Recent advances in high-pressure science and technology

Matter and Radiation at Extremes - Tập 1 - Trang 59-75 - 2016
Ho-Kwang Mao1, Bin Chen1, Jiuhua Chen1, Kuo Li1, Jung-Fu Lin1, Wenge Yang1, Haiyan Zheng1
1Center for High Pressure Science and Technology Advanced Research, Shanghai, 201203, PR China

Tóm tắt

Recently we are witnessing the boom of high-pressure science and technology from a small niche field to becoming a major dimension in physical sciences. One of the most important technological advances is the integration of synchrotron nanotechnology with the minute samples at ultrahigh pressures. Applications of high pressure have greatly enhanced our understanding of the electronic, phonon, and doping effects on the newly emerged graphene and related 2D layered materials. High pressure has created exotic stoichiometry even in common Group 17, 15, and 14 compounds and drastically altered the basic σ and π bonding of organic compounds. Differential pressure measurements enable us to study the rheology and flow of mantle minerals in solid state, thus quantitatively constraining the geodynamics. They also introduce a new approach to understand defect and plastic deformations of nano particles. These examples open new frontiers of high-pressure research.

Tài liệu tham khảo

2015, The most incompressible metal osmium at static pressures above 750 gigapascals, Nature, 525, 226, 10.1038/nature14681 2004, Electric field effect in atomically thin carbon films, Science, 306, 666, 10.1126/science.1102896 2010, Nanoprobe measurements of materials at megabar pressures, Proc. Natl. Acad. Sci. U. S. A., 107, 6140, 10.1073/pnas.1001141107 2012, Spin-ordering mediated orbital hybridization in CoO at high pressures, Phys. Rev. B, 86, 094107, 10.1103/PhysRevB.86.094107 2012, Pressure tuning of the spin-orbit coupled ground state in Sr2IrO4, Phys. Rev. Lett., 109, 027204, 10.1103/PhysRevLett.109.027204 2013, The ultrahigh resolution IXS Beamline of NSLS-II: recent advances and scientific opportunities, J. Phys. Conf. Ser., 425, 202001, 10.1088/1742-6596/425/20/202001 2015, Beyond crystallography: diffractive imaging using coherent X-ray light sources, Science, 348, 530, 10.1126/science.aaa1394 2007, Studies of local and intermediate range structure in crystalline and amorphous materials at high pressure using high-energy X-rays, Powder Diffr., 22, 108, 10.1154/1.2737456 2010, Size-dependent amorphization of nanoscale Y2O3 at high pressure, Phys. Rev. Lett., 105, 095701, 10.1103/PhysRevLett.105.095701 2013, Pressure-induced amorphization in single crystal Ta2O5 nanowires: a kinetic mechanism and improved electrical conductivity, J. Am. Chem. Soc., 135, 13947, 10.1021/ja407108u 2006, Three-dimensional mapping of a deformation field inside a nanocrystal, Nature, 442, 63, 10.1038/nature04867 2013, Coherent diffraction imaging of nanoscale strain evolution in a single crystal under high pressure, Nat. Commun., 4, 1680, 10.1038/ncomms2661 2015, Deformation twinning of a silver nanocrystal under high pressure, Nano Lett., 15, 7644, 10.1021/acs.nanolett.5b03568 2011, Micrometer-scale ballistic transport in encapsulated graphene at room temperature, Nano Lett., 11, 2396, 10.1021/nl200758b 2010, Two-dimensional phonon transport in supported graphene, Science, 328, 213, 10.1126/science.1184014 2008, Superior thermal conductivity of single-layer graphene, Nano Lett., 8, 902, 10.1021/nl0731872 2010, Graphene photonics and optoelectronics, Nat. Photonics, 4, 611, 10.1038/nphoton.2010.186 