Recent advances in carbon quantum dots for virus detection, as well as inhibition and treatment of viral infection
Tóm tắt
In the last decade, carbon quantum dots (CQDs), as a novel class of carbon-based nanomaterials, have received increasing attention due to their distinct properties. CQDs are ultimately small nanoparticles with an average size below 10 nm, possessing high water solubility, alluring photoluminescence, photostability, excellent biocompatibility, low/none toxicity, environmental friendliness, and high sustainability, etc. In history, there are intermittent threats from viruses to humans, animals and plants worldwide, resulting in enormous crises and impacts on our life, environment, economy and society. Some recent studies have unveiled that certain types of CQDs exhibited high and potent antiviral activities against various viruses such as human coronavirus, arterivirus, norovirus and herpesvirus. Moreover, they have been successfully explored and developed for different virus detections including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This article exclusively overviews and discusses the recent progress of designing, synthesizing, modifying/functionalizing and developing CQDs towards effective virus detection as well as the inhibition and treatment of viral infection. Their mechanisms and applications against various pathogenic viruses are addressed. The latest outcomes for combating the coronavirus disease 2019 (COVID-19) utilizing CQDs are also highlighted. It can be envisaged that CQDs could further benefit the development of virus detectors and antiviral agents with added broad-spectrum activity and cost-effective production.
Tài liệu tham khảo
J.G. Breman, D.A. Henderson, Diagnosis and management of smallpox. N. Engl. J. Med. 346, 1300–1308 (2002). https://doi.org/10.1056/NEJMra020025
A.J. Pollard, E.M. Bijker, A guide to vaccinology: from basic principles to new developments. Nat. Rev. Immunol. 21, 83 (2020). https://doi.org/10.1038/s41577-020-00479-7
J. Craigie, F.O. Wishart, The complement-fixation reaction in variola. Can. Public Heal. J. 27, 371–379 (1936)
H.F. Zulfiqar, A. Javed, B. Sumbal, Q. Afroze, A.K. Akbar, T. Nadeem, M.A. Rana, Z.A. Nazar, I.A. Nasir, T. Husnain, HIV diagnosis and treatment through advanced technologies. Front. Public Heal. 5, 32 (2017). https://doi.org/10.3389/fpubh.2017.00032
L.J. Stockman, R. Bellamy, P. Garner, SARS: systematic review of treatment effects. PLoS Med. 3, e343 (2006). https://doi.org/10.1371/journal.pmed.0030343
A. Zumla, D.S. Hui, S. Perlman, Middle East respiratory syndrome. Lancet 386, 995–1007 (2015). https://doi.org/10.1016/S0140-6736(15)60454-8
P. Kiiza, S. Mullin, K. Teo, N.K.J. Adhikari, R.A. Fowler, Treatment of Ebola-related critical illness. Intensive Care Med. 46, 285–297 (2020). https://doi.org/10.1007/s00134-020-05949-z
F. Krammer, SARS-CoV-2 vaccines in development. Nature 586, 516–527 (2020). https://doi.org/10.1038/s41586-020-2798-3
B. Hu, H. Guo, P. Zhou, Z.L. Shi, Characteristics of SARS-CoV-2 and COVID-19. Nat. Rev. Microbiol. 19, 141–154 (2021). https://doi.org/10.1038/s41579-020-00459-7
Z. Tang, X. Zhang, Y. Shu, M. Guo, H. Zhang, W. Tao, Insights from nanotechnology in COVID-19 treatment. Nano Today 36, 101019 (2021). https://doi.org/10.2217/nnm-2021-0004
Y. Ge, S. Li, S. Wang, R. Moore (eds.), Nanomedicine: principles and perspectives (Springer, New York, 2014)
H.H. Lara, N.V. Ayala-Nuñez, L. Ixtepan-Turrent, C. Rodriguez-Padilla, Mode of antiviral action of silver nanoparticles against HIV-1. J. Nanobiotechnol. 8, 1 (2010). https://doi.org/10.1186/1477-3155-8-1
S. Galdiero, A. Falanga, M. Vitiello, M. Cantisani, V. Marra, M. Galdiero, Silver nanoparticles as potential antiviral agents. Molecules 16, 8894–8918 (2011). https://doi.org/10.3390/molecules16108894
T.T.N. Dung, V.N. Nam, T.T. Nhan, T.T.B. Ngoc, L.Q. Minh, B.T.T. Nga, D.V. Quang, Silver nanoparticles as potential antiviral agents against African swine fever virus. Mater. Res. Express. (2020). https://doi.org/10.1088/2053-1591/ab6ad8
M.J. Molaei, Carbon quantum dots and their biomedical and therapeutic applications: a review. RSC Adv. 9, 6460–6481 (2019). https://doi.org/10.1039/C8RA08088G
R. Das, R. Bandyopadhyay, P. Pramanik, Carbon quantum dots from natural resource: a review. Mater. Today Chem. 8, 96–109 (2018). https://doi.org/10.1016/j.mtchem.2018.03.003
P. Namdari, B. Negahdari, A. Eatemadi, Synthesis, properties and biomedical applications of carbon-based quantum dots: an updated review. Biomed. Pharmacother. 87, 209–222 (2017). https://doi.org/10.1016/j.biopha.2016.12.108
D. Ting, N. Dong, L. Fang, J. Lu, J. Bi, S. Xiao, H. Han, Multisite inhibitors for enteric coronavirus: antiviral cationic carbon dots based on curcumin. ACS Appl. Nano Mater. 1, 5451–5459 (2018). https://doi.org/10.1021/acsanm.8b00779
A. Łoczechin, K. Séron, A. Barras, E. Giovanelli, S. Belouzard, Y.T. Chen, N. Metzler-Nolte, R. Boukherroub, J. Dubuisson, S. Szunerits, Functional carbon quantum dots as medical countermeasures to human coronavirus. ACS Appl. Mater. Interfaces. 11, 42964–42974 (2019). https://doi.org/10.1021/acsami.9b15032
T. Tong, H. Hu, J. Zhou, S. Deng, X. Zhang, W. Tang, L. Fang, S. Xiao, J. Liang, Glycyrrhizic-acid-based carbon dots with high antiviral activity by multisite inhibition mechanisms. Small 16, 1906206 (2020). https://doi.org/10.1002/smll.201906206
J. Belza, A. Opletalová, K. Poláková, Carbon dots for virus detection and therapy. Microchim. Acta 188, 1 (2021). https://doi.org/10.1007/s00604-021-05076-6
A. Barras, Q. Pagneux, F. Sane, Q. Wang, R. Boukherroub, D. Hober, S. Szunerits, High efficiency of functional carbon nanodots as entry inhibitors of herpes simplex virus type 1. ACS Appl. Mater. Interfaces. 8, 9004–9013 (2016). https://doi.org/10.1021/acsami.6b01681
S. Huang, J. Gu, J. Ye, B. Fang, S. Wan, C. Wang, U. Ashraf, Q. Li, X. Wang, L. Shao, Y. Song, X. Zheng, F. Cao, S. Cao, Benzoxazine monomer derived carbon dots as a broad-spectrum agent to block viral infectivity. J Colloid Interface Sci. 542, 198–206 (2019). https://doi.org/10.1016/j.jcis.2019.02.010
J.E. Jones, V. Le Sage, S.S. Lakdawala, Viral and host heterogeneity and their effects on the viral life cycle. Nat. Rev. Microbiol. 19, 272–282 (2020). https://doi.org/10.1038/s41579-020-00449-9
D.S. Dimitrov, Virus entry: molecular mechanisms and biomedical applications. Nat. Rev. Microbiol. 2, 109–122 (2004). https://doi.org/10.1038/nrmicro817
W. Cao, T. Li, COVID-19: towards understanding of pathogenesis. Cell Res. 30, 367–369 (2020). https://doi.org/10.1038/s41422-020-0327-4
S. Payne, Viruses: from understanding to investigation (Academic Press, 2017), Chapter 9—viral pathogenesis. p. 87–95. https://doi.org/10.1016/B978-0-12-803109-4.00009-X.
