Recent advances in electrochromics for smart windows applications
Tóm tắt
Từ khóa
Tài liệu tham khảo
in text
Agnihotry, 1994, Electrochromic devices: present and forthcoming technology, Indian J. Eng. Mater. Sci., 1, 320
Amra, 1993, First-order vector theory of bulk scattering in optical multilayers, J. Opt. Soc. Am. A, 10, 365, 10.1364/JOSAA.10.000365
Andersson, 1989, An electrochromic LixWO3/polymer electrolyte/LiyV2O5 device: towards an all-solid-state smart window, Appl. Opt., 28, 3295, 10.1364/AO.28.003295
Ashrit, 1993, Lithiation studies on some transition metal oxides for an all-solid thin film electrochromic system, Solid State Ionics, 59, 47, 10.1016/0167-2738(93)90230-Z
Azens, 1995, Electrochromism of fluorinated and electron bombarded tungsten oxide films, J. Appl. Phys., 78, 1968, 10.1063/1.360169
Azens, 1996, Optical and electrochemical properties of dc magnetron sputtered Ti–Ce oxide films, Appl. Phys. Lett., 68, 3701, 10.1063/1.115978
Azens, 1992, W oxide/polymer laminate/V oxide electrochromic smart windows: recent advances, Proc. Soc. Photo-Opt. Instrum. Eng., 1728, 103
Bange K., Gambke T. and Sparschuh G. (1995) Optically active thin film coatings, In Handbook of Optical Properties, Vol. 1, Hummel R. E. and Guenther K. H. (Eds), pp. 105–134. CRC Press, Boca Raton.
Baudry, 1991, Electrochromic window with lithium conductive polymer electrolyte, J. Electrochem. Soc., 138, 460, 10.1149/1.2085610
Camino, 1995, (CeO2)x–(TiO2)1−x: counter electrode materials for lithium electrochromic devices, Solar Energy Mater. Solar Cells, 39, 349, 10.1016/0927-0248(95)00072-0
Carniglia, 1979, Scalar scattering theory for multilayer optical coatings, Opt. Eng., 18, 104, 10.1117/12.7972335
Cava, 1994, GaInO3: a new transparent conducting oxide, Appl. Phys. Lett., 64, 2071, 10.1063/1.111686
Cogan, 1985, Materials and devices in electrochromic window development, Proc. Soc. Photo-Opt. Instrum. Eng., 562, 23
Cogan, 1993, Electrochromism in Nb–V and Cr–V mixed oxides, J. Electrochem. Soc., 140, 112, 10.1149/1.2056069
Deb, 1992, Opportunities and challenges of electrochromic phenomena in transition metal oxides, Solar Energy Mater. Solar Cells, 25, 327, 10.1016/0927-0248(92)90077-3
Deb, 1995, Reminiscences on the discovery of electrochromic phenomena in transition metal oxides, Solar Energy Mater. Solar Cells, 39, 191, 10.1016/0927-0248(95)00055-0
Deb S. K. and Witzke H. (1975) The solid state electrochromic phenomenon and its applications to display devices, In Proc. Int. Electron Devices Meeting, Washington, pp. 393–397. IEEE, New York.
Donoso, 1988, NMR, conductivity and neutron scattering investigation of ionic dynamics in the anhydrous polymer protonic conductor PEO(H3PO4)x, Solid State Ionics, 28–30, 969, 10.1016/0167-2738(88)90313-X
Duparré A. (1995) Light scattering of thin dielectric films, In Handbook of Optical Properties, Vol. 1, Hummel R. E. and Guenther K. H. (Eds), pp. 273–303. CRC Press, Boca Raton.
Enoki, 1992, The electrical and optical properties of the ZnO–SnO2 thin films prepared by RF magnetron sputtering, Phys. Status Solidi B, 129, 181, 10.1002/pssa.2211290116
Goldner, 1994, d-Electrons and two active thin film devices for achieving a solar energy economy, Solar Energy Mater. Solar Cells, 32, 421, 10.1016/0927-0248(94)90105-8
Gomes, 1992, Solid state electrochromic display based on polymer electrode – polymer electrolyte interface, Electrochim. Acta, 37, 1653, 10.1016/0013-4686(92)80131-5
Granqvist C. G. (1993a) Electrochromic tungsten-oxide-based thin films: physics, chemistry, and technology, In Physics of Thin Films, Vol. 17, Francombe M. H. and Vossen J. L. (Eds), pp. 301–370. Academic, San Diego.