2007, The rise of graphene, Nat. Mater., 6, 183, 10.1038/nmat1849 2013, High-performance current saturating graphene field-effect transistor with hexagonal boron nitride dielectric on flexible polymeric substrates, Electron Device Lett. IEEE, 34, 172, 10.1109/led.2012.2233707 2013, Graphene field-effect transistors based on boron nitride dielectrics, Proc. IEEE, 101, 1609, 10.1109/jproc.2013.2257634 2012, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nat. Nanotechnol., 7, 699, 10.1038/nnano.2012.193 2014, Black phosphorus field-effect transistors, Nat. Nanotechnol., 9, 372, 10.1038/nnano.2014.35 2015, Silicene field-effect transistors operating at room temperature, Nat. Nanotechnol., 10, 227, 10.1038/nnano.2014.325 2010, Emerging photoluminescence in monolayer MoS2, Nano Lett., 10, 1271, 10.1021/nl903868w 2014, Phosphorene: an unexplored 2D semiconductor with a high hole mobility, ACS Nano, 8, 4033, 10.1021/nn501226z 1914, Two new modifications of phosphorus, J. Am. Chem. Soc., 36, 1344, 10.1021/ja02184a002 2009, Direct observation of a widely tunable bandgap in bilayer graphene, Nature, 459, 820, 10.1038/nature08105 2014, Ultrafast charge separation and indirect exciton formation in a MoS2–MoSe2 van der Waals heterostructure, ACS Nano, 8, 12717, 10.1021/nn505736z 2013, Real-time observation of interlayer vibrations in bilayer and few-layer graphene, Nano Lett., 13, 4620, 10.1021/nl401713h 2014, Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures, Nat. Nano, 9, 682, 10.1038/nnano.2014.167 2011, Single-layer MoS2 transistors, Nat. Nano, 6, 147, 10.1038/nnano.2010.279 2012, Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-MX2 semiconductors (M = Mo, W; X = S, Se, Te), Phys. Rev. B, 85, 033305, 10.1103/physrevb.85.033305 H. Cao, G. Aivazian, Z. Fei, J. Ross, D.H. Cobden, X. Xu, Photo-Nernst Current in Graphene, arXiv Preprint arXiv:1510.00765, 2015. 1977, Temperature dependence of the electrical conductivity and hall coefficient in 2H-MoS2, MoSe2, WSe2, and MoTe2, Phys. Status Solidi (B), 79, 713, 10.1002/pssb.2220790238 2013, Identification of individual and few layers of WS2 using Raman spectroscopy, Sci. Rep., 3, 10.1038/srep01755 2014, Few-layer MoS2: a promising layered semiconductor, ACS Nano, 8, 4074, 10.1021/nn405938z 1987, Intercalation in layered materials, MRS Bull., 12, 24, 10.1557/s0883769400068093 2014, Colloidal synthesis of 1T-WS2 and 2H-WS2 nanosheets: applications for photocatalytic hydrogen evolution, J. Am. Chem. Soc., 136, 14121, 10.1021/ja506261t 1989, Semiconductor to metal transition of WS2 induced by K intercalation in ultrahigh vacuum, Langmuir, 5, 439, 10.1021/la00086a026 2008, Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening, ACS Nano, 2, 2301, 10.1021/nn800459e 2013, Bandgap engineering of strained monolayer and bilayer MoS2, Nano Lett., 13, 3626, 10.1021/nl4014748 2014, Heterojunctions in 2D semiconductors: a perfect match, Nat. Mater., 13, 1075, 10.1038/nmat4127 2013, Van der Waals heterostructures, Nature, 499, 419, 10.1038/nature12385 2010, Atomic layers of hybridized boron nitride and graphene domains, Nat. Mater., 9, 430, 10.1038/nmat2711 2014, Vertical and in-plane heterostructures from WS2/MoS2 monolayers, Nat. Mater., 13, 1135, 10.1038/nmat4091 2014, Pressure-induced semiconducting to metallic transition in multilayered molybdenum disulphide, Nat. Commun., 5, 3731, 10.1038/ncomms4731 2015, Hydrogenation of graphene by reaction at high pressure and high temperature, ACS Nano, 9, 8279, 