Recent advances in design of lanthanide-containing NIR-II luminescent nanoprobes

iScience - Tập 24 Số 2 - Trang 102062 - 2021
Yingjie Yang1,2, Datao Tu1,3, Yunqin Zhang1,2, Peng Zhang1, Xueyuan Chen1,3,2
1CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
2University of Chinese Academy of Sciences, Beijing, 100049, China
3Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Antaris, 2016, A small-molecule dye for NIR-II imaging, Nat. Mater., 15, 235, 10.1038/nmat4476

Chen, 2012, Core/shell NaGdF4:Nd3+/NaGdF4 nanocrystals with efficient near-infrared to near-infrared downconversion photoluminescence for bioimaging applications, ACS Nano, 6, 2969, 10.1021/nn2042362

Cheng, 2018, Er3+ sensitized photon upconversion nanocrystals, Adv. Funct. Mater., 28, 1800208, 10.1002/adfm.201800208

Dai, 2017, Mussel-inspired polydopamine-coated lanthanide nanoparticles for NIR-II/CT dual imaging and photothermal therapy, ACS Appl. Mater. Inter., 9, 26674, 10.1021/acsami.7b06109

Diao, 2015, Fluorescence imaging in vivo at wavelengths beyond 1500 nm, Angew. Chem. Int. Ed., 54, 14758, 10.1002/anie.201507473

Dong, 2013, Facile synthesis of highly photoluminescent Ag2Se quantum dots as a new fluorescent probe in the second near-infrared window for in vivo imaging, Chem. Mater., 25, 2503, 10.1021/cm400812v

Dumont, 2012, DNA surface modified gadolinium phosphate nanoparticles as MRI contrast agents, Bioconjug. Chem., 23, 951, 10.1021/bc200553h

Escobedo, 2010, NIR dyes for bioimaging applications, Curr. Opin. Chem. Biol., 14, 64, 10.1016/j.cbpa.2009.10.022

Fan, 2018, Lifetime-engineered NIR-II nanoparticles unlock multiplexed in vivo imaging, Nat. Nanotechnol., 13, 941, 10.1038/s41565-018-0221-0

Fan, 2019, A new generation of NIR-II probes: lanthanide-based nanocrystals for bioimaging and biosensing, Adv. Opt. Mat., 7, 1801417, 10.1002/adom.201801417

Gu, 2019, High-sensitivity imaging of time-domain near-infrared light transducer, Nat. Photon., 13, 580, 10.1038/s41566-019-0491-6

Hazra, 2018, Enhanced NIR-I emission from water-dispersible NIR-II dye-sensitized core/active shell upconverting nanoparticles, J. Mater. Chem. C, 6, 4777, 10.1039/C8TC00335A

He, 2015, A new single 808 nm NIR light-induced imaging-guided multifunctional cancer therapy platform, Adv. Funct. Mater., 25, 3966, 10.1002/adfm.201500464

He, 2019, High affinity to skeleton rare earth doped nanoparticles for near-infrared II imaging, Nano Lett., 19, 2985, 10.1021/acs.nanolett.9b00140

He, 2018, Crucial breakthrough of second near-infrared biological window fluorophores: design and synthesis toward multimodal imaging and theranostics, Chem. Soc. Rev., 47, 4258, 10.1039/C8CS00234G

Heffern, 2014, Lanthanide probes for bioresponsive imaging, Chem. Rev., 114, 4496, 10.1021/cr400477t

Hong, 2014, Ultrafast fluorescence imaging in vivo with conjugated polymer fluorophores in the second near-infrared window, Nat. Commun., 5, 4206, 10.1038/ncomms5206

Hu, 2017, Highly near-IR emissive ytterbium(III) complexes with unprecedented quantum yields, Chem. Sci., 8, 2702, 10.1039/C6SC05021B

Hu, 2020, NIRF nanoprobes for cancer molecular imaging: approaching clinic, Trends Mol. Med., 26, 469, 10.1016/j.molmed.2020.02.003

Hu, 2020, First-in-human liver-tumour surgery guided by multispectral fluorescence imaging in the visible and near-infrared-I/II windows, Nat. Biomed. Eng., 4, 259, 10.1038/s41551-019-0494-0