Granqvist, 1993, Transparent conductive electrodes for electrochromic devices, Appl. Phys. A, 57, 19, 10.1007/BF00331211
Granqvist C. G. (1995) Handbook of Inorganic Electrochromic Materials, pp. 1–633. Elsevier, Amsterdam.
Granqvist C. G. (1997) Electrochromism and electrochromic devices, In CRC Handbook of Solid State Electrochemistry, Gellings P. G. and Bouwmeester H. J. M. (Eds), pp. 587–615. CRC Press, Boca Raton.
Gutarra, 1994, Electrochromism of sputtered fluorinated titanium oxide thin films, Appl. Phys. Lett., 64, 1604, 10.1063/1.111851
Hamberg, 1986, Evaporated Sn-doped In2O3 films: basic optical properties and applications to energy efficient windows, J. Appl. Phys., 60, R123, 10.1063/1.337534
He, 1995, An optical in-situ study of the re-oxidation kinetics of calcia-stabilized zirconia, Ber. Bunsenges. Phys. Chem., 99, 658, 10.1002/bbpc.19950990410
Hjelm, 1996, Electronic structure and optical properties of WO3, LiWO3, NaWO3, and HWO3, Phys. Rev. B, 54, 2436, 10.1103/PhysRevB.54.2436
Ho, 1994, Tungsten oxide – Prussian Blue electrochromic system based on a proton-conducting polymer electrolyte, J. Electrochem. Soc., 141, 2061, 10.1149/1.2055061
Inaba, 1995, Electrochromic display device of tungsten trioxide and Prussian Blue films using polymer gel electrolyte of methacrylate, Electrochim. Acta, 40, 227, 10.1016/0013-4686(94)00230-X
Ingo, 1991, Origin of darkening in 8wt% yttria–zirconia plasma-sprayed thermal barrier coatings, J. Am. Ceram. Soc., 74, 381, 10.1111/j.1151-2916.1991.tb06891.x
Johnson P. C. (1991) The cathodic arc plasma deposition of thin films, In Thin Film Processes, Vol. 2, Vossen J. L. and Kern W. (Eds), pp. 209–280. Academic, San Diego.
Kamimori, 1987, Electrochromic devices for transmissive and reflective light control, Solar Energy Mater., 16, 27, 10.1016/0165-1633(87)90005-0
Kéomany, 1995, Electrochemical insertion in sol–gel made CeO2–TiO2 from lithium conducting polymer electrolyte: relation with the material structure, Solar Energy Mater. Solar Cells, 36, 397, 10.1016/0927-0248(94)00190-1
Kéomany, 1994, Sol gel preparation of mixed cerium–titanium oxide thin films, Solar Energy Mater. Solar Cells, 33, 429, 10.1016/0927-0248(94)90003-5
Kharrazi, 1997, High-rate dual-target d.c. magnetron sputter deposition of electrochromic MoO3 films, Thin Solid Films, 295, 117, 10.1016/S0040-6090(96)09306-6
Kim, 1989, Lattice parameters, ionic conductivities, and solubility limits in fluorite-structure MO2 oxide (M=Hf4+, Zr4+, Ce4+, Th4+, U4+) solid solutions, J. Am. Ceram. Soc., 72, 1415, 10.1111/j.1151-2916.1989.tb07663.x
Koelling, 1983, The electronic structure of CeO2 and PrO2, Solid State Commun., 47, 227, 10.1016/0038-1098(83)90550-1
Kotani, 1988, Many-body effects in core-level spectroscopy of rare-earth compounds, Adv. Phys., 37, 37, 10.1080/00018738800101359
Kotani, 1985, Theory of core photoemission spectra in CeO2, Solid State Commun., 53, 805, 10.1016/0038-1098(85)90223-6
Kullman, 1997, Decreased electrochromism in Li-intercalated Ti oxide films containing La, Ce, and Pr, J. Appl. Phys., 81, 8002, 10.1063/1.365404
Kullman, 1996, Elastic light scattering and electrochemical durability of electrochromic tungsten-oxide-based films, Thin Solid Films, 288, 330, 10.1016/S0040-6090(96)08809-8
Kullman, 1996, Cerium-containing counter electrodes for transparent electrochromic devices, Proc. Soc. Photo-Opt. Instrum. Eng., 2968, 219
Lampert, 1998, Smart switchable glazing for solar energy and daylight control, Solar Energy Mater. Solar Cells, 52, 207, 10.1016/S0927-0248(97)00279-1
Lampert C. M. and Granqvist C. G. (Eds) (1990) Large-Area Chromogenics: Materials and Devices for Transmittance Control, pp. 2–606. SPIE Opt. Eng. Press, Bellingham.
