Recent advances in cathode materials of rechargeable aqueous zinc-ion batteries

Materials Today Advances - Tập 7 - Trang 100078 - 2020
L. Wang1, J. Zheng1
1College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China

Tài liệu tham khảo

Armand, 2008, Building better batteries, Nature, 451, 652, 10.1038/451652a Dunn, 2011, Electrical energy storage for the grid: a battery of choices, Science, 334, 928, 10.1126/science.1212741 Tarascon, 2001, Issues and challenges facing rechargeable lithium batteries, Nature, 414, 359, 10.1038/35104644 Lu, 2011, Aqueous cathode for next-generation alkali-ion batteries, J. Am. Chem. Soc., 133, 5756, 10.1021/ja201118f Larcher, 2015, Towards greener and more sustainable batteries for electrical energy storage, Nat. Chem., 7, 19, 10.1038/nchem.2085 Goodenough, 2010, Challenges for rechargeable Li batteries, Chem. Mater., 22, 587, 10.1021/cm901452z Goodenough, 2013, The Li-ion rechargeable battery: a perspective, J. Am. Chem. Soc., 135, 1167, 10.1021/ja3091438 Kundu, 2016, A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode, Nat. Energy, 1, 16119, 10.1038/nenergy.2016.119 Luo, 2007, Aqueous lithium-ion battery LiTi2(PO4)3/LiMn2O4 with high power and energy densities as well as superior cycling stability, Adv. Funct. Mater., 17, 3877, 10.1002/adfm.200700638 Su, 2017, High-capacity aqueous potassium-ion batteries for large-scale energy storage, Adv. Mater., 29, 1604007, 10.1002/adma.201604007 Wu, 2015, Low-defect prussian blue nanocubes as high capacity and long life cathodes for aqueous Na-ion batteries, Nano Energy, 13, 117, 10.1016/j.nanoen.2015.02.006 Nam, 2015, The high performance of crystal water containing manganese birnessite cathodes for magnesium batteries, Nano Lett., 15, 4071, 10.1021/acs.nanolett.5b01109 Liu, 2012, Aluminum storage behavior of anatase TiO2 nanotube arrays in aqueous solution for aluminum ion batteries, Energy Environ. Sci., 5, 9743, 10.1039/c2ee22987k Zhang, 2016, Cation-deficient spinel ZnMn2O4 cathode in Zn(CF3SO3)2 electrolyte for rechargeable aqueous Zn-ion battery, J. Am. Chem. Soc., 138, 12894, 10.1021/jacs.6b05958 Parker, 2017, Rechargeable nickel-3D zinc batteries: an energy-dense, safer alternative to lithium-ion, Science, 356, 414, 10.1126/science.aak9991 Liu, 2018, Carbon nanoscrolls for aluminum battery, ACS Nano, 12, 8456, 10.1021/acsnano.8b03961 Liu, 2019, Graphene armored with a crystal carbon shell for ultrahigh-performance potassium ion batteries and aluminum batteries, ACS Nano, 13, 10631, 10.1021/acsnano.9b04893 Elia, 2016, An overview and future perspectives of aluminum batteries, Adv. Mater., 28, 7564, 10.1002/adma.201601357 Zhang, 2017, High-energy-density aqueous magnesium-ion battery based on a carbon-coated FeVO4 anode and a Mg-OMS-1 cathode, Chem.