Recent advances in differential evolution: a survey and experimental analysis

Artificial Intelligence Review - Tập 33 Số 1-2 - Trang 61-106 - 2010
Ferrante Neri1, Ville Tirronen1
1Department of Mathematical Information Technology, University of Jyväskylä, Jyväskylä, Finland 40014#TAB#

Tóm tắt

Từ khóa


Tài liệu tham khảo

Abbass HA (2002) The self-adaptive pareto differential evolution algorithm. In: Proceedings of the IEEE congress on evolutionary computation, vol 1, pp 831–836

Abbass HA, Sarker RA (2002) The pareto differential evolution algorithm. Int J Artif Intell Tools 11(4): 531–552

Abbass HA, Sarker R, Newton C (2001) Pde: A pareto-frontier differential evolution approach for multiobjective optimization problems. In: Proceedings of the IEEE congress on evolutionary computation, vol 2, pp 971–978

Ali MM, Fatti LP (2006) A differential free point generation scheme in the differential evolution algorithm. J Glob Optim 35(4): 551–572

Ali MM, Törn A (2004) Population set based global optimization algorithms: some modifications and numerical studies. Computers and operations research, vol 31. Elsevier, Amsterdam, pp 1703–1725

Angira R, Santosha A (2007) Optimization of dynamic systems: a trigonometric differential evolution approach. Comput Chem Eng 31(9): 1055–1063

Angira R, Santosh A (2008) A modified trigonometric differential evolution algorithm for optimization of dynamic systems. In: Proceedings of the IEEE congress on evolutionary computation, pp 1463–1468

Babu B, Jehan M (2003) Differential evolution for multi-objective optimization. In: Proceedings of the IEEE congress on evolutionary computation, vol 4, pp 2696–2703

Baker JE (1987) Reducing bias and inefficiency in the selection algorithm. In: Proceedings of the international conference on genetic algorithms. Lawrence Erlbaum, Mahwah, pp 14–21

Brest J, Maučec MS (2008) Population size reduction for the differential evolution algorithm. Appl Intell 29(3): 228–247

Brest J, Žumer V, Maucec M (2006) Self-adaptive differential evolution algorithm in constrained real-parameter optimization. In: Proceedings of the IEEE congress on evolutionary computation, pp 215–222

Brest J, Zamuda BBA, Žumer V (2008) An analysis of the control parameters’adaptation in DE. In: Chakraborty UK (eds) Advances in differential evolution, vol 143 of studies in computational intelligence. Springer, Berlin, pp 89–110

Brest J, Bošković B, Greiner S, Žumer V, Maučec MS (2007) Performance comparison of self-adaptive and adaptive differential evolution algorithms. Soft Comput 11(7): 617–629

Brest J, Greiner S, Bošković B, Mernik M, Žumer V (2006) Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems. IEEE Trans Evol Comput 10(6): 646–657

Brest J, Zamuda A, Bošković B, Maucec MS, Žumer V (2008) High-dimensional real-parameter optimization using self-adaptive differential evolution algorithm with population size reduction. In: Proceedings of the IEEE world congress on computational intelligence, pp 2032–2039

Caponio A, Neri F (2009) Differential evolution with noise analysis. In: Applications of evolutionary computing, vol 5484 of lecture notes in computer science. Springer, Berlin, pp 715–724

Caponio A, Neri F, Tirronen V (2009) Super-fit control adaptation in memetic differential evolution frameworks. Soft Comput Fusion Found Methodol Appl 13(8): 811–831

Caponio A, Cascella GL, Neri F, Salvatore N, Sumner M (2007) A fast adaptive memetic algorithm for on-line and off-line control design of pmsm drives. IEEE Trans Syst Man Cybern B (special issue on Memetic Algorithms) 37(1): 28–41

Chakraborty UK (ed) (2008) Advances in differential evolution, vol 143 of studies in computational intelligence. Springer, Berlin

Chakraborty UK, Das S, Konar A (2006) Differential evolution with local neighborhood. In: Proceedings of the IEEE congress on evolutionary computation, pp 2042–2049

Chang TT, Chang HC (1998) Application of differential evolution to passive shunt harmonic filter planning. In: Proceedings of the 8th international conference on harmonics and quality of power, vol 1, pp 149–153

Chang T-T, Chang H-C (2000) An efficient approach for reducing harmonic voltage distortion in distribution systems with active power line conditioners. IEEE Trans Power Deliv 15(3): 990–995