B. Rockx, T. Kuiken, S. Herfst, T. Bestebroer, M.M. Lamers, B.B.O. Munnink, D. de Meulder, G. van Amerongen, J. van den Brand, N.M.A. Okba, D. Schipper, P. van Run, L. Leijten, R. Sikkema, E. Verschoor, B. Verstrepen, W. Bogers, J. Langermans, C. Drosten, M. F. van Vlissingen, R. Fouchier, R. de Swart, M. Koopmans, B.L. Haagmans, Comparative pathogenesis of COVID-19, MERS, and SARS in a nonhuman primate model. Science. 368, 1012–1015 (2020). https://doi.org/10.1126/science.abb7314.
S. Acharya, The COVID-19 pandemic: theories to therapies. Adv. Infect. Dis. 10, 16–28 (2020). https://doi.org/10.4236/aid.2020.103003
K.P. Hui, M. Cheung, K. Lai, K. Ng, J.C. Ho, M. Peiris, J.M. Nicholls, M.C. Chan, Role of epithelial-endothelial cell interaction in the pathogenesis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Clin Infect Dis. 74, 199–209 (2022). https://doi.org/10.1093/cid/ciab406
S. Lukassen, R.L. Chua, T. Trefzer, N.C. Kahn, M.A. Schneider, T. Muley, H. Winter, M. Meister, C. Veith, A.W. Boots, B.P. Hennig, M. Kreuter, C. Conrad, R. Eils, SARS-CoV-2 receptor ACE2 and TMPRSS2 are primarily expressed in bronchial transient secretory cells. Embo J. 39, 105–114 (2020). https://doi.org/10.15252/embj.20105114
P. Mehta, D.F. McAuley, M. Brown, E. Sanchez, R.S. Tattersall, J.J. Manson, COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet 395, 1033–1034 (2020). https://doi.org/10.1016/S0140-6736(20)30628-0
P. Liise-anne, A. Cassadevall, Pathogenesis of COVID-19 from the perspective of the damage-response framework. MBio 11, e01175-e1220 (2021). https://doi.org/10.1128/mBio.01175-20
E.J. Giamarellos-Bourboulis, M.G. Netea, N. Rovina, K. Akinosoglou, A. Antoniadou, N. Antonakos, G. Damoraki, T. Gkavogianni, M.E. Adami, P. Katsaounou, M. Ntaganou, M. Kyriakopoulou, G. Dimopoulos, I. Koutsodimitropoulos, D. Velissaris, P. Koufargyris, A. Karageorgos, K. Katrini, V. Lekakis, M. Lupse, A. Kotsaki, G. Renieris, D. Theodoulou, V. Panou, E. Koukaki, N. Koulouris, C. Gogos, A. Koutsoukou, Complex immune dysregulation in COVID-19 patients with severe respiratory failure. Cell Host Microbe. 27, 992-1000.e3 (2020). https://doi.org/10.1016/j.chom.2020.04.009
M.R. Benzigar, R. Bhattacharjee, M. Baharfar, G. Liu, Current methods for diagnosis of human coronaviruses: pros and cons. Anal. Bioanal. Chem. 413, 2311–2330 (2021). https://doi.org/10.1007/s00216-020-03046-0
E. Sheikhzadeh, V. Beni, M. Zourob, Nanomaterial application in bio/sensors for the detection of infectious diseases. Talanta 230, 122026 (2021). https://doi.org/10.1016/j.talanta.2020.122026
X. Wang, L.H. Liu, O. Ramström, M. Yan, Engineering nanomaterial surfaces for biomedical applications. Exp Biol Med. 234, 1128–1139 (2009). https://doi.org/10.3181/0904-mr-134
T. Yadavalli, D. Shukla, Role of metal and metal oxide nanoparticles as diagnostic and therapeutic tools for highly prevalent viral infections. Nanomedicine 13, 219–230 (2017). https://doi.org/10.1016/j.nano.2016.08.016
B. Negahdari, M. Darvishi, A.A. Saeedi, Gold nanoparticles and hepatitis B virus. Artif Cells Nanomed Biotechnol. 47, 469–474 (2019). https://doi.org/10.1080/21691401.2018.1546185
F. Li, Y. Li, J. Feng, Z. Gao, H. Lv, X. Ren, Q. Wei, Facile synthesis of MoS(2)@Cu(2)O-Pt nanohybrid as enzyme-mimetic label for the detection of the Hepatitis B surface antigen. Biosens Bioelectron. 100, 512–518 (2018). https://doi.org/10.1016/j.bios.2017.09.048
D. Xi, X. Luo, Q. Lu, K. Yao, Z. Liu, Q. Ning, The detection of HBV DNA with gold-coated iron oxide nanoparticle gene probes. J Nanopart Res. 10, 393–400 (2008). https://doi.org/10.1007/s11051-007-9263-1
Z. Jia, Y. Ma, L. Yang, C. Guo, N. Zhou, M. Wang, L. He, Z. Zhang, NiCo(2)O(4) spinel embedded with carbon nanotubes derived from bimetallic NiCo metal-organic framework for the ultrasensitive detection of human immune deficiency virus-1 gene. Biosens Bioelectron. 133, 55–63 (2019). https://doi.org/10.1016/j.bios.2019.03.030
L.A.A. Chunduri, A. Kurdekar, M.K. Haleyurgirisetty, E.P. Bulagonda, V. Kamisetti, I.K. Hewlett, Femtogram level sensitivity achieved by surface engineered silica nanoparticles in the early detection of HIV infection. Sci. Rep. 7, 7149 (2017). https://doi.org/10.1038/s41598-017-07299-1
I. Zehbe, G. Hacker, H. Su, C. Hauser-Kronberger, J. Hainfeld, R. Tubbs, Sensitive in situ hybridization with catalyzed reporter deposition, streptavidin-Nanogold, and silver acetate autometallography: detection of single-copy human papillomavirus. Am. J. Pathol. 150, 1553–1561 (1997)
S.F. Hormozi, N. Vasei, M. Aminianfar, M. Darvishi, A.A. Saeedi, Antibiotic resistance in patients suffering from nosocomial infections in Besat Hospital. Eur. J. Transl. Myol. 28, 7594 (2018). https://doi.org/10.4081/ejtm.2018.7594
J. Griffin, A.K. Singh, D. Senapati, P. Rhodes, K. Mitchell, B. Robinson, E. Yu, P.C. Ray, Size-and distance-dependent nanoparticle surface-energy transfer (NSET) method for selective sensing of hepatitis C virus RNA. Chem. Eur. J. 15, 342–351 (2009). https://doi.org/10.1002/chem.200801812
Y.C. Cao, R. Jin, C.A. Mirkin, Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 297, 1536–1540 (2002). https://doi.org/10.1126/science.297.5586.1536