-Eur. J., 23, 17118, 10.1002/chem.201703806 Ambroz, 2017, Trends in aluminium-based intercalation batteries, Adv. Energy Mater., 7, 10.1002/aenm.201602093 Sun, 2016, Layered TiS2 positive electrode for Mg batteries, ACS Energy Lett., 1, 297, 10.1021/acsenergylett.6b00145 Zhang, 1996, Corrosion and electrochemistry of zinc, Br. Corrosion J., 32, 28 Xu, 2012, Energetic zinc ion chemistry: the rechargeable zinc ion battery, Angew. Chem. Int. Ed., 51, 933, 10.1002/anie.201106307 Yamamoto, 1986, Rechargeable Zn/ZnSO4/MnO2-type cells, Inorg. Chim. Acta., 117, L27, 10.1016/S0020-1693(00)82175-1 Turney, 2017, Rechargeable zinc alkaline anodes for long-cycle energy storage, Chem. Mater., 29, 4819, 10.1021/acs.chemmater.7b00754 Pan, 2016, Reversible aqueous zinc/manganese oxide energy storage from conversion reactions, Nat. Energy, 1, 16039, 10.1038/nenergy.2016.39 Liu, 2017, Bio-degradable zinc-ion battery based on a prussian blue analogue cathode and a bio-ionic liquid-based electrolyte, J. Solid State Electrochem., 21, 2021, 10.1007/s10008-017-3589-0 Liu, 2016, A prussian blue/zinc secondary battery with a bio-ionic liquid-water mixture as electrolyte, ACS Appl. Mater. Interfaces, 8, 12158, 10.1021/acsami.6b01592 Zhang, 2015, Towards high-voltage aqueous metal-ion batteries beyond 1.5 V: the zinc/zinc hexacyanoferrate system, Adv. Energy Mater., 5, 1400930, 10.1002/aenm.201400930 Trocoli, 2015, An aqueous zinc-ion battery based on copper hexacyanoferrate, ChemSusChem, 8, 481, 10.1002/cssc.201403143 Sun, 2017, Zn/MnO2 battery chemistry with H+ and Zn2+ coinsertion, J. Am. Chem. Soc., 139, 9775, 10.1021/jacs.7b04471 Li, 2016, Towards polyvalent ion batteries: a zinc-ion battery based on nasicon structured Na3V2(PO4)3, Nano Energy, 25, 211, 10.1016/j.nanoen.2016.04.051 He, 2017, Layered VS2 nanosheet-based aqueous Zn ion battery cathode, Adv. Energy Mater., 7, 1601920, 10.1002/aenm.201601920 Zhang, 2018, Rechargeable aqueous Zn–V2O5 battery with high energy density and long cycle life, ACS Energy Lett., 3, 1366, 10.1021/acsenergylett.8b00565 Guo, 2019, Structural perspective on revealing energy storage behaviors of silver vanadate cathodes in aqueous zinc-ion batteries, Acta Mater., 180, 51, 10.1016/j.actamat.2019.08.052 Xia, 2018, Highly stable aqueous zinc-ion storage using a layered calcium vanadium oxide bronze cathode, Angew. Chem. Int. Ed., 57, 3943, 10.1002/anie.201713291 Soundharrajan, 2018, Na2V6O16·3H2O barnesite nanorod: an open door to display a stable and high energy for aqueous rechargeable Zn-ion batteries as cathodes, Nano Lett., 18, 2402, 10.1021/acs.nanolett.7b05403 Yan, 2018, Water-lubricated intercalation in V2O5.nH2O for high-capacity and high-rate aqueous rechargeable zinc batteries, Adv. Mater., 30, 10.1002/adma.201703725 Zhao, 2018, High-capacity aqueous zinc batteries using sustainable quinone electrodes, Sci. Adv., 4, 10.1126/sciadv.aao1761 Häupler, 2016, Aqueous zinc-organic polymer battery with a high rate performance and long lifetime, NPG Asia Mater., 8, 10.1038/am.2016.82 Marcus, 1988, Ionic-radii in aqueous-solutions, Chem. Rev., 88, 1475, 10.1021/cr00090a003 Nightingale, 1959, Phenomenological theory of ion solvation - effective radii of hydrated ions, J. Phys. Chem., 63, 1381, 10.1021/j150579a011 Konarov, 2018, Present and future perspective on electrode materials for rechargeable zinc-ion batteries, ACS Energy Lett., 3, 2620, 10.1021/acsenergylett.8b01552 Zhang, 2017, Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities, Nat. Commun., 8, 405, 10.1038/s41467-017-00467-x Alfaruqi, 2015, Electrochemically induced structural transformation in a γ-MnO2 cathode of a high capacity zinc-ion battery system, Chem. Mater., 27, 3609, 10.1021/cm504717p Yuan, 2014, Investigation