Huang, 2015, Inorganic lanthanide nanoprobes for background-free luminescent bioassays, Sci. China Mater., 58, 156, 10.1007/s40843-015-0019-4

Huang, 2019, Unraveling the electronic structures of neodymium in LiLuF4 nanocrystals for ratiometric temperature sensing, Adv. Sci., 6, 1802282, 10.1002/advs.201802282

Jin, 2020, Joining the journey to near infrared (NIR) imaging: the emerging role of lanthanides in the designing of molecular probes, Inorg. Chem. Front., 7, 289, 10.1039/C9QI01132C

Johnson, 2017, Direct evidence for coupled surface and concentration quenching dynamics in lanthanide-doped nanocrystals, J. Am. Chem. Soc., 139, 3275, 10.1021/jacs.7b00223

Kantamneni, 2017, Surveillance nanotechnology for multi-organ cancer metastases, Nat. Biomed. Eng., 1, 993, 10.1038/s41551-017-0167-9

Klik, 2002, Optically induced deexcitation of rare-earth ions in a semiconductor matrix, Phys. Rev. Lett., 89, 227401, 10.1103/PhysRevLett.89.227401

Kodach, 2010, Quantitative comparison of the OCT imaging depth at 1300 nm and 1600 nm, Biomed. Opt. Express, 1, 176, 10.1364/BOE.1.000176

Kong, 2016, Highly fluorescent ribonuclease-A-encapsulated lead sulfide quantum dots for ultrasensitive fluorescence in vivo imaging in the second near-infrared window, Chem. Mater., 28, 3041, 10.1021/acs.chemmater.6b00208

Lei, 2018, Intense near-infrared-II luminescence from NaCeF4:Er/Yb nanoprobes for in vitro bioassay and in vivo bioimaging, Chem. Sci., 9, 4682, 10.1039/C8SC00927A

Li, 2019, Excretable lanthanide nanoparticle for biomedical imaging and surgical navigation in the second near-infrared window, Adv. Sci., 6, 1902042, 10.1002/advs.201902042

Li, 2017, Synthesis of multicolor core/shell NaLuF4:Yb3+/ln3+@CaF2 upconversion nanocrystals, Nanomaterials, 7, 34, 10.3390/nano7020034

Li, 2020, Clearable shortwave-infrared-emitting NaErF4 nanoparticles for noninvasive dynamic vascular imaging, Chem. Mater., 32, 3365, 10.1021/acs.chemmater.9b04784

Li, 2013, Current drug research on PEGylation with small molecular agents, Prog. Polym. Sci., 38, 421, 10.1016/j.progpolymsci.2012.07.006

Li, 2019, 808 nm laser-triggered NIR-II emissive rare-earth nanoprobes for small tumor detection and blood vessel imaging, Mater. Sci. Eng. C Mater. Biol. Appl., 100, 260, 10.1016/j.msec.2019.02.106

Li, 2019, Polydopamine coated multifunctional lanthanide theranostic agent for vascular malformation and tumor vessel imaging beyond 1500 nm and imaging-guided photothermal therapy, Theranostics, 9, 3866, 10.7150/thno.31864

Li, 2020, Recent advances on inorganic lanthanide-doped NIR-II fluorescence nanoprobes for bioapplication, J. Lumin., 228, 117627, 10.1016/j.jlumin.2020.117627

Li, 2020, A universal strategy to construct lanthanide-doped nanoparticles-based activable NIR-II luminescence probe for bioimaging, iScience, 23, 100962, 10.1016/j.isci.2020.100962

Liu, 2018, Er3+ sensitized 1530nm to 1180 nm second near-infrared window upconversion nanocrystals for in vivo biosensing, Angew. Chem. Int. Ed., 57, 7518, 10.1002/anie.201802889

Liu, 2011, Optical spectroscopy of lanthanides doped in wide band-gap semiconductor nanocrystals, J. Lumin., 131, 415, 10.1016/j.jlumin.2010.07.018