Y. Orooji, H. Sohrabi, N. Hemmat, F. Oroojalian, B. Baradaran, A. Mokhtarzadeh, M. Mohaghegh, H. Karimi-Maleh, An overview on SARS-CoV-2 (COVID-19) and other human coronaviruses and their detection capability via amplification assay, chemical sensing, biosensing, immunosensing, and clinical assays. Nano-Micro Lett. 13, 18 (2020). https://doi.org/10.1007/s40820-020-00533-y
P. Moitra, M. Alafeef, K. Dighe, M.B. Frieman, D. Pan, Selective naked-eye detection of SARS-CoV-2 mediated by N gene targeted antisense oligonucleotide capped plasmonic nanoparticles. ACS Nano 14, 7617–7627 (2020). https://doi.org/10.1021/acsnano.0c03822
L. Chen, H. Wei, Y. Guo, Z. Cui, Z. Zhang, X.E. Zhang, Gold nanoparticle enhanced immuno-PCR for ultrasensitive detection of Hantaan virus nucleocapsid protein. J. Immunol Methods. 346, 64–70 (2009). https://doi.org/10.1016/j.jim.2009.05.007
M.K. Tsang, W. Ye, G. Wang, J. Li, M. Yang, J. Hao, Ultrasensitive detection of ebola virus oligonucleotide based on upconversion nanoprobe/nanoporous membrane system. ACS Nano 10, 598–605 (2016). https://doi.org/10.1021/acsnano.5b05622
L. Sepunaru, B.J. Plowman, S.V. Sokolov, N.P. Young, R.G. Compton, Rapid electrochemical detection of single influenza viruses tagged with silver nanoparticles. Chem. Sci. 7, 3892–3899 (2016). https://doi.org/10.1039/C6SC00412A
L. Farzin, S. Sadjadi, A. Sheini, E. Mohagheghpour, A nanoscale genosensor for early detection of COVID-19 by voltammetric determination of RNA-dependent RNA polymerase (RdRP) sequence of SARS-CoV-2 virus. Mikrochim Acta. 188, 121 (2021). https://doi.org/10.1007/s00604-021-04773-6
A. Peh, S. Li, Dengue virus detection using impedance measured across nanoporous alumina membrane. Biosens. Bioelectron. 42, 391–396 (2013). https://doi.org/10.1016/j.bios.2012.10.054
R. Wu, X. Xing, M. Corredig, B. Meng, M.W. Griffiths, Concentration of hepatitis A virus in milk using protamine-coated iron oxide (Fe(3)O(4)) magnetic nanoparticles. Food Microbiol. 84(103236), 103236 (2019). https://doi.org/10.1016/j.fm.2019.05.020
T.L. Kamikawa, M.G. Mikolajczyk, M. Kennedy, P. Zhang, W. Wang, D.E. Scott, E.C. Alocilja, Nanoparticle-based biosensor for the detection of emerging pandemic influenza strains. Biosens Bioelectron. 26, 1346–1352 (2010). https://doi.org/10.1016/j.bios.2010.07.047
C. Altay, R.H. Senay, E. Eksin, G. Congur, A. Erdem, S. Akgol, Development of amino functionalized carbon coated magnetic nanoparticles and their application to electrochemical detection of hybridization of nucleic acids. Talanta 164, 175–182 (2017). https://doi.org/10.1016/j.talanta.2016.11.012
S. Jeong, E. González-Grandío, N. Navarro, R.L. Pinals, F. Ledesma, D. Yang, M.P. Landry, Extraction of viral nucleic acids with carbon nanotubes increases SARS-CoV-2 quantitative reverse transcription polymerase chain reaction detection sensitivity. ACS Nano 15, 10309 (2021). https://doi.org/10.1021/acsnano.1c02494
D.V. Quy, N.M. Hieu, P.T. Tra, N.H. Nam, N.H. Hai, N.T. Son, P.T. Nghia, N.T. van Anh, T.T. Hong, N.H. Luong, Synthesis of silica-coated magnetic nanoparticles and application in the detection of pathogenic viruses. J. Nanomater. 2013, 603940 (2013). https://doi.org/10.1155/2013/603940
I.M. Khoris, A.B. Ganganboina, T. Suzuki, E.Y. Park, Self-assembled chromogen-loaded polymeric cocoon for respiratory virus detection. Nanoscale 13, 388–396 (2021). https://doi.org/10.1039/d0nr06893d
S. Islam, S. Shukla, V.K. Bajpai, Y.K. Han, Y.S. Huh, A. Kumar, A. Ghosh, S. Gandhi, A smart nanosensor for the detection of human immunodeficiency virus and associated cardiovascular and arthritis diseases using functionalized graphene-based transistors. Biosens Bioelectron. 126, 792–799 (2019). https://doi.org/10.1016/j.bios.2018.11.041
L. Singh, H.G. Kruger, G.E.M. Maguire, T. Govender, R. Parboosing, The role of nanotechnology in the treatment of viral infections. Ther. Adv. Infect Dis. 4, 105–131 (2017). https://doi.org/10.1177/2049936117713593
E. Bekerman, S. Einav, Infectious disease. Combating emerging viral threats. Science. 348, 282–283 (2015). https://doi.org/10.1126/science.aaa3778
M. Nasrollahzadeh, M. Sajjadi, G.J. Soufi, S. Iravani, R.S. Varma, Nanomaterials and nanotechnology-associated innovations against viral infections with a focus on coronaviruses. Nanomater. 10, 1072 (2020). https://doi.org/10.3390/nano10061072
V. Lysenko, V. Lozovski, M. Lokshyn, Y.V. Gomeniuk, A. Dorovskih, N. Rusinchuk, Y. Pankivska, O. Povnitsa, S. Zagorodnya, V. Tertykh, Nanoparticles as antiviral agents against adenoviruses. Adv. Nat. Sci. Nanosci. Nanotechnol. 9, 25021 (2018)
C. Weiss, M. Carriere, L. Fusco, I. Capua, J.A. Regla-Nava, M. Pasquali, J.A. Scott, F. Vitale, M.A. Unal, C. Mattevi, D. Bedognetti, A. Merkoçi, E. Tasciotti, A. Yilmazer, Y. Gogotsi, F. Stellacci, L.G. Delogu, Toward nanotechnology-enabled approaches against the COVID-19 pandemic. ACS Nano 14, 6383–6406 (2020). https://doi.org/10.1021/acsnano.0c03697
T. Qin, R. Ma, Y. Yin, X. Miao, S. Chen, K. Fan, J. Xi, Q. Liu, Y. Gu, Y. Yin, J. Hu, X. Liu, D. Peng, L. Gao, Catalytic inactivation of influenza virus by iron oxide nanozyme. Theranostics. 9, 6920–6935 (2019). https://doi.org/10.7150/thno.35826