of the intercalation of polyvalent cations (Mg2+, Zn2+) into λ-MnO2 for rechargeable aqueous battery, Electrochim. Acta, 116, 404, 10.1016/j.electacta.2013.11.090 Alfaruqi, 2015, A layered δ-MnO2 nanoflake cathode with high zinc-storage capacities for eco-friendly battery applications, Electrochem, Commun. Now., 60, 121 Wan, 2018, Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers, Nat. Commun., 9, 1656, 10.1038/s41467-018-04060-8 Xie, 2020, A highly reversible neutral zinc/manganese battery for stationary energy storage, Energy Environ. Sci., 13, 135, 10.1039/C9EE03702K Liang, 2019, A universal principle to design reversible aqueous batteries based on deposition–dissolution mechanism, Adv. Energy Mater., 9, 1901838, 10.1002/aenm.201901838 Chao, 2019, An electrolytic Zn-MnO2 battery for high-voltage and scalable energy storage, Angew. Chem. Int. Ed., 58, 7823, 10.1002/anie.201904174 Chen, 2018, A manganese–hydrogen battery with potential for grid-scale energy storage, Nat. Energy, 3, 428, 10.1038/s41560-018-0147-7 Guo, 2020, Zn/MnO2 battery chemistry with dissolution-deposition mechanism, Mater. Today Energy, 16, 100396, 10.1016/j.mtener.2020.100396 Li, 2020, Membrane-free Zn/MnO2 flow battery for large-scale energy storage, Adv. Energy Mater., 10 Lee, 2014, Electrochemically-induced reversible transition from the tunneled to layered polymorphs of manganese dioxide, Sci. Rep., 4, 6066, 10.1038/srep06066 Islam, 2017, Facile synthesis and the exploration of the zinc storage mechanism of β-MnO2 nanorods with exposed (101) planes as a novel cathode material for high performance eco-friendly zinc-ion batteries, J. Mater. Chem. A, 5, 23299, 10.1039/C7TA07170A Wei, 2012, Preparation and characterization of manganese dioxides with nano-sized tunnel structures for zinc ion storage, J. Phys. Chem. Solid., 73, 1487, 10.1016/j.jpcs.2011.11.038 Kumar, 2003, Electrochemical characterization of poly(vinylidenefluoride)-zinc triflate gel polymer electrolyte and its application in solid-state zinc batteries, Solid State Ionics, 160, 289, 10.1016/S0167-2738(03)00209-1 Luo, 1999, Double-aging method for preparation of stabilized Na-buserite and transformations to todorokites incorporated with various metals, Inorg. Chem., 38, 6106, 10.1021/ic980675r Sun, 2012, Microstructure and supercapacitive properties of buserite-type manganese oxide with a large basal spacing, J. Power Sources, 216, 425, 10.1016/j.jpowsour.2012.05.087 Wang, 2019, Electrochemical activation of commercial MnO microsized particles for high-performance aqueous zinc-ion batteries, J. Power Sources, 438, 226951, 10.1016/j.jpowsour.2019.226951 Jiang, 2017, Manganese sesquioxide as cathode material for multivalent zinc ion battery with high capacity and long cycle life, Electrochim. Acta, 229, 422, 10.1016/j.electacta.2017.01.163 Wang, 2018, Transformed akhtenskite MnO2 from Mn3O4 as cathode for a rechargeable aqueous zinc ion battery, ACS Sustain. Chem. Eng., 6, 16055, 10.1021/acssuschemeng.8b02502 Hao, 2018, Electrochemically induced spinel-layered phase transition of Mn3O4 in high performance neutral aqueous rechargeable zinc battery, Electrochim. Acta, 259, 170, 10.1016/j.electacta.2017.10.166 Kundu, 2018, Aqueous vs. nonaqueous Zn-ion batteries: consequences of