Lampert, 1994, Characteristics of laminated electrochromic devices using polyorganic–disulfide electrodes, Solar Energy Mater. Solar Cells, 33, 91, 10.1016/0927-0248(94)90293-3
Lavrencic Stangar, 1993, Optical and electrochemical properties of CeO2 and CeO2–TiO2 coatings, Solar Energy Mater. Solar Cells, 31, 171, 10.1016/0927-0248(93)90049-9
Lindström, 1997, Electrochromic control of thin film light scattering, J. Appl. Phys., 81, 1464, 10.1063/1.363882
McKinnon W. R. (1995) Insertion electrodes I: atomic and electronic structure of the hosts and their insertion compounds, In Solid State Electrochemistry, Bruce P. G. (Ed), pp. 163–198. Cambridge University Press, Cambridge.
Minami, 1996, Preparation of transparent and conductive In2O3–ZnO films by radio frequency magnetron sputtering, J. Vac. Sci. Technol. A, 14, 1704, 10.1116/1.580323
Minami, 1996, Highly transparent and conductive ZnO–In2O3 thin films prepared by d.c. magnetron sputtering, Thin Solid Films, 290–291, 1, 10.1016/S0040-6090(96)09094-3
Minami, 1995, Highly transparent and conductive Zn2In2O5 thin films prepared by RF magnetron sputtering, Jpn. J. Appl. Phys., 34, L971, 10.1143/JJAP.34.L971
Minami, 1994, Highly transparent and conductive zinc-stannate thin films prepared by RF magnetron sputtering, Jpn. J. Appl. Phys., 33, L1693, 10.1143/JJAP.33.L1693
Minami, 1995, Properties of transparent zinc-stannate conducting films prepared by radio frequency magnetron sputtering, J. Vac. Sci. Technol. A, 13, 1095, 10.1116/1.579592
Mochizuki, 1982, Infrared optical properties of cerium dioxide, Phys. Status Solidi B, 114, 189, 10.1002/pssb.2221140122
Monk P. M. S., Mortimer R. J. and Rosseinsky D. R. (1995) Electrochromism: Fundamentals and Applications, pp. 1–216. VCH, Weinheim.
Nagle, 1990, Optical absorption of electrolytically colored single crystals of yttria-stabilized zirconia, Mater. Res. Bull., 24, 619, 10.1016/0025-5408(89)90110-4
Nicoloso, 1992, Optical absorption studies of tetragonal and cubic thin-film yttria-stabilized zirconia, Sensors and Actuators B, 8, 253, 10.1016/0925-4005(92)85027-T
Pai Verneker, 1990, Effect of reduction on Vickers hardness of stabilized zirconia, J. Mater. Sci. Lett., 9, 192, 10.1007/BF00727712
Petty-Weeks, 1988, Proton conducting interpenetrating polymer networks, Solid State Ionics, 31, 117, 10.1016/0167-2738(88)90295-0
Phillips, 1994, Transparent conducting thin films of GaInO3, Appl. Phys. Lett., 65, 115, 10.1063/1.113052
Polak, 1986, Applications of novel proton-conducting polymers to hydrogen sensing, Sensors and Actuators, 9, 1, 10.1016/0250-6874(86)80001-4
Rauh, 1995, Design and fabrication of electrochromic light modulators, Solar Energy Mater. Solar Cells, 39, 145, 10.1016/0927-0248(95)00043-7
Rönnow, 1994, Design review of an instrument for spectroscopic total integrated light scattering measurements in the visible wavelength region, Rev. Sci. Instrum., 65, 327, 10.1063/1.1145191
Rönnow, 1996, Spectroscopic light scattering from electrochromic tungsten-oxide-based films, J. Appl. Phys., 80, 423, 10.1063/1.362778
Scholmann, 1992, Properties and application of a proton conducting polymer: the BPEI, x H3PO4 system, Electrochim. Acta, 37, 1619, 10.1016/0013-4686(92)80123-4