Chen W, Shi JY, Teng Hf (2008) An improved differential evolution with local search for constrained layout optimization of satellite module. In: Advanced intelligent computing theories and applications. With aspects of artificial intelligence, vol 5227 of lecture notes in computer science, Springer, Berlin, pp 742–749

Chiou J-P, Wang F-S (1998) A hybrid method of differential evolution with application to optimal control problems of a bioprocess system. In: The 1998 IEEE international conference on evolutionary computation proceedings, pp 627–632

Chiou J-P, Wang F-S (1999) Hybrid method of evolutionary algorithms for static and dynamic optimization problems with application to a fed-batch fermentation process. Computers and Chemical Engineering, vol 23. Elsevier, pp 1277–1291

Chiou J-P, Chang C-F, Su C-T (2004) Ant direction hybrid differential evolution for solving large capacitor placement problems. IEEE Trans Power Syst 19: 1794–1800

Das S, Konar A (2005) An improved differential evolution scheme for noisy optimization problems. In: Pattern recognition and machine intelligence, vol 3776 of lecture notes in computer science. Springer, Berlin, pp 417–421

Das S, Konar A, Chakraborty U (2005) Improved differential evolution algorithms for handling noisy optimization problems. In: Proceedings of the IEEE congress on evolutionary computation, vol 2, pp 1691–1698

Das S, Konar A, Chakraborty UK (2005) Two improved differential evolution schemes for faster global search. In: Proceedings of the 2005 conference on genetic and evolutionary computation. ACM, New York, pp 991–998

Das S, Konar A, Chakraborty UK (2007) Annealed differential evolution. In: Proceedings of the IEEE congress on evolutionary computation, pp 1926–1933

Das S, Abraham A, Chakraborty UK, Konar A (2009) Differential evolution with a neighborhood-based mutation operator. IEEE Trans Evol Comput 13(3): 526–553

Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2): 182–197

Eiben AE, Smith JE (2003) Introduction to evolutionary computation. Springer, Berlin

Fan H-Y, Lampinen J (2002) A trigonometric mutation approach to differential evolution. In: Giannakoglou KC, Tsahalis DT, Papailiou JPKD, Fogarty T (eds) Evolutionary methods for design, optimization and control. CIMNE, Barcelona, pp 65–70

Fan H-Y, Lampinen J (2003a) A directed mutation operation for the differential evolution algorithm. Int J Ind Eng 10(1): 6–15

Fan H-Y, Lampinen J (2003b) A trigonometric mutation operation to differential evolution. J Glob Optim 27(1): 105–129

Feoktistov V (2006) Differential evolution: in search of solutions. In: Optimization and its applications, vol 5. Springer, New York, USA

Gao Y, Wang Y-J (2007) A memetic differential evolutionary algorithm for high dimensional functions’ optimization. In: Proceesings of the 3rd international conference on natural computation, pp 188–192

Gämperle R, Müller SD, Koumoutsakos P (2002) A parameter study for differential evolution. In: Proceedings of the conference in neural networks and applications (NNA), fuzzy sets and fuzzy systems (FSFS) and evolutionary computation (EC), WSEAS, pp 293–298

Hart WE, Krasnogor N, Smith JE (2004) Memetic evolutionary algorithms. In: Hart WE, Krasnogor N, Smith JE (eds) Recent advances in memetic algorithms. Springer, Berlin, pp 3–27

Hendtlass T (2001) A combined swarm differential evolution algorithm for optimization problems. In: Lecture notes in computer science, vol 2070. Springer, Berlin, pp 11–18

He X, Han L (2007) A novel binary differential evolution algorithm based on artificial immune system. In: Proceedings of the IEEE congress on evolutionary computation, pp 2267–2272

Hu S, Huang H, Czarkowski D (2005) Hybrid trigonometric differential evolution for optimizing harmonic distribution. In: Proceedings of the IEEE international symposium on circuits and systems, vol 2, pp 1306–1309

Hu Z-B, Su Q-H, Xiong S-W, Hu F-G (2008) Self-adaptive hybrid differential evolution with simulated annealing algorithm for numerical optimization. In: Proceedings of the IEEE congress on evolutionary computation, pp 1189–1194

Joshi R, Sanderson AC (1999) Minimal representation multisensor fusion using differential evolution. IEEE Trans Syst Man Cybern A 29(1): 63–76

Kaelo P, Ali MM (2007) Differential evolution algorithms using hybrid mutation. Comput Optim Appl 37: 231–246

