluid flow properties of fault zones. J Struct Geol 32:1557–1575. doi:10.1016/j.jsg.2010.06.009
Fialko Y (2004) Probing the mechanical properties of seismically active crust with space geodesy: study of the coseismic deformation due to the 1992 M w 7.3 Landers (southern California) earthquake. J Geophys Res 109:983–988. doi:10.1029/2003JB002756
Fialko Y (2006) Interseismic strain accumulation and the earthquake potential on the southern San Andreas fault system. Nature 441:968–971. doi:10.1038/nature04797
Fialko Y, Sandwell D, Agnew D, Simons M, Shearer P, Minster B (2002) Deformation on nearby faults induced by the 1999 Hector Mine earthquake. Science 297:1858–1862. doi:10.1126/science.1074671
Finzi Y, Hearn EH, Ben-Zion Y, Lyakhovsky V (2009) Structural properties and deformation patterns of evolving strike-slip faults: numerical simulations incorporating damage rheology. Pure appl Geophys 166:1537–1573. doi:10.1007/s00024-009-0522-1
Harris RA, Day SM (1997) Effects of a low-velocity zone on a dynamic rupture. Bull Seismol Soc Am 87:1267–1280
Helmberger DV (1983) Theory and application of synthetic seismograms. In: Kanamori H (ed) Earthquakes: observation, theory and interpretation, pp 174–222, Soc. Italiana di Fisica, Bolgna
Hillers G, Campillo M, Ben-Zion Y, Roux P (2014) Seismic fault zone trapped noise. J Geophys Res. doi:10.1002/2014JB011217
Hole JA, Catchings RD, Clair KCS, Rymer MJ, Okaya DA, Carney BJ (2001) Steep-dip seismic imaging of the shallow San Andreas Fault near Parkfield. Science 294:1513–1515
Huang Y, Ampuero JP (2011) Pulse-like ruptures induced by low-velocity fault zones. J Geophys Res. doi:10.1029/2011JB008684
Huang Y, Ampuero J, Helmberger DV (2014) Earthquake ruptures modulated by waves in damaged fault zones. J Geophys Res. doi:10.1002/2013JB010724
Johnson AM, Fleming RW, Cruikshank KM (1994) Shear zones formed along long, straight traces of fault zones during the 28 June 1992 Landers, California earthquake. Bull Seismol Soc Am 84:499–510
Kanamori H (1994) Mechanics of earthquakes. Ann Rev Earth Planet Sci 22:207–237
Kanamori H, Brodsky EE (2004) The physics of earthquakes. Rep Prog Phys 67:1429–1496
Kaneko Y, Fialko Y (2011) Shallow slip deficit due to large strike-slip earthquakes in dynamic rupture simulations with elasto-plastic off-fault response. Geophys J Int 186:1389–1403
Kaneko Y, Ampuero JP, Lapusta N (2011) Spectral-element simulations of long-term fault slip: effect of low-rigidity layers on earthquake-cycle dynamics. J Geophys Res. doi:10.1029/2011JB008395
Korneev VA, Nadeau RM, McEvilly TV (2003) Seismological studies at Parkfield IX: fault-zone imaging using guided wave attenuation. Bull Seismol Soc Am 93:1415–1426
Kurzon I, Vernon F, Ben-Zion Y, Atkinson G (2014) Ground motion prediction equations in the San Jacinto Fault Zone—significant effects of rupture directivity and fault zone amplification. Pure appl Geophys. doi:10.1007/s00024-014-0855-2
Lewis M, Ben-Zion Y (2010) Diversity of fault zone damage and trapping structures in the Parkfield section of the San Andreas Fault from comprehensive analysis of near fault seismograms. Geophys J Int 183:1579–1595. doi:10.1111/j.1365-246X.2010.04816.x
Lewis MA, Peng ZG, Ben-Zion Y, Vernon FL (2005) Shallow seismic trapping structure in the San Jacinto fault zone near Anza, California. Geophys J Int 162:867–881. doi:10.1111/j.1365-246X.2005.02684.x
Li Y, Malin PE (2008) San Andreas Fault damage at SAFOD viewed with fault-guided waves. Geophys Res Lett. doi:10.1029/2007GL032924
Li YG, Vernon FL (2001) Characterization of the San Jacinto fault zone near Anza, California, by fault zone trapped waves. J Geophys Res 106:30671–30688
Li YG, Leary PG, Aki K, Malin P (1990) Seismic trapped modes in the Oroville and San Andreas fault zones. Science 249:763–766
Li YG, Aki K, Adams D, Hasemi A, Lee WHK (1994) Seismic guided waves trapped in the fault zone of the Landers, California, earthquake of 1992. J Geophys Res 99:11705–11722