Y. Abo-Zeid, N.S.M. Ismail, G.R. McLean, N.M. Hamdy, A molecular docking study repurposes FDA approved iron oxide nanoparticles to treat and control COVID-19 infection. Eur J Pharm Sci. 153, 105465 (2020). https://doi.org/10.1016/j.ejps.2020.105465
H. Ghaffari, A. Tavakoli, A. Moradi, A. Tabarraei, F. Bokharaei-Salim, M. Zahmatkeshan, M. Farahmand, D. Javanmard, S.J. Kiani, M. Esghaei, V. Pirhajati-Mahabadi, S.H. Monavari, A. Ataei-Pirkooh, Inhibition of H1N1 influenza virus infection by zinc oxide nanoparticles: another emerging application of nanomedicine. J Biomed Sci. 26, 70 (2019). https://doi.org/10.1186/s12929-019-0563-4
P. Di Gianvincenzo, M. Marradi, O.M. Martínez-Avila, L.M. Bedoya, J. Alcamí, S. Penadés, Gold nanoparticles capped with sulfate-ended ligands as anti-HIV agents. Bioorg. Med. Chem Lett. 20, 2718–2721 (2010). https://doi.org/10.1016/j.bmcl.2010.03.079
D. Xiang, Y. Zheng, W. Duan, X. Li, J. Yin, S. Shigdar, M.L. O’Connor, M. Marappan, X. Zhao, Y. Miao, B. Xiang, C. Zheng, Inhibition of A/Human/Hubei/3/2005 (H3N2) influenza virus infection by silver nanoparticles in vitro and in vivo. Int J Nanomed. 8, 4103–4113 (2013). https://doi.org/10.2147/ijn.S53622
Y. Mori, T. Ono, Y. Miyahira, V.Q. Nguyen, T. Matsui, M. Ishihara, Antiviral activity of silver nanoparticle/chitosan composites against H1N1 influenza A virus. Nanoscale Res. Lett. 8, 1–6 (2013). https://doi.org/10.1186/1556-276X-8-93
D. Baram-Pinto, S. Shukla, N. Perkas, A. Gedanken, R. Sarid, Inhibition of herpes simplex virus type 1 infection by silver nanoparticles capped with mercaptoethane sulfonate. Bioconjug. Chem. 20, 1497–1502 (2009). https://doi.org/10.1021/bc900215b
L. Lu, R.W. Sun, R. Chen, C.K. Hui, C.M. Ho, J.M. Luk, G.K. Lau, C.M. Che, Silver nanoparticles inhibit hepatitis B virus replication. Antivir. Ther. 13, 253 (2008)
Y.N. Chen, Y.H. Hsueh, C.T. Hsieh, D.Y. Tzou, P.L. Chang, Antiviral activity of graphene-silver nanocomposites against non-enveloped and enveloped viruses. Int. J. Env. Res Public Heal. 13, 430 (2016). https://doi.org/10.3390/ijerph13040430
A.R. Deokar, A.P. Nagvenkar, I. Kalt, L. Shani, Y. Yeshurun, A. Gedanken, R. Sarid, Graphene-based “Hot Plate” for the capture and destruction of the herpes simplex virus type 1. Bioconjug. Chem. 28, 1115–1122 (2017). https://doi.org/10.1021/acs.bioconjchem.7b00030
Y. Du, S. Guo, Chemically doped fluorescent carbon and graphene quantum dots for bioimaging, sensor, catalytic and photoelectronic applications. Nanoscale 8, 2532 (2016). https://doi.org/10.1039/c5nr07579c
X. Xu, R. Ray, Y. Gu, H.J. Ploehn, L. Gearheart, K. Raker, W.A. Scrivens, Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J. Am. Chem. Soc. 126, 12736 (2004). https://doi.org/10.1021/ja040082h
K.J. Mintz, Y. Zhou, R.M. Leblanc, Recent development of carbon quantum dots regarding their optical properties, photoluminescence mechanism, and core structure. Nanoscale 11, 4634 (2019). https://doi.org/10.1039/c8nr10059d
H. Feng, Z. Qian, Functional carbon quantum dots: a versatile platform for chemosensing and biosensing. Chem. Rec. 18, 491 (2018). https://doi.org/10.1002/tcr.201700055
F. Yuan, T. Yuan, L. Sui, Z. Wang, Z. Xi, Y. Li, X. Li, L. Fan, Z. Tan, A. Chen, M. Jin, S. Yang, Engineering triangular carbon quantum dots with unprecedented narrow bandwidth emission for multicolored LEDs. Nat. Commun. 9, 2249 (2018). https://doi.org/10.1038/s41467-018-04635-5
P. Devi, S. Saini, K.H. Kim, The advanced role of carbon quantum dots in nanomedical applications. Biosens. Bioelectron. 141, 111158 (2019). https://doi.org/10.1016/j.bios.2019.02.059
N. Tejwan, A.K. Saini, A. Sharma, T.A. Singh, N. Kumar, J. Das, Metal-doped and hybrid carbon dots: a comprehensive review on their synthesis and biomedical applications. J. Control. Release. 330, 132–150 (2021). https://doi.org/10.1016/j.jconrel.2020.12.023
C. Ji, Y. Zhou, R.M. Leblanc, Z. Peng, Recent developments of carbon dots in biosensing: a review. ACS Sensors. 5, 2724–2741 (2020). https://doi.org/10.1021/acssensors.0c01556
R. Soltani, S. Guo, A. Bianco, C. Ménard-Moyon, Carbon nanomaterials applied for the treatment of inflammatory diseases: preclinical evidence. Adv. Ther. 3, 2000051 (2020). https://doi.org/10.1002/adtp.202000051
C. Xia, S. Zhu, T. Feng, M. Yang, B. Yang, Evolution and synthesis of carbon dots: from carbon dots to carbonized polymer dots. Adv. Sci. 6, 1901316 (2019). https://doi.org/10.1002/advs.201901316
V. Georgakilas, J.A. Perman, J. Tucek, R. Zboril, Broad family of carbon nanoallotropes: classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures. Chem. Rev. 115, 4744 (2015). https://doi.org/10.1021/cr500304f
T. Atabaev, Doped carbon dots for sensing and bioimaging applications: a minireview. Nanomaterials 8, 342 (2018). https://doi.org/10.3390/nano8050342
B. Wang, J. Yu, L. Sui, S. Zhu, Z. Tang, B. Yang, S. Lu, Rational design of multi-color-emissive carbon dots in a single reaction system by hydrothermal. Adv. Sci. 8, 2001453 (2021). https://doi.org/10.1002/advs.202001453