Martín-Rodríguez, 2013, Incorporation and luminescence of Yb3+ in CdSe nanocrystals, J. Am. Chem. Soc., 135, 13668, 10.1021/ja4077414

Naczynski, 2015, X-ray-Induced shortwave infrared biomedical imaging using RareEarth nanoprobes, Nano Lett., 15, 96, 10.1021/nl504123r

Naczynski, 2014, Rare earth nanoprobes for functional biomolecular imaging and theranostics, J. Mater. Chem. B, 2, 2958, 10.1039/C4TB00094C

Naczynski, 2013, Rare-earth-doped biological composites as in vivo shortwave infrared reporters, Nat. Commun., 4, 2199, 10.1038/ncomms3199

Ning, 2019, Near-infrared (NIR) lanthanide molecular probes for bioimaging and biosensing, Coord. Chem. Rev., 399, 213028, 10.1016/j.ccr.2019.213028

Pan, 2017, Doping lanthanide into perovskite nanocrystals: highly improved and expanded optical properties, Nano Lett., 17, 8005, 10.1021/acs.nanolett.7b04575

Peng, 2020, Near infrared (NIR) imaging: exploring biologically relevant chemical space for lanthanide complexes, J. Inorg. Biochem., 209, 111118, 10.1016/j.jinorgbio.2020.111118

Quintanilla, 2018, Subtissue plasmonic heating monitored with CaF2:Nd3+, Y3+ nanothermometers in the second biological window, Chem. Mater., 30, 2819, 10.1021/acs.chemmater.8b00806

Reineck, 2017, Near-infrared fluorescent nanomaterials for bioimaging and sensing, Adv. Opt. Mat., 5, 1600446, 10.1002/adom.201600446

Semonin, 2010, Absolute photoluminescence quantum yields of IR-26 dye, PbS, and PbSe quantum dots, J. Phys. Chem. Lett., 1, 2445, 10.1021/jz100830r

Shen, 2013, Tunable near infrared to ultraviolet upconversion luminescence enhancement in (alpha-NaYF4:Yb, Tm)/CaF2 core/shell nanoparticles for in situ real-time recorded biocompatible photoactivation, Small, 9, 3213, 10.1002/smll.201370117

Shen, 2020, Recent development of small -molecule organic fluorophores for multifunctional bioimaging in the second near -infrared window, J. Lumin., 225, 117338, 10.1016/j.jlumin.2020.117338

Song, 2019, Graphene-oxide-modified lanthanide nanoprobes for tumor-targeted visible/NIR-II luminescence imaging, Angew. Chem. Int. Ed., 58, 18981, 10.1002/anie.201909416

Stouwdam, 2002, Near-infrared emission of redispersible Er3+, Nd3+, and Ho3+ doped LaF3 nanoparticles, Nano Lett., 2, 733, 10.1021/nl025562q

Swabeck, 2018, Broadband sensitization of lanthanide emission with indium phosphide quantum dots for visible to near-infrared downshifting, J. Am. Chem. Soc., 140, 9120, 10.1021/jacs.8b02612

Tan, 2018, Rare-earth-doped fluoride nanoparticles with engineered long luminescence lifetime for time-gated in vivo optical imaging in the second biological window, Nanoscale, 10, 17771, 10.1039/C8NR02382D

Tan, 2020, Accurate in vivo nanothermometry through NIR-II lanthanide luminescence lifetime, Small, 2020, 2004118, 10.1002/smll.202004118

Tang, 2011, Monodisperse mesoporous silica nanoparticles: synthesis and application in biomaterials, Prog. Chem., 23, 1973

Thimsen, 2017, Shortwave-infrared (SWIR) emitters for biological imaging: a review of challenges and opportunities, Nanophotonics, 6, 1043, 10.1515/nanoph-2017-0039

Tu, 2013, Breakdown of crystallographic site symmetry in lanthanide-doped NaYF4 crystals, Angew. Chem. Int. Ed., 52, 1128, 10.1002/anie.201208218

Wang, 2018, ICG-sensitized NaYF4:Er nanostructure for theranostics, Adv. Opt. Mater., 6, 1701142, 10.1002/adom.201701142