10.1021/acsnano.5b02712 2014, Pressure-dependent optical and vibrational properties of monolayer molybdenum disulfide, Nano Lett., 15, 346, 10.1021/nl5036397 2014, Tuning and identification of interband transitions in monolayer and bilayer molybdenum disulfide using hydrostatic pressure, ACS Nano, 8, 7458, 10.1021/nn502717d 2011, Pressure-mediated doping in graphene, Nano Lett., 11, 3564, 10.1021/nl201243c 2009, High-pressure Raman spectroscopy of graphene, Phys. Rev. B, 80, 073408, 10.1103/physrevb.80.073408 2015, Pressure-modulated conductivity, carrier density, and mobility of multilayered tungsten disulfide, ACS Nano, 9, 9117, 10.1021/acsnano.5b03295 2015, Pressure induced metallization with absence of structural transition in layered molybdenum diselenide, Nat. Commun., 6, 7312, 10.1038/ncomms8312 1994, Phase transitions and superconductivity of black phosphorus and phosphorus-arsenic alloys at low temperatures and high pressures, Phys. Rev. B, 50, 16274, 10.1103/physrevb.50.16274 2013, Unexpected stable stoichiometries of sodium chlorides, Science, 342, 1502, 10.1126/science.1244989 2013, Evolving structural diversity and metallicity in compressed lithium azide, J. Phys. Chem. C, 117, 20838, 10.1021/jp405905k 2014, Pressure-induced planar N6 rings in potassium azide, Sci. Rep., 4, 4358, 10.1038/srep04358 2012, Synthesis of alkaline Earth diazenides MAEN2 (MAE = Ca, Sr, Ba) by controlled thermal decomposition of azides under high pressure, Inorg. Chem., 51, 2366, 10.1021/ic2023677 2012, High-pressure synthesis and characterization of the alkali diazenide Li2N2, Angew. Chem., Int. Ed., 51, 1873, 10.1002/anie.201108252 2013, Pressure-induced superconductivity in CaC2, Proc. Natl. Acad. Sci. U. S. A., 110, 9289, 10.1073/pnas.1307384110 2015, Investigation of exotic stable calcium carbides using theory and experiment, Nat. Commun., 6, 6974, 10.1038/ncomms7974 2013, Synthesis of Mg2C: a magnesium methanide, Angew. Chem. Int. Ed., 52, 8930, 10.1002/anie.201303463 2010, One-dimensional polymeric carbon structure based on five-membered rings in alkaline Earth metal dicarbides BeC2 and MgC2, Phys. Rev. B, 82, 125439, 10.1103/physrevb.82.125439 2012, Structural transformation and vibrational properties of BaC2 at high pressure, Phys. Rev. B, 85, 134125, 10.1103/physrevb.82.134125 2012, Structural behavior of the acetylide carbides Li2C2 and CaC2 at high pressure, J. Chem. Phys., 137, 224507, 10.1063/1.4770268 2008, Pressure-induced amorphization and decomposition of Fe[Co(CN)6], Phys. Rev. B, 77, 064104, 10.1103/physrevb.77.064104 2003, Pressure- and photoinduced transformation into a metastable phase in RbMn[Fe(CN)6], Phys. Rev. B, 68, 144106, 10.1103/physrevb.68.144106 2013, K3Fe(CN)6: pressure-induced polymerization and enhanced conductivity, J. Phys. Chem. C, 117, 24174, 10.1021/jp407429z 2006, Observation of an O8 molecular lattice in the ε phase of solid oxygen, Nature, 443, 201, 10.1038/nature05174 2008, Inelastic X-ray scattering of dense solid oxygen: evidence for intermolecular bonding, Proc. Natl. Acad. Sci. U. S. A., 105, 11640, 10.1073/pnas.0805601105 2004, Single-bonded cubic form of nitrogen, Nat. Mater., 3, 558, 10.1038/nmat1146 2006, Pressure-induced polymerization of carbon monoxide: disproportionation and synthesis of an energetic lactonic polymer, Chem. Mater., 18, 2520, 10.1021/cm0524446 1984, New phases and chemical reactions in solid CO under pressure, J. Phys. Chem., 88, 3176, 10.1021/j150659a007 2012, Structure of polymeric carbon