Li YG, Vernon FL, Aki K (1997) San Jacinto fault-zone guided waves: a discrimination for recently active fault strands near Anza, California. J Geophys Res 102:11689–11701
Li YG, Vidale JE, Aki K, Xu F, Burdette T (1998) Evidence of shallow fault zone strengthening after the 1992 M 7.5 Landers, California, earthquake. Science 279:217–219
Li YG, Vidale JE, Aki K, Xu F (1999) Shallow structure of the Landers fault zone from explosion-generated trapped waves. J Geophys Res 104:20257–20275
Li YG, Vidale JE, Aki K, Xu F (2000) Depth-dependent structure of the Landers fault zone using fault zone trapped waves generated by aftershocks. J Geophys Res 105:6237–6254
Li YG, Vidale JE, Day SM, Oglesby DD, SCEC Field Working Team (2002) Study of the 1999 M 7.1 Hector Mine, California, earthquake fault plane by trapped waves. Bull Seismol Soc Am 92:1318–1332
Li Y, Vidale JE, Day SM, Oglesby DD, Cochran E (2003a) Postseismic fault healing on the rupture zone of the 1999 m 7.1 Hector Mine, California, Earthquake. Bull Seismol Soc Am 93(2):854–869. doi:10.1785/0120020131
Li YG, Vidale JE, Oglesby DD, Day SM, Cochran E (2003b) Multiple-fault rupture of the M 7.1 Hector Mine, California, earthquake from fault zone trapped waves. J Geophys Res 108(B3): 2165. doi:10.1029/2001JB001456
Li YG, Vidale JE, Cochran ES (2004) Low-velocity damaged structure of the San Andreas Fault at Parkfield from fault zone trapped waves. Geophys Res Lett. doi:10.1029/2003GL019
Li H, Zhu L, Yang H (2007) High-resolution structures of the Landers fault zone inferred from aftershock waveform data. Geophys J Int 171:1295–1307. doi:10.1111/j.1365-246X.2007.03608.x
Li F, Sun Z, Yang H (2013a) Reconstruction of the mesozoic subduction in the South China Sea and its implications on the opening of the South China Sea basins. Eos Trans AGU, Fall Meet. Suppl OS21B-1624
Li H, Wang H, Xu Z, Si J, Pei J, Li T, Huang Y, Song SR, Kuo LW, Sun Z, Chevalier M-L, Liu D (2013b) Characteristics of the fault-related rocks, fault zones and the principal slip zone in the Wenchuan Earthquake Fault Scientific Drilling Project Hole-1 (WFSD-1). Tectonophysics 584:23–42. doi:10.1016/j.tecto.2012.08.021
Lin F, Li D, Clayton RW, Hollis D (2013) High-resolution 3D shallow crustal structure in Long Beach, California: application of ambient noise tomography on a dense seismic array. Geophysics 78:Q45–Q56. doi:10.1190/GEO2012-0453.1
Lindsey EO, Sahakian VJ, Fialko Y, Bock Y, Barbot S, Rockwell TK (2014) Interseismic strain localization in the San Jacinto fault zone. Pure appl Geophys 171(11):2937–2954. doi:10.1007/s00024-013-0753-z
Liu Z, Huang J, Peng Z, Su J (2014) Seismic velocity changes in the epicentral region of the 2008 Wenchuan earthquake measured from three-component ambient noise correlation techniques. Geophys Res Lett 41:37–42. doi:10.1002/2013GL058682
Ma K et al (2006) Slip zone and energetics of a large earthquake from the Taiwan Chelungpu-fault Drilling Project. Nature 444:473–476
McGuire J, Ben-Zion Y (2005) High-resolution imaging of the Bear Valley section of the San Andreas fault at seismogenic depths with fault-zone head waves and relocated seismicity. Geophys J Int 163:152–164. doi:10.1111/j.1365-246X.2005.02703.x
Mitchell T, Rempe M, Smith S, Renner J, Toro GD (2013) Damage, permeability and sealing processes of an exhumed seismic fault zone: the Gole-Larghe Fault Zone, Italian Alps, EGU General Assembly, Vienna, p 13026
Mooney WD, Ginzburg A (1986) Seismic measurements of the internal properties of fault zones. Pure appl Geophys 124:141–157
Oshiman N, Shimamoto T, Takemura K, Wibberley CAJ (2001) Thematic issue: Nojima fault zone probe, Island Arc, pp 195–505
Peng Z, Ben-Zion Y, Michael AJ, Zhu LP (2003) Quantitative analysis of seismic fault zone waves in the rupture zone of the Landers, 1992, California earthquake: evidence for a shallow trapping structure. Geophys J Int 155:1021–1041