A. Cayuela, C. Carrillo-Carrión, M.L. Soriano, W.J. Parak, M. Valcárcel, One-step synthesis and characterization of N-doped carbon nanodots for sensing in organic media. Anal. Chem. 88, 3178 (2016). https://doi.org/10.1021/acs.analchem.5b04523
H. Ming, Z. Ma, Y. Liu, K. Pan, H. Yu, F. Wang, Z. Kang, Large scale electrochemical synthesis of high quality carbon nanodots and their photocatalytic property. Dalt. Trans. 41, 9526 (2012). https://doi.org/10.1039/c2dt30985h
S. Fang, Y. Xia, K. Lv, Q. Li, J. Sun, M. Li, Effect of carbon-dots modification on the structure and photocatalytic activity of g-C3N4. Appl. Catal. B Environ. 185, 225 (2016). https://doi.org/10.1016/j.apcatb.2015.12.025
A. Sciortino, N. Mauro, G. Buscarino, L. Sciortino, R. Popescu, R. Schneider, G. Giammona, D. Gerthsen, M. Cannas, F. Messina, β-C3N4 nanocrystals: carbon dots with extraordinary morphological, structural, and optical homogeneity. Chem. Mater. 30, 1695 (2018). https://doi.org/10.1021/acs.chemmater.7b05178
L. Sciortino, A. Sciortino, R. Popescu, R. Schneider, D. Gerthsen, S. Agnello, M. Cannas, F. Messina, Tailoring the emission color of carbon dots through nitrogen-induced changes of their crystalline structure. J. Phys. Chem. C. 122, 19897 (2018). https://doi.org/10.1021/acs.jpcc.8b04514
S. Asadzadeh-Khaneghah, A. Habibi-Yangjeh, g-C3N4/carbon dot-based nanocomposites serve as efficacious photocatalysts for environmental purification and energy generation: a review. J. Clean. Prod. 276, 124319 (2020). https://doi.org/10.1016/j.jclepro.2020.124319
Y. Yan, J. Gong, J. Chen, Z. Zeng, W. Huang, K. Pu, J. Liu, P. Chen, Recent advances on graphene quantum dots: from chemistry and physics to applications. Adv. Mater. 31, 1808283 (2019). https://doi.org/10.1002/adma.201808283
M.L. Liu, B.B. Chen, C.M. Li, C.Z. Huang, Carbon dots: synthesis, formation mechanism, fluorescence origin and sensing applications. Green Chem. 21, 449 (2019). https://doi.org/10.1039/c8gc02736f
P. Tian, L. Tang, K.S. Teng, S.P. Lau, Graphene quantum dots from chemistry to applications. Mater. Today Chem. 10, 221 (2018). https://doi.org/10.1016/j.mtchem.2018.09.007
H. Tetsuka, R. Asahi, A. Nagoya, K. Okamoto, I. Tajima, R. Ohta, A. Okamoto, Optically tunable amino-functionalized graphene quantum dots. Adv. Mater. 24, 5333–5338 (2012). https://doi.org/10.1002/adma.201201930
X.T. Zheng, A. Ananthanarayanan, K.Q. Luo, P. Chen, Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications. Small 11, 1620–1636 (2015). https://doi.org/10.1002/smll.201402648
S. Tao, T. Feng, C. Zheng, S. Zhu, B. Yang, Carbonized polymer dots: a brand new perspective to recognize luminescent carbon-based nanomaterials. J. Phys. Chem. Lett. 10, 5182–5188 (2019). https://doi.org/10.1021/acs.jpclett.9b01384
J. Liu, D. Li, K. Zhang, M. Yang, H. Sun, B. Yang, One-step hydrothermal synthesis of nitrogen-doped conjugated carbonized polymer dots with 31% efficient red emission for in vivo imaging. Small 14, 1703919 (2018). https://doi.org/10.1002/smll.201703919
J. Liu, R. Li, B. Yang, Carbon dots: a new type of carbon-based nanomaterial with wide applications. ACS Cent. Sci. 6, 2179 (2020). https://doi.org/10.1021/acscentsci.0c01306
S. Zhu, Y. Song, J. Shao, X. Zhao, B. Yang, Non-conjugated polymer dots with crosslink-enhanced emission in the absence of fluorophore units. Angew. Chemie Int. Ed. 54, 14626–14637 (2015). https://doi.org/10.1002/anie.201504951
Y. Ru, L. Ai, T. Jia, X. Liu, S. Lu, Z. Tang, B. Yang, Recent advances in chiral carbonized polymer dots: from synthesis and properties to applications. Nano Today 34, 100953 (2020). https://doi.org/10.1016/j.apmt.2021.101050
S. Bhattacharyya, S.J. Henley, E. Mendoza, L. Gomez-Rojas, J. Allam, S.R.P. Silva, Resonant tunnelling and fast switching in amorphous-carbon quantum-well structures. Nat. Mater. 5, 19–22 (2006). https://doi.org/10.1038/nmat1551
R. Liu, D. Wu, S. Liu, K. Koynov, W. Knoll, Q. Li, An aqueous route to multicolor photoluminescent carbon dots using silica spheres as carriers. Angew. Chemie Int. Ed. 48, 4598–4601 (2009). https://doi.org/10.1002/anie.200900652
A.B. Bourlinos, A. Stassinopoulos, D. Anglos, R. Zboril, M. Karakassides, E.P. Giannelis, Surface functionalized carbogenic quantum dots. Small 4, 455–458 (2008). https://doi.org/10.1002/smll.200700578
A. Pal, M.P. Sk, A. Chattopadhyay, Recent advances in crystalline carbon dots for superior application potential. Mater. Adv. 1, 525 (2020). https://doi.org/10.1039/d0ma00108b
N.V. Tepliakov, E.V. Kundelev, P.D. Khavlyuk, Y. Xiong, M.Y. Leonov, W. Zhu, A.V. Baranov, A.V. Fedorov, A.L. Rogach, I.D. Rukhlenko, Sp2-sp3-hybridized atomic domains determine optical features of carbon dots. ACS Nano 13, 10737 (2019). https://doi.org/10.1021/acsnano.9b05444
M.L. Liu, L. Yang, R.S. Li, B.B. Chen, H. Liu, C.Z. Huang, Large-scale simultaneous synthesis of highly photoluminescent green amorphous carbon nanodots and yellow crystalline graphene quantum dots at room temperature. Green Chem. 19, 3611 (2017). https://doi.org/10.1039/c7gc01236e
M.P. Ajith, S. Pardhiya, P. Rajamani, Carbon dots: an excellent fluorescent probe for contaminant sensing and remediation. Small (2022). https://doi.org/10.1002/smll.202105579