Karaboga N, Cetinkaya B (2004) Performance comparison of genetic and differential evolution algorithms for digital FIR filter design. In: Advances in information systems, vol 3261 of lecture notes in computer science. Springer, Berlin, pp 482–488

Karaboga N, Cetinkaya B (2006) Design of digital FIR filters using differential evolution algorithm. Circuits Syst Signal Process 25: 649–660

Kiefer J (1953) Sequential minimax search for a maximum. Proc Am Math Soc 4: 502–506

Koh A (2009) An adaptive differential evolution algorithm applied to highway network capacity optimization. vol 52 of Advances in Soft Computing. Springer, Berlin, pp 211–220

Krink T, Filipič B, Fogel GB (2004) Noisy optimization problems—a particular challenge for differential evolution? In: Proceedings of the IEEE congress on evolutionary computation, pp 332–339

Lampinen J (1999) Mechanical engineering design optimization by differential evolution. In: Corne D, Dorigo M, Glover F (eds) New ideas in optimization. McGraw-Hill, New York, pp 293–298

Lampinen J, Zelinka I (1999) An introduction to differential evolution. In: Corne D, Dorigo M, Glover F (eds) New ideas in optimization. McGraw-Hill, New York, pp 127–146

Lampinen J, Zelinka I (2000) On stagnation of the differential evolution algorithm In: Oŝmera P (ed) Proceedings of 6th international mendel conference on soft computing, pp 76–83

Leskinen J, Neri F, Neittaanmäki P (2009) Memetic variation local search vs life-time learning in electrical impedance tomography. In: Applications of evolutionary computing, lecture notes in computer science. Springer, Berlin, pp 615–624

Li H, Zhang Q (2006) A multiobjective differential evolution based on decomposition for multiobjective optimization with variable linkages. In: Parallel problem solving from nature-PPSN IX, vol 4193 of lecture notes in computer science. Springer, Berlin, pp 583–592

Lin Y-C, Wang F-S, Hwang K-S (1999) A hybrid method of evolutionary algorithms for mixed-integer nonlinear optimization problems. In: Proceedings of the IEEE congress on evolutionary computation, vol 3, pp 2159–2166

Lin Y-C, Hwang K-S, Wang F-S (2001) Co-evolutionary hybrid differential evolution for mixed-integer optimization problems. Eng Optim 33(6): 663–682

Liu J, Lampinen J (2002b) A fuzzy adaptive differential evolution algorithm. In: Proceedings of the 17th IEEE region 10th international conference on computer, communications, control and power engineering, vol I, pp 606–611

Liu J, Lampinen J (2002c) Adaptive parameter control of differential evolution. In: Proceedings of the 8th international Mendel conference on soft computing, pp 19–26

Liu J, Lampinen J (2002a) On setting the control parameter of the differential evolution algorithm. In: Proceedings of the 8th international Mendel conference on soft computing, pp 11–18

Liu J, Lampinen J (2005) A fuzzy adaptive differential evolution algorithm. In: Soft Comput Fusion Found Methodol Appl, vol 9. Springer, Berlin, pp 448–462

Liu B, Zhang X, Ma H (2008) Hybrid differential evolution for noisy optimization. In: Proceedings of the IEEE congress on evolutionary computation, pp 587–592

Lozano M, Herrera F, Krasnogor N, Molina D (2004) Real-coded memetic algorithms with crossover hill-climbing. Evol Comput Special Issue Memet algorithms 12(3): 273–302

Madavan NK (2002) Multiobjective optimization using a pareto differential evolution approach. In: Proceedings of the IEEE congress on evolutionary computation, vol 2, pp 1145–1150

Mallipeddi R, Suganthan PN (2008) Empirical study on the effect of population size on differential evolution algorithm. In: Proceedings of the IEEE congress on evolutionary computation, pp 3663–3670

Masters T, Land W (1997) A new training algorithm for the general regression neural network. In: Proceedings of the IEEE international conference on systems, man, and cybernetics, computational cybernetics and simulation, vol 3, pp 1990–1994

Mezura-Montes E, Reyes-Sierra M, Coello Coello CA (2008) Multi-objective optimization using differential evolution: A survey of the state-of-the-art. In: Chakraborty UK (ed) Advances in differential evolution, vol 143 of studies in computational intelligence. Springer, Berlin, pp 173–196

Nearchou AC, Omirou SL (2006) Differential evolution for sequencing and scheduling optimization. J Heuristics 12(6): 395–411