Prejean S, Ellsworth W, Zoback M, Waldhauser F (2002) Fault structure and kinematics of the Long Valley Caldera region, California, revealed by high-accuracy earthquake hypocenters and focal mechanism stress inversions. J Geophys Res 107:2355. doi:10.1029/2001JB001,168
Qiu H, Ben-Zion Y, Ross ZE, Share P-E, Vernon F (2014) Internal structure of the San Jacinto fault zone at Jackass Flat from data recorded by a dense linear array, the SCEC annual meeting, SCEC, Palm Springs. Accessed 09 July 2014
Roland E, Lizarralde D, McGuire JJ, Collins JA (2012) Seismic velocity constraints on the material properties that control earthquake behavior at the Quebrada-Discovery-Gofar transform faults, East Pacific Rise. J Geophys Res. doi:10.1029/2012JB009422
Rovelli A, Caserta A, Marra F, Ruggiero V (2002) Can seismic waves be trapped inside an inactive fault zone? The case study of Nocera Umbra, central Italy. Bull Seismol Soc Am 92:2217–2232
Sagy A, Brodsky E (2009) Geometric and rheological asperities in an exposed fault zone. J Geophys Res. doi:10.1029/2008JB005701
Salisbury JB, Rockwell TK, Middleton TJ, Hudnut KW (2012) LiDAR and field observations of slip distribution for the most recent surface ruptures along the Central San Jacinto Fault. Bull Seismol Soc Am 102(2):598–619. doi:10.1785/0120110068
Sammis CG, Rosakis AJ, Bhat HS (2009) Effects of off-fault damage on earthquake rupture propagation: experimental studies. Pure appl Geophys 166:1629–1648. doi:10.1007/s00024-009-0512-3
Savage HM, Brodsky E (2011) Collateral damage: the evolution with displacement of fracture distribution and secondary fault strands in fault damage zones. J Geophys Res. doi:10.1029/2010JB007665
Schmandt B, Clayton RW (2013) Analysis of teleseismic P waves with a 5200-station array in Long Beach, California: evidence for an abrupt boundary to Inner Borderland rifting. J Geophys Res 118:5320–5338. doi:10.1002/jgrb.50370
Scholz CH (1990) The mechanics of earthquakes and faulting. Cambridge University Press, New York
Schulz SE, Evans JP (1998) Spatial variability in microscopic deformation and composition of the Punchbowl fault, southern California: implications for mechanisms, fluid-rock interaction, and fault morphology. Tectonophysics 295:223–244
Schulz SE, Evans JP (2000) Mesoscopic structure of the Punchbowl Fault, Southern California and the geologic and geophysical structure of active strike-slip faults. J Struct Geol 22:913–930
Shapiro NM, Campillo M, Stehly L, Ritzwoller MH (2005) High-resolution surface-wave tomography from ambient seismic noise. Science 307:1615–1618. doi:10.1126/science.1108339
Sieh K, Jones L, Hauksson E, Hudnut K, Eberhart-Phillips D, Heaton T, Hough S, Hutton K, Kanamori H, Lilje A, Lindvall S, McGill SF, Mori J, Rubin C, Spotila JA, Stock J, Thio HK, Treiman J, Wernicke B, Zachariasen J (1993) Near-field investigations of the Landers earthquake sequence. Science 260(5105):171–176
Smith SAF, Bistacchi A, Mitchell TM, Mittempergher S, Toro GD (2013) The structure of an exhumed intraplate seismogenic fault in crystalline basement. Tectonophysics 599:29–44. doi:10.1016/j.tecto.2013.03.031
Stierman DJ (1984) Geophysical and geological evidence for fracturing, water circulation, and chemical alteration in granitic rocks adjacent to major strike-slip faults. J Geophys Res 89:5849–5857
Sutherland R et al (2012) Drilling reveals fluid control on architecture and rupture of the Alpine fault, New Zealand. Geology 40(12):1143–1146. doi:10.1130/G33614.1
Ujiie K , Tanaka H, Saito T, Tsutsumi A, Mori JJ, Kameda J, Brodsky EE, Chester FM, Eguchi N, Toczko S; Expedition 343 and 343T Scientists (2013) Low coseismic shear stress on the Tohoku-Oki megathrust determined from laboratory experiments. Science 342(6163):1211–1214
Vidale JE, Li YG (2003) Damage to the shallow Landers fault from the nearby Hector Mine earthquake. Nature 421:524–526