dioxide CO2-V, Phys. Rev. Lett., 108, 125701, 10.1103/PhysRevLett.108.125701 2012, Partially collapsed cristobalite structure in the non molecular phase V in CO2, Proc. Natl. Acad. Sci. U. S. A., 109, 5176, 10.1073/pnas.1118791109 2007, Six-fold coordinated carbon dioxide VI, Nat. Mater., 6, 34, 10.1038/nmat1800 1990, Transformation of benzene to a polymer after static pressurization to 30 GPa, J. Chem. Phys., 92, 6910, 10.1063/1.458278 2003, UV Raman analysis of the C: H network formed by compression of benzene, Chem. Mater., 15, 1820, 10.1021/cm021009y 2015, Benzene-derived carbon nanothreads, Nat. Mater., 14, 43, 10.1038/nmat4088 2008, Role of excited electronic states in the high-pressure amorphization of benzene, Proc. Natl. Acad. Sci. U. S. A., 105, 7658, 10.1073/pnas.0802269105 2007, Triggering dynamics of the high-pressure benzene amorphization, Nat. Mater., 6, 39, 10.1038/nmat1803 1988, Raman-study of the solid-state polymerization of acetylene at high-pressure, J. Chem. Phys., 89, 529, 10.1063/1.455441 2000, Solid state polymerization of acetylene at high pressure and low temperature, J. Phys. Chem. A, 104, 8142, 10.1021/jp000198+ 2000, Fourier transform infrared study of the pressure and laser induced polymerization of solid acetylene, J. Chem. Phys., 113, 5991, 10.1063/1.1288800 1996, FT-IR study of the solid state polymerization of acetylene under pressure, J. Phys. Chem., 100, 9943, 10.1021/jp960306l 1989, Solid-state polymerization of cyanoacetylene into conjugated linear-chains under pressure, J. Chem. Phys., 91, 778, 10.1063/1.457130 2003, High-pressure polymerization of phenylacetylene and of the benzene and acetylene moieties, J. Raman Spectrosc., 34, 557, 10.1002/jrs.1024 1990, High-pressure Raman-study of one-dimensional crystals of the very polar molecule hydrogen-cyanide, Phys. Rev. B, 42, 4298, 10.1103/physrevb.42.4298 2003, Molecules under extreme conditions: chemical reactions at high pressure, Phys. Chem. Chem. Phys., 5, 1951, 10.1039/b301381b 2002, Laser-induced selectivity for dimerization versus polymerization of butadiene under pressure, Science, 295, 2058, 10.1126/science.1068451 1990, Rock deformation experimentation, 187 1993, Improvements to Griggs-type apparatus for mechanical testing at high pressures and temperatures, Pure Appl. Geophys., 141, 523, 10.1007/bf00998344 2004, Deformation experiments using synchrotron X-rays: in situ stress and strain measurements at high pressure and temperature, Phys. Earth Planet. Inter., 143–44, 347, 10.1016/j.pepi.2003.09.021 2003, The deformation-DIA: a new apparatus for high temperature triaxial deformation to pressures up to 15 GPa, Rev. Sci. Instrum., 74, 3002, 10.1063/1.1570948 2014, Deformation T-Cup: a new multi-anvil apparatus for controlled strain-rate deformation experiments at pressures above 18 GPa, Rev. Sci. Instrum., 85, 085103, 10.1063/1.4891338 2010, Preliminary deformation experiment of ringwoodite at 20 GPa and 1 700 K using a D-DIA apparatus, J. Earth Sci., 21, 517, 10.1007/s12583-010-0120-2 2008, Plastic deformation of wadsleyite and olivine at high-pressure and high-temperature using a rotational Drickamer apparatus (RDA), Phys. Earth Planet. Inter., 170, 156, 10.1016/j.pepi.2008.03.003 1985, 276 1981, The experimental deformation of dunite, Tectonophys, 78, 453, 10.1016/0040-1951(81)90024-x 2000, Influence of water on plastic deformation of olivine aggregates 2. Dislocation creep regime, J. Geophys. Res., 105, 21471, 10.1029/2000jb900180 Eiler, 2003, Rheology