the desolvation penalty at the interface, Energy Environ. Sci., 11, 881, 10.1039/C8EE00378E Ding, 2018, Ultrafast Zn2+ intercalation and deintercalation in vanadium dioxide, Adv. Mater., 30, 10.1002/adma.201800762 Zhou, 2018, Investigation of V2O5 as a low-cost rechargeable aqueous zinc ion battery cathode, Chem. Commun., 54, 4457, 10.1039/C8CC02250J He, 2017, High-performance aqueous zinc-ion battery based on layered H2V3O8 nanowire cathode, Small, 13, 1702551, 10.1002/smll.201702551 Wang, 2020, Layered hydrated vanadium oxide as highly reversible intercalation cathode for aqueous Zn-ion batteries, Carbon Energy, 1 Wei, 2018, An electrochemically induced bilayered structure facilitates long-life zinc storage of vanadium dioxide, J. Mater. Chem. A, 6, 8006, 10.1039/C8TA02090F Alfaruqi, 2017, Electrochemical zinc intercalation in lithium vanadium oxide: a high-capacity zinc-ion battery cathode, Chem. Mater., 29, 1684, 10.1021/acs.chemmater.6b05092 Hu, 2018, Highly durable Na2V6O16.1.63H2O nanowire cathode for aqueous zinc-ion battery, Nano Lett., 18, 1758, 10.1021/acs.nanolett.7b04889 Xia, 2018, Rechargeable aqueous zinc-ion battery based on porous framework zinc pyrovanadate intercalation cathode, Adv. Mater., 30, 1705580, 10.1002/adma.201705580 Yang, 2018, Li+ intercalated V2O5·nH2O with enlarged layer spacing and fast ion diffusion as an aqueous zinc-ion battery cathode, Energy Environ. Sci., 11, 3157, 10.1039/C8EE01651H He, 2018, Sodium ion stabilized vanadium oxide nanowire cathode for high-performance zinc-ion batteries, Adv. Energy Mater., 8, 1702463, 10.1002/aenm.201702463 Ming, 2018, Layered MgxV2O5·nH2O as cathode material for high-performance aqueous zinc ion batteries, ACS Energy Lett., 3, 2602, 10.1021/acsenergylett.8b01423 Liu, 2019, Expanded hydrated vanadate for high-performance aqueous zinc-ion batteries, Energy Environ. Sci., 12, 2273, 10.1039/C9EE00956F Wang, 2019, Ultralong cycle stability of aqueous zinc-ion batteries with zinc vanadium oxide cathodes, Sci. Adv., 5, 10.1126/sciadv.aax4279 Sambandam, 2018, Aqueous rechargeable Zn-ion batteries: an imperishable and high-energy Zn2V2O7 nanowire cathode through intercalation regulation, J. Mater. Chem. A, 6, 3850, 10.1039/C7TA11237H Qin, 2018, A high-rate aqueous rechargeable zinc ion battery based on the VS4@rGO nanocomposite, J. Mater. Chem. A, 6, 23757, 10.1039/C8TA08133F Li, 2018, A long-life aqueous Zn-ion battery based on Na3V2(PO4)2F3 cathode, Energy Stor. Mater., 15, 14, 10.1016/j.ensm.2018.03.003 Jiao, 2019, Binder-free hierarchical VS2 electrodes for high-performance aqueous Zn ion batteries towards commercial level mass loading, J. Mater. Chem. A, 7, 16330, 10.1039/C9TA04798K Wang, 2018, A rechargeable aqueous Zn2+-battery with high power density and a long cycle-life, Energy Environ. Sci., 11, 3168, 10.1039/C8EE01883A Yang, 2019, Activating c-coordinated iron of iron hexacyanoferrate for Zn hybrid-ion batteries with 10 000-cycle lifespan and superior rate capability, Adv. Mater., 31, 10.1002/adma.201901521 Ma, 2018, Nanostructured polyaniline–cellulose papers for solid-state flexible aqueous Zn-ion battery, ACS Sustain. Chem. Eng., 6, 8697, 10.1021/acssuschemeng.8b01014 Shi, 2018, A long-cycle-life self-doped polyaniline cathode for