Waldhauser F, Ellsworth WL (2002) Fault structure and mechanics of the Hayward fault, California, from double-difference earthquake locations. J Geophys Res 107:2054
Wang CY, Rui F, Yao Z, Shi X (1986) Gravity anomaly and density structure of the San Andreas fault zone. Pure appl Geophys 124:127–140
Wang B, Ge H, Yang W, Wang W, Wang B, Wu G, Su Y (2012) Transmitting seismic station monitors fault zone at depth. EOS Trans AGU 93(5):49–50
Wang B, Yang W, Wang W, Wang H, Zheng L, Wei B, Zhang W, Yuan S (2013) Monitoring crustal variation in Northern Tianshan using large-volume air guns. Chinese Geophysical Society Annual Meeting, Kunming
Wibberley CAJ, Yielding G, Toro GD (2008) Recent advances in the understanding of fault zone internal structure: a review. In: Structure of fault zones: implications for mechanical and fluid-flow properties, Geological Society of London Special Publication, London, vol. 299, pp 5–33, doi: 10.1144/SP299.2
Wu C, Peng Z, Ben-Zion Y (2009) Non-linearity and temporal changes of fault zone site response associated with strong ground motion. Geophys J Int 176:265–278. doi:10.1111/j.1365-246X.2008.04005.x
Wu J, Hole JA, Snoke JA (2010) Fault zone structure at depth from differential dispersion of seismic guided waves: evidence for a deep waveguide on the San Andreas Fault. Geophys J Int 182:343–354. doi:10.1111/j.1365-246X.2010.04612.x
Xu S, Ben-Zion Y, Ampuero J-P (2012) Properties of inelastic yielding zones generated by in-plane dynamic ruptures: II. Detailed parameter-space study. Geophys J Int 191:1343–1360. doi:10.1111/j.1365-246X.2012.05685.x
Yang H (2010) Study of earthquake fault zone structures by aftershock location and high-frequency waveform modeling, Ph.D. thesis, Saint Louis University, St. Louis
Yang H, Zhu L (2010a) Shallow low-velocity zone of the San Jacinto fault from local earthquake waveform modelling. Geophys J Int 183:421–432. doi:10.1111/j.1365-246X.2010.04744.x
Yang H, Zhu L (2010b) Depth extent of low-velocity fault zones. Eos Trans AGU 91(52), Fall Meet. Suppl., T33B-2250
Yang H, Zhu L, Chu R (2009) Fault-plane determination of the 18 April 2008 Mt. Carmel, Illinois, earthquake by detecting and relocating aftershocks. Bull Seismol Soc Am 99(6):3413–3420. doi:10.1785/0120090038
Yang H, Zhu L, Cochran ES (2011) Seismic structures of the Calico fault zone inferred from local earthquake travel time modelling. Geophys J Int 186:760–770. doi:10.1111/j.1365-246X.2011.05055.x
Yang H, Liu Y, Lin J (2012) Effects of subducted seamounts on megathrust earthquake nucleation and rupture propagation. Geophys Res Lett. doi:10.1029/2012GL053892
Yang H, Liu Y, Lin J (2013) Geometrical effects of a subducted seamount on stopping megathrust ruptures. Geophys Res Lett 40:2011–2016. doi:10.1002/grl.50298
Yang H, Li Z, Peng Z, Ben-Zion Y, Vernon F (2014) Low velocity zones along the San Jacinto Fault, Southern California, from body waves recorded in dense linear arrays. J Geophys Res. doi:10.1002/2014JB011548
Yang W, Peng Z, Wang B, Li Z, Yuan S (2015) Velocity contrast along the rupture zone of the 2010 M W 6.9 Yushu, China earthquake from systematic analysis of fault zone head waves. Earth Planet Sci Lett 416:91–97. doi:10.1016/j.epsl.2015.01.043
Yao H, van der Hilst RD, de Hoop MV (2006) Surface-wave array tomography in SE Tibet from ambient seismic noise and two-station analysis—I. Phase velocity maps. Geophys J Int 166:732–744. doi:10.1111/j.1365-246X.2006.03028.x
Zhang J, Gerstoft P (2014) Local-scale cross-correlation of seismic noise from the Calico fault experiment. Earthq Sci 27:1–8. doi:10.1007/s11589-014-0074-z
Zhao P, Peng Z (2008) Velocity contrast along the Calaveras fault from analysis of fault zone head waves generated by repeating earthquakes. Geophys Res Lett. doi:10.1029/2007GL031810
Zigone D, Ben-Zion Y, Campillo M, Roux P (2014) Seismic tomography of the Southern California plate boundary region from noise-based Rayleigh and Love waves. Pure APPL Geophys. doi:10.1007/s00024-014-0872-1