of the upper mantle and the mantle wedge: a view from the experimentalists, 83 2003, Effects of pressure on high-temperature dislocation creep in olivine, Philos. Mag., 83, 401, 10.1080/0141861021000025829 2009, Shear deformation of dry polycrystalline olivine under deep upper mantle conditions using a rotational Drickamer apparatus (RDA), Phys. Earth Planet. Inter., 174, 128, 10.1016/j.pepi.2008.06.027 2009, New measurements of activation volume in olivine under anhydrous conditions, Phys. Earth Planet. Inter., 172, 67, 10.1016/j.pepi.2008.07.045 2006, Deformation of olivine at mantle pressure using the D-DIA, Eur. J. Mineral., 18, 7, 10.1127/0935-1221/2006/0018-0007 2007, Pressure-induced slip-system transition in forsterite: single-crystal rheological properties at mantle pressure and temperature, Am. Mineral., 92, 1436, 10.2138/am.2007.2474 2012, Deformation of olivine under mantle conditions: an in situ high-pressure, high-temperature study using monochromatic synchrotron radiation, J. Geophys. Res., 117, B01203 2010, Rheology of the deep upper mantle and its implications for the preservation of the continental roots: a review, Tectonophys, 481, 82, 10.1016/j.tecto.2009.04.011 1979, Activation volume for creep in the upper mantle, Science, 203, 261, 10.1126/science.203.4377.261 1987, The pressure dependence of creep, Acta Metall., 35, 1301, 10.1016/0001-6160(87)90011-3 1997, Activation volume of silicon diffusion in San Carlos olivine, Geophys. Res. Lett., 24, 2597, 10.1029/97gl02735 2009, Experimental deformation of olivine single crystals at mantle pressures and temperatures, Phys. Earth Planet. Inter., 172, 74, 10.1016/j.pepi.2008.07.026 1993, Dislocation recovery in olivine under deep upper mantle conditions: Implications for creep and diffusion, J. Geophys. Res., 98, 9761, 10.1029/93jb00472 1980, The effect of pressure on the rate of dislocation recovery in olivine, J. Geophys. Res., 85, 3122, 10.1029/jb085ib06p03122 1981, Comment on ‘The effect of pressure on the rate of dislocation recovery in olivine’, J. Geophys. Res., 86, 9319, 10.1029/jb086i010p09319 1982, High-pressure recovery of olivine: implications for creep mechanisms and creep activation volume, Phys. Earth Planet. Inter., 28, 102, 10.1016/0031-9201(82)90076-0 1997, Toward an experimental study of deep mantle rheology: a new multianvil sample assembly for deformation studies under high pressures and temperatures, J. Geophys. Res., 102, 20111, 10.1029/97jb01732 2003, Deformation of electrodeposited nanocrystalline nickel, Acta Mater., 51, 387, 10.1016/s1359-6454(02)00421-4 2007, Dislocation dynamics in nanocrystalline nickel, Phys. Rev. Lett., 98, 095502, 10.1103/PhysRevLett.98.095502 2003, Deformation twinning in nanocrystalline aluminum, Science, 300, 1275, 10.1126/science.1083727 2010, Dislocation nucleation governed softening and maximum strength in nano-twinned metals, Nature, 464, 877, 10.1038/nature08929 2009, Revealing the maximum strength in nanotwinned copper, Science, 323, 607, 10.1126/science.1167641 2002, Dislocation processes in the deformation of nanocrystalline aluminium by molecular-dynamics simulation, Nat. Mater., 1, 45, 10.1038/nmat700 1998, Imperfect oriented attachment: dislocation generation in defect-free nanocrystals, Science, 281, 969, 10.1126/science.281.5379.969 2003, A maximum in the strength of nanocrystalline copper, Science, 301, 1357, 10.1126/science.1086636 1998, Softening of nanocrystalline metals at very small grain sizes, Nature, 391, 561, 