Neri F, Toivanen J, Cascella GL, Ong YS (2007) An adaptive multimeme algorithm for designing HIV multidrug therapies. IEEE/ACM Trans Comput Biol Bioinform 4(2): 264–278

Neri F, Tirronen V, Kärkkäinen T, Rossi T (2007a) Fitness diversity based adaptation in multimeme algorithms: A comparative study. In: Proceedings of the IEEE congress on evolutionary computation, pp 2374–2381

Neri F, Toivanen J, Mäkinen RAE (2007b) An adaptive evolutionary algorithm with intelligent mutation local searchers for designing multidrug therapies for HIV. Appl Intell 27: 219–235

Neri F, Tirronen V (2008) On memetic differential evolution frameworks: a study of advantages and limitations in hybridization. In: Proceedings of the IEEE world congress on computational intelligence, pp 2135–2142

Neri F, Tirronen V (2009) Scale factor local search in differential evolution. Memet Comput J 1(2): 153–171

Neri F, Tirronen V, Kärkkäinen T (2009) Enhancing differential evolution frameworks by scale factor local search—part II. In: Proceedings of the IEEE congress on evolutionary computation, pp 118–125

NIST/SEMATECH (2003) e-handbook of statistical methods, http://www.itl.nist.gov/div898/handbook/

Noman N, Iba H (2005) Enhancing differential evolution performance with local search for high dimensional function optimization. In: Proceedings of the 2005 conference on genetic and evolutionary computation ACM, New York, pp 967–974

Noman N, Iba H (2008) Accelerating differential evolution using an adaptive local search. IEEE Trans Evol Comput 12(1): 107–125

Ohkura K, Matsumura Y, Ueda K (2001) Robust evolution strategies. Appl Intell 15(3): 153–169

Olorunda O, Engelbrecht A (2007) Differential evolution in high-dimensional search spaces. In: Proceedings of the IEEE congress on evolutionary computation, pp 1934–1941

Omran MG, Salman A, Engelbrecht AP (2005) Self-adaptive differential evolution. In: Computational intelligence and security, vol 3801 of lecture notes in computer science. Springer, Berlin, pp 192–199

Ong YS, Keane AJ (2004) Meta-lamarkian learning in memetic algorithms. IEEE Trans Evol Comput 8(2): 99–110

Plagianakos VP, Sotiropoulos DG, Vrahatis MN (1998) Integer weight training by differential evolution algorithms. In: Mastorakis NE (eds) Recent advances in circuits and systems. World Scientific, Singapore, pp 327–331

Plagianakos VP, Tasoulis DK, Vrahatis MN (2008) A review of major application areas of differential evolution. In: Chakraborty UK (eds) Advances in differential evolution, vol 143 of studies in computational intelligence. Springer, Berlin, pp 197–238

Price K, Storn R (1997) Differential evolution: a simple evolution strategy for fast optimization. Dr Dobbs J Softw Tools 22(4): 18–24

Price KV, Storn R, Lampinen J (2005) Differential evolution: a practical approach to global optimization. Springer, Berlin

Qin AK, Suganthan PN (2005) Self-adaptive differential evolution algorithm for numerical optimization. In: Proceedings of the IEEE congress on evolutionary computation, vol 2, pp 1785–1791

Qin AK, Huang VL, Suganthan PN (2009) Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Trans Evol Comput 13(2): 398–417

Qing A (2008) A study on base vector for differential evolution. In: Proceedings of the IEEE congress on evolutionary computation, pp 550–556

Rahnamayan S, Wang GG (2008) Solving large scale optimization problems by opposition-based differential evolution (ode). WSEAS Trans Comput 7(10): 1792–1804

Rahnamayan S, Tizhoosh HR, Salama MM (2006a) Opposition-based differential evolution algorithms, pp 2010–2017

Rahnamayan S, Tizhoosh H, Salama MMA (2006b) Opposition-based differential evolution for optimization of noisy problems. In: Proceedings of the IEEE congress on evolutionary computation, pp 1865–1872

Rahnamayan S, Tizhoosh HR, Salama MMA (2007) Quasi-oppositional differential evolution. In: Proceedings of the IEEE congress on evolutionary computation, pp 2229–2236

Rahnamayan S, Tizhoosh HR, Salama MM (2008) Opposition-based differential evolution. IEEE Trans Evol Comput 12(1): 64–79