S.D. Hettiarachchi, R.M. Graham, K.J. Mintz, Y. Zhou, S. Vanni, Z. Peng, R.M. Leblanc, Triple conjugated carbon dots as a nano-drug delivery model for glioblastoma brain tumors. Nanoscale 11, 6192 (2019). https://doi.org/10.1039/C8NR08970A
S. Kang, Y.K. Jeong, J.H. Ryu, Y. Son, W.R. Kim, B. Lee, K.H. Jung, K.M. Kim, Pulsed laser ablation based synthetic route for nitrogen-doped graphene quantum dots using graphite flakes. Appl. Surf. Sci. 506, 144998 (2020). https://doi.org/10.1016/j.apsusc.2019.144998
Y. Liu, S. Zhou, L. Fan, H. Fan, Synthesis of red fluorescent graphene quantum dot-europium complex composites as a viable bioimaging platform. Microchim. Acta. 183, 2605 (2016). https://doi.org/10.1007/s00604-016-1909-1
S. Kim, J.K. Seo, J.H. Park, Y. Song, Y.S. Meng, M.J. Heller, White-light emission of blue-luminescent graphene quantum dots by europium (III) complex incorporation. Carbon N. Y. 124, 479 (2017). https://doi.org/10.1016/j.carbon.2017.08.021
S. Maiti, S. Kundu, C.N. Roy, T.K. Das, A. Saha, Synthesis of excitation independent highly luminescent graphene quantum dots through perchloric acid oxidation. Langmuir 33, 14634 (2017). https://doi.org/10.1021/acs.langmuir.7b02611
S. Kalytchuk, L. Zdrazil, Z. Badura, M. Medved, M. Langer, M. Paloncyova, G. Zoppellaro, S.V. Kershaw, A.L. Rogach, M. Otyepka, Carbon dots detect water-to-ice phase transition and act as alcohol sensors via fluorescence turn-off/on mechanism. ACS Nano 15, 6582 (2021). https://doi.org/10.1021/acsnano.0c09781
X. Sun, C. Wang, P. Li, Z. Shao, J. Xia, Q. Liu, F. Shen, Y. Fang, The facile synthesis of nitrogen and sulfur co-doped carbon dots for developing a powerful “on-off-on” fluorescence probe to detect glutathione in vegetables. Food Chem. 372, 131142 (2022). https://doi.org/10.1016/j.foodchem.2021.131142
S. Lu, L. Liu, H. Wang, W. Zhao, Z. Li, Z. Qu, J. Li, T. Sun, T. Wang, G. Sui, Synthesis of dual functional gallic-acid-based carbon dots for bioimaging and antitumor therapy. Biomater. Sci. 7, 3258 (2019). https://doi.org/10.1039/c9bm00570f
H. Dang, L.K. Huang, Y. Zhang, C.F. Wang, S. Chen, Large-scale ultrasonic fabrication of white fluorescent carbon dots. Ind. Eng. Chem. Res. 55, 5335 (2016). https://doi.org/10.1021/acs.iecr.6b00894
Z. Zhu, S. Wang, Y. Chang, D. Yu, Y. Jiang, Direct photodissociation of toluene molecules to photoluminescent carbon dots under pulsed laser irradiation. Carbon N. Y. 105, 416 (2016). https://doi.org/10.1016/j.carbon.2016.04.047
L. Tian, S. Yang, Y. Yang, J. Li, Y. Deng, S. Tian, P. He, G. Ding, X. Xie, Z. Wang, Green, simple and large scale synthesis of N-doped graphene quantum dots with uniform edge groups by electrochemical bottom-up synthesis. RSC Adv. 6, 82648 (2016). https://doi.org/10.1039/c6ra18695e
A. Sciortino, A. Cannizzo, F. Messina, Carbon nanodots: a review-from the current understanding of the fundamental photophysics to the full control of the optical response. C. 4, 67 (2018). https://doi.org/10.3390/c4040067
S. Tajik, Z. Dourandish, K. Zhang, H. Beitollahi, Q. Van Le, H.W. Jang, M. Shokouhimehr, Carbon and graphene quantum dots: a review on syntheses, characterization, biological and sensing applications for neurotransmitter determination. RSC Adv. 10, 15406 (2020). https://doi.org/10.1039/d0ra00799d
P. Zuo, X. Lu, Z. Sun, Y. Guo, H. He, A review on syntheses, properties, characterization and bioanalytical applications of fluorescent carbon dots. Microchim. Acta. 183, 519 (2016). https://doi.org/10.1007/s00604-015-1705-3
X. Tan, Y. Li, X. Li, S. Zhou, L. Fan, S. Yang, Electrochemical synthesis of small-sized red fluorescent graphene quantum dots as a bioimaging platform. Chem. Commun. 51, 2544 (2015). https://doi.org/10.1039/c4cc09332a
N.R. Devi, T.H.V. Kumar, A.K. Sundramoorthy, Electrochemically exfoliated carbon quantum dots modified electrodes for detection of dopamine neurotransmitter. J. Electrochem. Soc. 165, 3112 (2018). https://doi.org/10.1149/2.0191812jes
J. Deng, Q. Lu, N. Mi, H. Li, M. Liu, M. Xu, L. Tan, Q. Xie, Y. Zhang, S. Yao, Electrochemical synthesis of carbon nanodots directly from alcohols. Chem. A Eur. J. 20, 4993–4999 (2014). https://doi.org/10.1002/chem.201304869
Y.P. Sun, B. Zhou, Y. Lin, W. Wang, K.A.S. Fernando, P. Pathak, M.J. Meziani, B.A. Harruff, X. Wang, H. Wang, P.G. Luo, H. Yang, M.E. Kose, B. Chen, L.M. Veca, S.Y. Xie, Quantum-sized carbon dots for bright and colorful photoluminescence. J. Am. Chem. Soc. 128, 7756 (2006). https://doi.org/10.1021/ja062677d
H. Yu, X. Li, X. Zeng, Y. Lu, Preparation of carbon dots by non-focusing pulsed laser irradiation in toluene. Chem. Commun. 52, 819–822 (2015). https://doi.org/10.1039/C5CC08384B
L. Cui, X. Ren, J. Wang, M. Sun, Synthesis of homogeneous carbon quantum dots by ultrafast dual-beam pulsed laser ablation for bioimaging. Mater. Today Nano. 12, 100091 (2020). https://doi.org/10.1016/j.mtnano.2020.100091
P.P. Brisebois, M. Siaj, Harvesting graphene oxide–years 1859 to 2019: a review of its structure, synthesis, properties and exfoliation. J. Mater. Chem. C. 8, 1517–1547 (2020). https://doi.org/10.1039/C9TC03251G