10.1038/35328 2012, Texture of nanocrystalline nickel: probing the lower size limit of dislocation activity, Science, 338, 1448, 10.1126/science.1228211 2004, Grain boundary–mediated plasticity in nanocrystalline nickel, Science, 305, 654, 10.1126/science.1098741 1999, Controlling cracks in ceramics, Science, 286, 1097, 10.1126/science.286.5442.1097 1987, Ceramics ductile at low temperature, Nature, 330, 556, 10.1038/330556a0 2008, Deformation of Earth Materials: an Introduction to the Rheology of Solid Earth 2010, The structure of iron in Earth’s inner core, Science, 330, 359, 10.1126/science.1194662 1993, Inner core attenuation from short-period PKP(BC) versus PKP(DF) waveforms, Geophys. J. Intl., 114, 1, 10.1111/j.1365-246x.1993.tb01461.x 1997, Anisotropy of the Earth’s inner core, Rev. Geophys., 35, 297, 10.1029/97rg01285 2001, Inner-core anisoropy and rotation, Annu. Rev. Earth Planet. Sci., 29, 47, 10.1146/annurev.earth.29.1.47 2002, Seismic velocity and attenuation structures in the top of the Earth’s inner-core, J. Geophys. Res., 107, ESE 2-1, 10.1029/2001JB000170 2004, Deformation of polycrystalline iron up to 30 GPa and 1000 K, Phys. Earth Planet. Inter., 145, 239, 10.1016/j.pepi.2004.04.001 2008, In situ phase transformation and deformation of iron at high pressure and temperature, J. Appl. Phys., 104, 103510, 10.1063/1.3008035 2010, Slip systems in MgSiO3 post-perovskite: implications for D″ anisotropy, Science, 329, 1639, 10.1126/science.1192465 2006, Plastic deformation of MgGeO3 post-perovskite at lower mantle pressures, Science, 311, 644, 10.1126/science.1121808 2002, HJv Heijst, Global azimuthal anisotropy in the transition zone, Science, 296, 1297, 10.1126/science.1070264 1998, A dislocation model of seismic wave attenuation and micro-creep in the Earth: Harold Jeffreys and the rheology of the solid Earth, Pure Appl. Geophys., 153, 239, 10.1007/s000240050195 1998, Strength and water weakening of mantle minerals, olivine, wadsleyite and ringwoodite, Geophys. Res. Lett., 25, 575, 10.1029/98gl00043 1998, Effects of water on the α-β transformation kinetics in San Carlos olivine, Science, 281, 85, 10.1126/science.281.5373.85 2007, Achieving high-density states through shock-wave loading of precompressed samples, Proc. Natl. Acad. Sci. USA, 104, 9172, 10.1073/pnas.0608170104 2015, Shock compression of stishovite and melting of silica at planetary interior conditions, Science, 347, 418, 10.1126/science.1261507 2014, Ramp compression of diamond to five terapascals, Nature, 511, 330, 10.1038/nature13526 2006, Laser-driven shock experiments on precompressed water: implications for “icy” giant planets, J. Chem. Phys., 125, 014701, 10.1063/1.2207618 2008, Hugoniot data for helium in the ionization regime, Phys. Rev. Lett., 100, 124503, 10.1103/PhysRevLett.100.124503 2010, Insulator-to-conducting transition in dense fluid helium, Phys. Rev. Lett., 104, 184503, 10.1103/PhysRevLett.104.184503 2012, Extended data set for the equation of state of warm dense hydrogen isotopes, Phys. Rev. B, 86, 144115, 10.1103/physrevb.86.144115 2015, Direct observation of an abrupt insulator-to-metal transition in dense liquid deuterium, Science, 348, 1455, 10.1126/science.aaa7471 2015, Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system, Nature, 525, 73, 10.1038/nature14964 2014, Nanotwinned diamond with unprecedented hardness and stability, Nature, 510, 250, 10.1038/nature13381 2003, Ultrahard polycrystalline diamond from graphite, Nature, 421, 599, 10.1038/421599b