Rahnamayan S, Tizhoosh H, Salama M (2008) Opposition-based differential evolution. In: Chakraborty UK (eds) Advances in differential evolution, vol 143 of studies in computational intelligence. Springer, Berlin, pp 155–171

Rechemberg I (1973) Evolutionstrategie: optimierung technisher systeme nach prinzipien des biologishen evolution. Fromman-Hozlboog Verlag, Stuttgart, Germany

Robič T, Filipič B (2005) DEMO: Differential evolution for multiobjective optimization. In: Coello Coello CA, Aguirre AH, Zitzler E (eds) Evolutionary Multi-Criterion Optimization , vol. 3410 of lecture notes in computer science. Springer, Berlin, pp 520–533

Rogalsky T, Derksen RW (2000) Hybridization of differential evolution for aerodynamic design. In: Proceedings of the 8th annual conference of the computational fluid dynamics society of Canada, pp 729–736

Russell SJ, Norvig P (2003) Artificial intelligence: a modern approach (2nd ed). Prentice Hall, Englewood Cliffs, NJ, USA, pp 111–114

Ruxton GD (2006) The unequal variance t-test is an underused alternative to student’s t-test and the Mann–Whitneyu test. Behav Ecol 17(4): 688–690

Rönkkönen J, Lampinen J (2003) On using normally distributed mutation step length for the differential evolution algorithm. In: Matousek R, Osmera P (eds) Proceedings of 9th international mendel conference on soft computing, pp 11–18

Rönkkönen J, Kukkonen S, Price KV (2005) Real-parameter optimization with differential evolution. In: Proceedings of IEEE international conference on evolutionary computation, vol 1, pp 506–513

Salman A, Engelbrecht AP, Omran MG (2007) Empirical analysis of self-adaptive differential evolution. Eur J Oper Res 183(2): 785–804

Sing TN, Teo J, Hijazi MHA (2007) Empirical testing on 3-parents differential evolution (3PDE) for unconstrained function optimization. In: Proceedings of the IEEE congress on evolutionary computation, pp 2259–2266

Soliman OS, Bui LT (2008) A self-adaptive strategy for controlling parameters in differential evolution. In: Proceedings of the IEEE congress on evolutionary computation, pp 2837–2842

Soliman OS, Bui LT, Abbass HA (2007) The effect of a stochastic step length on the performance of the differential evolution algorithm In: Proceedings of the IEEE congress on evolutionary computation, pp 2850–2857

Storn R (1996a) Differential evolution design of an IIR-filter. In: Proceedings of IEEE international conference on evolutionary computation, pp 268–273

Storn R (1996b) On the usage of differential evolution for function optimization. In: Proceedings of the IEEE biennial conference of the North American fuzzy information processing society, pp 519–523

Storn R (1999) System design by constraint adaptation and differential evolution. IEEE Trans Evol Comput 3(1): 22–34

Storn R (2005) Designing nonstandard filters with differential evolution. IEEE Signal Process Mag 22(1): 103–106

Storn R, Price K (1995) Differential evolution—a simple and efficient adaptive scheme for global optimization over continuous spaces. Technical Report TR-95-012, ICSI

Storn R, Price K (1997) Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11: 341–359

Su C-T, Lee C-S (2003) Network reconfiguration of distribution systems using improved mixed-integer hybrid differential evolution. IEEE Trans Power Deliv 18: 1022–1027

Teng NS, Teo J, Hijazi MHA (2009) Self-adaptive population sizing for a tune-free differential evolution. Soft Comput Fusion Found Methodol Appl 13(7): 709–724

Teo J (2005) Differential evolution with self-adaptive populations. In: Knowledge-based intelligent information and engineering systems, vol 3681 of lecture notes in computer science. Springer, Berlin, pp 1284–1290

Teo J (2006) Exploring dynamic self-adaptive populations in differential evolution. Soft Comput Fusion Found Methodol Appl 10(8): 673–686

Thomas P, Vernon D (1997) Image registration by differential evolution. In: Proceedings of the 1st Irish machine vision and image processing conference, pp 221–225

Tirronen V, Neri F (2009) Differential evolution with fitness diversity self-adaptation. In: Chiong R (ed) Nature-inspired algorithms for optimisation, vol 193 of studies in computational intelligence. Springer, Berlin, pp 199–234

Tirronen V, Neri F, Rossi T (2009) Enhancing differential evolution frameworks by scale factor local search—part I. In: Proceedings of the IEEE congress on evolutionary computation, pp 94–101