Shen, 1992, Improvements in the life of WO3 electrochromic films, J. Mater. Chem., 2, 497, 10.1039/jm9920200497
Shigesato, 1991, The structural changes of indium–tin oxide and a-WO3 films by introducing water to the deposition process, Jpn. J. Appl. Phys., 30, 814, 10.1143/JJAP.30.814
Stashans, 1996, Theoretical study of lithium intercalation in rutile and anatase, Phys. Rev. B, 53, 159, 10.1103/PhysRevB.53.159
Steele, 1991, Variable transmission electrochromic windows utilizing tin-doped indium oxide counterelectrodes, Appl. Phys. Lett., 59, 2357, 10.1063/1.106014
Strømme Mattsson, 1997, Li intercalation in Ti–Ce oxide films: energetics and ion dynamics, J. Appl. Phys., 81, 6432, 10.1063/1.364424
Svensson, 1985, Electrochromic coatings for “smart windows”, Solar Energy Mater., 12, 391, 10.1016/0165-1633(85)90033-4
Svensson, 1986, Electrochromic hydrated nickel oxide coatings for energy efficient windows: optical properties and coloration mechanism, Appl. Phys. Lett., 49, 1566, 10.1063/1.97281
Svensson, 1987, Optical properties of electrochromic hydrated nickel oxide coatings made by rf sputtering, Appl. Opt., 26, 1554, 10.1364/AO.26.001554
Talledo, 1995, Electrochromic vanadium-oxide based films: structural, electrochemical, and optical properties, J. Appl. Phys., 77, 4655, 10.1063/1.359433
Talledo, 1994, Optical properties of lithium-intercalated V2O5-based films treated in CF4 gas, Appl. Phys. Lett., 65, 2774, 10.1063/1.112559
Tassi, 1994, An electrochromic device based on association of the graft copolymer of polyaniline and nitric rubber with WO3, Electrochim. Acta, 39, 2481, 10.1016/0013-4686(94)00208-8
Taylor, 1994, Spectroscopic properties of WO3 thin films: polarized FT-IR/ATR, X-ray diffraction, and electronic absorption, Appl. Spectrosc., 48, 674, 10.1366/000370294774368992
Ueda, 1992, New oxide phase with wide band gap and high electroconductivity, MgIn2O4, Appl. Phys. Lett., 61, 1954, 10.1063/1.108374
Un'no, 1993, Preparation of MgIn2O4−x thin films on glass substrate by RF sputtering, Jpn. J. Appl. Phys., 32, L1260, 10.1143/JJAP.32.L1260
Vaivars, 1997, Proton conducting composite electrolytes based on antimonic acid, Solid State Ionics, 97, 365, 10.1016/S0167-2738(97)00049-0
Vaivars, 1993, Antimonic acid hydrate xerogels as proton electrolytes, Solid State Ionics, 61, 317, 10.1016/0167-2738(93)90398-M
Veszelei, 1997, Transparent ion intercalation films of Zr–Ce oxide, J. Appl. Phys., 81, 2024, 10.1063/1.364059
Veszelei, 1998, Optical and electrochemical properties of Li+ intercalated Zr–Ce oxide and Hf–Ce oxide films, J. Appl. Phys., 83, 1670, 10.1063/1.366883
West K., Zachau-Christiansen B., Jacobsen T. and Skaarup S. (1993) Lithium intercalation in oxides: EMF related to structure and chemistry, In Solid State Ionics III, Nazri G.-A., Tarascon J.-M. and Armand M. (Eds), 9.47–9.55. Materials Research Society, Pittsburgh.
Wuilloud, 1984, Spectroscopic evidence for localized and extended f-symmetry states in CeO2, Phys. Rev. Lett., 53, 202, 10.1103/PhysRevLett.53.202
Yamanaka, 1991, The electrochromic behavior of anodically electrodeposited iridium oxide films and the reliability of transmittance variable cells, Jpn. J. Appl. Phys., 30, 1285, 10.1143/JJAP.30.1285