M. Pan, X. Xie, K. Liu, J. Yang, L. Hong, S. Wang, Fluorescent carbon quantum dots—synthesis, functionalization and sensing application in food analysis. Nanomaterials 10, 930 (2020). https://doi.org/10.3390/nano10050930
Q. Lu, C. Wu, D. Liu, H. Wang, W. Su, H. Li, Y. Zhang, S. Yao, A facile and simple method for synthesis of graphene oxide quantum dots from black carbon. Green Chem. 19, 900–904 (2017). https://doi.org/10.1039/C6GC03092K
N. Kushwaha, J. Mittal, S. Pandey, R. Kumar, High temperature acidic oxidation of multiwalled Carbon nanotubes and synthesis of Graphene quantum dots. Int. J. Nano Dimension 9, 191–197 (2018)
D.R.S. da Souza, L.D. Caminhas, J.P. de Mesquita, F.V. Pereira, Luminescent carbon dots obtained from cellulose. Mater. Chem. Phys. 203, 148 (2018). https://doi.org/10.1016/j.matchemphys.2017.10.001
Y. Liu, H. Gou, X. Huang, G. Zhang, K. Xi, X. Jia, Rational synthesis of highly efficient ultra-narrow red-emitting carbon quantum dots for NIR-II two-photon bioimaging. Nanoscale 12, 1589 (2020). https://doi.org/10.1039/c9nr09524a
S. Chahal, N. Yousefi, N. Tufenkji, Green synthesis of high quantum yield carbon dots from phenylalanine and citric acid: Role of stoichiometry and nitrogen doping. ACS Sustain. Chem. Eng. 8, 5566–5575 (2020). https://doi.org/10.1021/acssuschemeng.9b07463
T.V. de Medeiros, J. Manioudakis, F. Noun, J.R. Macairan, F. Victoria, R. Naccache, Microwave-assisted synthesis of carbon dots and their applications. J. Mater. Chem. C 7, 7175–7195 (2019). https://doi.org/10.1039/C9TC01640F
L. Fang, M. Wu, C. Huang, Z. Liu, J. Liang, H. Zhang, Industrializable synthesis of narrow-dispersed carbon dots achieved by microwave-assisted selective carbonization of surfactants and their applications as fluorescent nano-additives. J. Mater. Chem. A. 8, 21317–21326 (2020). https://doi.org/10.1039/D0TA07252D
P. Priecel, J.A. Lopez-Sanchez, Advantages and limitations of microwave reactors: from chemical synthesis to the catalytic valorization of biobased chemicals. ACS Sustain. Chem. Eng. 7, 3–21 (2018). https://doi.org/10.1021/acssuschemeng.8b03286
T.N.J.I. Edison, R. Atchudan, M.G. Sethuraman, J.J. Shim, Y.R. Lee, Microwave assisted green synthesis of fluorescent N-doped carbon dots: cytotoxicity and bio-imaging applications. J. Photochem. Photobiol. B Biol. 161, 154 (2016). https://doi.org/10.1016/j.jphotobiol.2016.05.017
W. Huang, X. Li, X. Sun, X. Ding, Y. Feng, Y. Tang, P. Zhou, L. Wang, Q. Zhang, Photoluminescence of graphene quantum dots enhanced by microwave post-treatment. Chem. Eng. J. 405, 126714 (2021). https://doi.org/10.1016/j.cej.2020.126714
N. Tejwan, S.K. Saha, J. Das, Multifaceted applications of green carbon dots synthesized from renewable sources. Adv. Colloid Interface Sci. 275, 102046 (2020). https://doi.org/10.1016/j.cis.2019.102046
H. Ding, S.-B. Yu, J.-S. Wei, H.-M. Xiong, Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism. ACS Nano 10, 484 (2016). https://doi.org/10.1021/acsnano.5b05406
N. Papaioannou, M.M. Titirici, A. Sapelkin, Investigating the effect of reaction time on carbon dot formation, structure, and optical properties. ACS Omega 4, 21658 (2019). https://doi.org/10.1021/acsomega.9b01798
D. Qu, M. Zheng, L. Zhang, H. Zhao, Z. Xie, X. Jing, R.E. Haddad, H. Fan, Z. Sun, Formation mechanism and optimization of highly luminescent N-doped graphene quantum dots. Sci. Rep. 4, 1 (2014). https://doi.org/10.1038/srep05294
S.Y. Lim, W. Shen, Z. Gao, Carbon quantum dots and their applications. Chem. Soc. Rev. 44, 362 (2015). https://doi.org/10.1039/c4cs00269e
Z. Gan, H. Xu, Y. Hao, Mechanism for excitation-dependent photoluminescence from graphene quantum dots and other graphene oxide derivates: consensus, debates and challenges. Nanoscale 8, 7794 (2016). https://doi.org/10.1039/c6nr00605a
H. Wang, C. Sun, X. Chen, Y. Zhang, V.L. Colvin, Q. Rice, J. Seo, S. Feng, S. Wang, W.W. Yu, Excitation wavelength independent visible color emission of carbon dots. Nanoscale 9, 1909 (2017). https://doi.org/10.1039/c6nr09200d
I.Y. Herbani, M.M. Suliyanti, Concentration effect on optical properties of carbon dots at room temperature. J. Lumin. 198, 215 (2018). https://doi.org/10.1016/j.jlumin.2018.02.012
Y.F. Wu, H.C. Wu, C.H. Kuan, C.J. Lin, L.W. Wang, C.W. Chang, T.W. Wang, Multi-functionalized carbon dots as theranostic nanoagent for gene delivery in lung cancer therapy. Sci. Rep. 6, 1–12 (2016). https://doi.org/10.1038/srep21170
G. Buchs, D. Bercioux, L. Mayrhofer, O. Gröning, Confined electron and hole states in semiconducting carbon nanotube sub-10 nm artificial quantum dots. Carbon N. Y. 132, 304 (2018). https://doi.org/10.1016/j.carbon.2018.02.031
Y. Liu, H. Huang, W. Cao, B. Mao, Y. Liu, Z. Kang, Advances in carbon dots: from the perspective of traditional quantum dots. Mater. Chem. Front. 4, 1586 (2020). https://doi.org/10.1039/D0QM00090F
P. Zhao, L. Zhu, Dispersibility of carbon dots in aqueous and/or organic solvents. Chem. Commun. 54, 5401–5406 (2018). https://doi.org/10.1039/C8CC02279H
S. Singh, A. Pankaj, S. Mishra, K. Tewari, S.P. Singh, Cerium oxide-catalyzed chemical vapor deposition grown carbon nanofibers for electrochemical detection of Pb (II) and Cu (II). J. Environ. Chem. Eng. 7, 103250 (2019). https://doi.org/10.1016/j.jece.2019.103250