Wang, 2017, Down-shifting luminescence of water soluble NaYF4:Eu3+@Ag core-shell nanocrystals for fluorescence turn-on detection of glucose, Sci. China Mater., 60, 68, 10.1007/s40843-016-5145-1

Wang, 2018, NIR-II nanoprobes in-vivo assembly to improve image-guided surgery for metastatic ovarian cancer, Nat. Commun., 9, 2898, 10.1038/s41467-018-05113-8

Wang, 2014, Epitaxial seeded growth of rare-earth nanocrystals with efficient 800 nm near-infrared to 1525 nm short-wavelength infrared downconversion photoluminescence for in vivo bioimaging, Angew. Chem. Int. Ed., 53, 12086, 10.1002/anie.201407420

Wang, 2018, Efficient Erbium-Sensitized Core/Shell Nanocrystals for Short Wave Infrared Bioimaging, Adv. Opt. Mat., 6

Wang, 2014, NIR luminescent nanomaterials for biomedical imaging, J. Mater. Chem. B, 2, 2422, 10.1039/c3tb21447h

Wang, 2016, Lanthanide-based near infrared nanomaterials for bioimaging, 1

Wang, 2017, In vivo gastrointestinal drug-release monitoring through second near-infrared window fluorescent bioimaging with orally delivered microcarriers, Nat. Commun., 8, 14702, 10.1038/ncomms14702

Wang, 2019, LuPO4:Nd3+ nanophosphors for dual-mode deep tissue NIR-II luminescence/CT imaging, J. Lumin., 209, 420, 10.1016/j.jlumin.2019.02.028

Wang, 2013, Nd3+-Sensitized upconversion nanophosphors: efficient in vivo bioimaging probes with minimized heating effect, ACS Nano, 7, 7200, 10.1021/nn402601d

Wang, 2018, Single ultrasmall Mn2+-doped NaNdF4 nanocrystals as multimodal nanoprobes for magnetic resonance and second near-infrared fluorescence imaging, Nano Res., 11, 1069, 10.1007/s12274-017-1727-8

Wang, 2018, Investigating the luminescence behaviors and temperature sensing properties of rare-earth-doped Ba2In2O5 phosphors, Inorg. Chem., 57, 8841, 10.1021/acs.inorgchem.8b00739

Welsher, 2009, A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice, Nat. Nanotechnol., 4, 773, 10.1038/nnano.2009.294

Xia, 2012, Gd3+ complex-modified NaLuF4-based upconversion nanophosphors for trimodality imaging of NIR-to-NIR upconversion luminescence, X-Ray computed tomography and magnetic resonance, Biomaterials, 33, 5394, 10.1016/j.biomaterials.2012.04.025

Xiao, 2013, Near-Infrared-to-Near-Infrared downshifting and near-infrared-to-visible upconverting luminescence of Er3+-doped In2O3 Nanocrystals, J. Phys. Chem. C, 117, 10834, 10.1021/jp4030552

Xu, 2019, Recent advances in near-infrared emitting lanthanide-doped nanoconstructs: mechanism, design and application for bioimaging, Coordin. Chem. Rev., 381, 104, 10.1016/j.ccr.2018.11.014

Xu, 2016, Recent developments of low-toxicity NIR II quantum dots for sensing and bioimaging, Trends. Anal. Chem., 80, 149, 10.1016/j.trac.2015.07.017

Xue, 2018, Non-invasive through-skull brain vascular imaging and small tumor diagnosis based on NIR-II emissive lanthanide nanoprobes beyond 1500 nm, Biomaterials, 171, 153, 10.1016/j.biomaterials.2018.04.037

You, 2018, Large-scale synthesis of uniform lanthanide-doped NaREF4 upconversion/downshifting nanoprobes for bioapplications, Nanoscale, 10, 11477, 10.1039/C8NR03252A

Yu, 2019, Lanthanide-doped near-infrared II luminescent nanoprobes for bioapplications, Sci. China Mater., 62, 1071, 10.1007/s40843-019-9414-4

Yu, 2008, Highly efficient fluorescence of NdF3/SiO2 core/shell nanoparticles and the applications for in vivo NIR detection, Adv. Mater., 20, 4118, 10.1002/adma.200801224