Tirronen V, Neri F, Kärkkäinen T, Majava K, Rossi T (2007) A memetic differential evolution in filter design for defect detection in paper production. In: Applications of evolutionary computing, vol 4448. Springer, Berlin, pp 320–329

Tirronen V, Neri F, Kärkkäinen T, Majava K, Rossi T (2008) An enhanced memetic differential evolution in filter design for defect detection in paper production. Evol Comput 16: 529–555

Tirronen V, Neri F, Majava K, Kärkkäinen T (2008) The natura non facit saltus principle in memetic computing. In: IEEE congress on evolutionary computation, pp 3881–3888

Tsutsui S, Yamamura M, Higuchi T (1999) Multi-parent recombination with simplex crossover in real coded genetic algorithms. In: Proceedings of the Genetic Evol Comput Conf (GECCO), pp 657–664

Tvrdík J, Krivý I (1999) Simple evolutionary heuristics for global optimization. Comput Stat Data Anal 30(3): 345–352

Wang F-S, Jang H-J (2000) Parameter estimation of a bioreaction model by hybrid differential evolution. In: Proceedings of the IEEE congress on evolutionary computation, vol 1, pp 410–417

Wolpert D, Macready W (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1(1): 67–82

Xu X, Li Y, Fang S, Wu Y, Wang F (2008) A novel differential evolution scheme combined with particle swarm intelligence. In: Proceedings of the IEEE congress on evolutionary computation, pp 1057–1062

Yang Z, He J, Yao X (2008) Making a difference to differential evolution. In: Michalewicz Z, Siarry P (eds) Advances in metaheuristics for hard optimization, pp 397–414

Yang Z, Tang K, Yao X (2007) Differential evolution for high-dimensional function optimization. In: Proceedings of the IEEE congress on evolutionary computation, pp 3523–3530

Yang Z, Tang K, Yao X (2008a) Large scale evolutionary optimization using cooperative coevolution. Inf Sci 178(15): 2985–2999

Yang Z, Tang K, Yao X (2008b) Self-adaptive differential evolution with neighborhood search. In: Proceedings of the world congress on computational intelligence, pp 1110–1116

Zaharie D (2002) Critical values for control parameters of differential evolution algorithm. In: Matuŝek R, Oŝmera P (eds) Proceedings of 8th international mendel conference on soft computing, pp 62–67

Zaharie D (2003) Control of population diversity and adaptation in differential evolution algorithms. In: Matousek D, Osmera P (eds) Proceedings of MENDEL international conference on soft computing, pp 41–46

Zaharie D, Petcu D (2004) Adaptive pareto differential evolution and its parallelization. In: Parallel processing and applied mathematics, vol 3019 of lecture notes in computer science, pp 261–268

Zamuda A, Brest J, Bošković B, Žumer V (2007) Differential evolution for multiobjective optimization with self adaptation. In: Proceedings of the IEEE congress on evolutionary computation, pp 3617–3624

Zamuda A, Brest J, Bošković B, Žumer V (2008) Large scale global optimization using differential evolution with self-adaptation and cooperative co-evolution. In: Proceedings of the IEEE world congress on computational intelligence, pp 3719–3726

Zhang J, Sanderson A (2007) DE-AEC: a differential evolution algorithm based on adaptive evolution control. In: Proceedings of IEEE international conference on evolutionary computation, pp 3824–3830

Zhang X, Duan H, Jin J (2008) DEACO: Hybrid ant colony optimization with differential evolution. In: Proceedings of the IEEE congress on evolutionary computation, pp 921–927

Zhenyu G, Bo C, Min Y, Binggang C (2006) Self-adaptive chaos differential evolution. In: Advances in natural computation, vol 4221 of lecture notes in computer science. Springer, Berlin, pp 972–975

Zielinski K, Laur R (2008) Stopping criteria for differential evolution in constrained single-objective optimization. In: Chakraborty UK (ed) Advances in differential evolution, vol 143 of studies in computational intelligence. Springer, Berlin, pp 111–138

Zielinski K, Weitkemper P, Laur R, Kammeyer K-D (2006) Parameter study for differential evolution using a power allocation problem including interference cancellation. In: Proceedings of the IEEE congress on evolutionary computation, pp 1857–1864

Zielinski K, Wang X, Laur R (2008) Comparison of adaptive approaches for differential evolution. In: Parallel problem solving from nature—PPSN X, vol 5199 of lecture notes in computer science. Springer, Berlin, pp 641–650