rechargeable aqueous zinc batteries, Angew. Chem. Int. Ed., 57, 16359, 10.1002/anie.201808886 Dawut, 2018, High-performance rechargeable aqueous Zn-ion batteries with a poly(benzoquinonyl sulfide) cathode, Inorg. Chem. Front., 5, 1391, 10.1039/C8QI00197A Kundu, 2018, Organic cathode for aqueous Zn-ion batteries: taming a unique phase evolution toward stable electrochemical cycling, Chem. Mater., 30, 3874, 10.1021/acs.chemmater.8b01317 Yu, 2018, Electrochemical energy storage with an aqueous zinc–quinone chemistry enabled by a mediator-ion solid electrolyte, ACS Appl. Energy Mater., 1, 273, 10.1021/acsaem.7b00089 Fang, 2019, Nanostructured electrode materials for advanced sodium-ion batteries, Matter, 1, 90, 10.1016/j.matt.2019.05.007 Wang, 2019, A superior delta-MnO2 cathode and a self-healing Zn-delta-MnO2 battery, ACS Nano, 13, 10643, 10.1021/acsnano.9b04916 Huang, 2018, Polyaniline-intercalated manganese dioxide nanolayers as a high-performance cathode material for an aqueous zinc-ion battery, Nat. Commun., 9, 2906, 10.1038/s41467-018-04949-4 Wu, 2018, Graphene scroll-coated alpha-MnO2 nanowires as high-performance cathode materials for aqueous Zn-ion battery, Small, 14 Xu, 2019, Conformal conducting polymer shells on V2O5 nanosheet arrays as a high-rate and stable zinc-ion battery cathode, Adv. Mater. Interfaces, 6, 1801506, 10.1002/admi.201801506 Zhang, 2019, Extracting oxygen anions from ZnMn2O4: robust cathode for flexible all-solid-state Zn-ion batteries, Energy Stor. Mater., 21, 154, 10.1016/j.ensm.2018.12.019 Suo, 2017, How solid-electrolyte interphase forms in aqueous electrolytes, J. Am. Chem. Soc., 139, 18670, 10.1021/jacs.7b10688 Zhi, 2017, Artificial solid electrolyte interphase for aqueous lithium energy storage systems, Sci. Adv., 3, 10.1126/sciadv.1701010 Guo, 2019, Cathode interfacial layer formation via in situ electrochemically charging in aqueous zinc-ion battery, ACS Nano, 13, 13456, 10.1021/acsnano.9b07042 Han, 2020, Oxygen defects in beta-MnO2 enabling high-performance rechargeable aqueous zinc/manganese dioxide battery, iScience, 23, 100797, 10.1016/j.isci.2019.100797 Zhu, 2020, Electrochemically induced cationic defect in MnO intercalation cathode for aqueous zinc-ion battery, Energy Stor. Mater., 24, 394, 10.1016/j.ensm.2019.07.030 Liao, 2020, A deep-cycle aqueous zinc-ion battery containing an oxygen-deficient vanadium oxide cathode, Angew. Chem. Int. Ed., 59, 2273, 10.1002/anie.201912203 Wan, 2019, Reversible oxygen redox chemistry in aqueous zinc-ion batteries, Angew. Chem. Int. Ed., 58, 7062, 10.1002/anie.201902679 Fang, 2019, Simultaneous cationic and anionic redox reactions mechanism enabling high-rate long-life aqueous zinc-ion battery, Adv. Funct. Mater., 29, 1905267, 10.1002/adfm.201905267 Ma, 2019, Achieving both high voltage and high capacity in aqueous zinc-ion battery for record high energy density, Adv. Funct. Mater., 29, 1906142, 10.1002/adfm.201906142 Hu, 2017, Zn/V2O5 aqueous hybrid-ion battery with high voltage platform and long cycle life, ACS Appl. Mater. Interfaces, 9, 42717, 10.1021/acsami.7b13110 Zhang, 2019, Ultra-high mass-loading cathode for aqueous zinc-ion battery based on graphene-wrapped aluminum vanadate nanobelts, Nano-Micro Lett., 11, 69, 10.1007/s40820-019-0300-2