Yu, 2018, Luminescence enhancement of CaF2:Nd3+ nanoparticles in the second near-infrared window for in vivo imaging through Y3+ doping, J. Mater. Chem. B, 6, 1238, 10.1039/C7TB03052E

Yu, 2020, Recent advances in rare-earth-doped nanoparticles for NIR-II imaging and cancer theranostics, Front. Chem., 8, 496, 10.3389/fchem.2020.00496

Zhang, 2020, A mini-review on recent progress of new sensitizers for luminescence of lanthanide doped nanomaterials, Nano Res., 13, 1795, 10.1007/s12274-020-2661-8

Zhang, 2019, Tm3+-Sensitized NIR-II fluorescent nanocrystals for in vivo information storage and decoding, Angew. Chem. Int. Ed., 58, 10153, 10.1002/anie.201903536

Zhang, 2019, A new class of blue-LED-excitable NIR-II luminescent nanoprobes based on lanthanide-doped CaS nanoparticles, Angew. Chem. Int. Ed., 58, 9556, 10.1002/anie.201905040

Zhang, 2007, A general approach for transferring hydrophobic nanocrystals into water, Nano Lett., 7, 3203, 10.1021/nl071928t

Zhang, 2017, Encapsulation of inorganic nanomaterials inside virus-based nanoparticles for bioimaging, Nanotheranostics, 1, 358, 10.7150/ntno.21384

Zhang, 2020, Cancer cell membrane-coated rare earth doped nanoparticles for tumor surgery navigation in NIR-II imaging window, Chem. Eng. J., 385, 123959, 10.1016/j.cej.2019.123959

Zhang, 2015, Magnetic and optical properties of NaGdF4:Nd3+, Yb3+, Tm3+ nanocrystals with upconversion/downconversion luminescence from visible to the near-infrared second window, Nano Res., 8, 636, 10.1007/s12274-014-0548-2

Zhang, 2018, Near-infrared-triggered antibacterial and antifungal photodynamic therapy based on lanthanide-doped upconversion nanoparticles, Nanoscale, 10, 15485, 10.1039/C8NR01967C

Zhao, 2020, A tumor-microenvironment-responsive lanthanide-cyanine FRET sensor for NIR-II luminescence-lifetime in situ imaging of hepatocellular carcinoma, Adv. Mater., 32, 2001172, 10.1002/adma.202001172

Zhao, 2019, Precise InVivo inflammation imaging using InSitu responsive cross-linking of glutathione-modified ultra-small NIR-II lanthanide nanoparticles, Angew. Chem. Int. Ed., 58, 2050, 10.1002/anie.201812878

Zheng, 2015, Lanthanide-doped upconversion nano-bioprobes: electronic structures, optical properties, and biodetection, Chem. Soc. Rev., 44, 1379, 10.1039/C4CS00178H

Zhong, 2020, A mini-review on rare-earth down-conversion nanoparticles for NIR-II imaging of biological systems, Nano Res., 13, 1281, 10.1007/s12274-020-2721-0

Zhong, 2019, In vivo molecular imaging for immunotherapy using ultra-bright near-infrared-IIb rare-earth nanoparticles, Nat. Biotechnol., 37, 1322, 10.1038/s41587-019-0262-4

Zhong, 2017, Boosting the down-shifting luminescence of rare-earth nanocrystals for biological imaging beyond 1500 nm, Nat. Commun., 8, 737, 10.1038/s41467-017-00917-6

Zhou, 2013, Efficient dual-modal NIR-to-NIR emission of rare earth ions Co-doped nanocrystals for biological fluorescence imaging, J. Phys. Chem. Lett., 4, 402, 10.1021/jz302122a

Zhu, 2020, Effective infrared emission of erbium ions doped inorganic lead halide perovskite quantum dots by sensitization of ytterbium ions, J. Alloys Compd., 835, 155390, 10.1016/j.jallcom.2020.155390

Zou, 2012, Broadband dye-sensitized upconversion of near-infrared light, Nat. Photon., 6, 560, 10.1038/nphoton.2012.158