J. Lovrić, S.J. Cho, F.M. Winnik, D. Maysinger, Unmodified cadmium telluride quantum dots induce reactive oxygen species formation leading to multiple organelle damage and cell death. Chem. Biol. 11, 1227 (2005). https://doi.org/10.1016/j.chembiol.2005.09.008
S. Moradi, K. Sadrjavadi, N. Farhadian, L. Hosseinzadeh, M. Shahlaei, Easy synthesis, characterization and cell cytotoxicity of green nano carbon dots using hydrothermal carbonization of Gum Tragacanth and chitosan bio-polymers for bioimaging. J. Mol. Liq. 259, 284 (2018). https://doi.org/10.1016/j.molliq.2018.03.054
R.V. Nair, R.T. Thomas, V. Sankar, H. Muhammad, M. Dong, S. Pillai, Rapid, acid-free synthesis of high-quality graphene quantum dots for aggregation induced sensing of metal ions and bioimaging. ACS Omega 2, 8051 (2017). https://doi.org/10.1021/acsomega.7b01262
H. Yao, W. Zhao, S. Zhang, X. Guo, Y. Li, B. Du, Dual-functional carbon dot-labeled heavy-chain ferritin for self-targeting bio-imaging and chemo-photodynamic therapy. J. Mater. Chem. B. 6, 3107 (2018). https://doi.org/10.1039/c8tb00118a
H. Wang, Y. Xie, X. Na, J. Bi, S. Liu, L. Zhang, M. Tan, Fluorescent carbon dots in baked lamb: formation, cytotoxicity and scavenging capability to free radicals. Food Chem. 286, 405 (2019). https://doi.org/10.1016/j.foodchem.2019.02.034
Q. Jia, X. Zheng, J. Ge, W. Liu, H. Ren, S. Chen, Y. Wen, H. Zhang, J. Wu, P. Wang, Synthesis of carbon dots from Hypocrella bambusae for bimodel fluorescence/photoacoustic imaging-guided synergistic photodynamic/photothermal therapy of cancer. J. Colloid Interface Sci. 526, 302 (2018). https://doi.org/10.1016/j.jcis.2018.05.005
K. Qu, J. Wang, J. Ren, X. Qu, Carbon dots prepared by hydrothermal treatment of dopamine as an effective fluorescent sensing platform for the label-free detection of iron(III) ions and dopamine. Chem. A Eur. J. 19, 7243 (2013). https://doi.org/10.1002/chem.201300042
Y.S. He, C.G. Pan, H.X. Cao, M.Z. Yue, L. Wang, G.X. Liang, Highly sensitive and selective dual-emission ratiometric fluorescence detection of dopamine based on carbon dots-gold nanoclusters hybrid. Sens. Actuators B Chem. 265, 371 (2018). https://doi.org/10.1016/j.snb.2018.03.080
L. Yang, W. Deng, C. Cheng, Y. Tan, Q. Xie, S. Yao, Fluorescent immunoassay for the detection of pathogenic bacteria at the single-cell level using carbon dots-encapsulated breakable organosilica nanocapsule as labels. ACS Appl. Mater. Interfaces. 10, 3441–3448 (2018). https://doi.org/10.1021/acsami.7b18714
Z. Peng, E.H. Miyanji, Y. Zhou, J. Pardo, S.D. Hettiarachchi, S. Li, P.L. Blackwelder, I. Skromne, R.M. Leblanc, Carbon dots: promising biomaterials for bone-specific imaging and drug delivery. Nanoscale 9, 17533–17543 (2017). https://doi.org/10.1039/C7NR05731H
T. Feng, X. Ai, G. An, P. Yang, Y. Zhao, Charge-convertible carbon dots for imaging-guided drug delivery with enhanced in vivo cancer therapeutic efficiency. ACS Nano 10, 4410 (2016). https://doi.org/10.1021/acsnano.6b00043
X.W. Hua, Y.W. Bao, F.G. Wu, Fluorescent carbon quantum dots with intrinsic nucleolus-targeting capability for nucleolus imaging and enhanced cytosolic and nuclear drug delivery. ACS Appl. Mater. Interfaces. 10, 10664 (2018). https://doi.org/10.1021/acsami.7b19549
S. Singh, A. Mishra, R. Kumari, K.K. Sinha, M.K. Singh, P. Das, Carbon dots assisted formation of DNA hydrogel for sustained release of drug. Carbon N. Y. 114, 169 (2017). https://doi.org/10.1016/j.carbon.2016.12.020
C. Chen, J. Wang, Optical biosensors: an exhaustive and comprehensive review. Analyst. 145, 1605–1628 (2020). https://doi.org/10.1039/c9an01998g
I.Y. Goryacheva, A.V. Sapelkin, G.B. Sukhorukov, Carbon nanodots: mechanisms of photoluminescence and principles of application. TrAC 90, 27 (2017). https://doi.org/10.1016/j.trac.2017.02.012
U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, T. Nann, Quantum dots versus organic dyes as fluorescent labels. Nat. Methods. 5, 763 (2008). https://doi.org/10.1038/nmeth.1248
S.S. Liang, L. Qi, R.L. Zhang, M. Jin, Z.Q. Zhang, Ratiometric fluorescence biosensor based on CdTe quantum and carbon dots for double strand DNA detection. Sens. Actuators B Chem. (2017). https://doi.org/10.1016/j.snb.2017.01.032
J.S. Lee, H. Kim, W.R. Algar, Thiol-ligand-Catalyzed quenching and etching in mixtures of colloidal quantum dots and silver nanoparticles. J. Phys. Chem. C. 121, 28566–28575 (2017). https://doi.org/10.1021/acs.jpcc.7b10381
Y. Zhao, R. Tong, F. Xia, Y. Peng, Current status of optical fiber biosensor based on surface plasmon resonance. Biosens. Bioelectron. 142, 111505 (2019). https://doi.org/10.1016/j.bios.2019.111505
O.J. Achadu, K. Takemura, I.M. Khoris, E.Y. Park, Plasmonic/magnetic molybdenum trioxide and graphitic carbon nitride quantum dots-based fluoroimmunosensing system for influenza virus. Sens. Actuators B Chem. 321, 128494 (2020). https://doi.org/10.1016/j.snb.2020.128494
O.J. Achadu, D.X. Lioe, K. Kagawa, S. Kawahito, E.Y. Park, Fluoroimmunoassay of influenza virus using sulfur-doped graphitic carbon nitride quantum dots coupled with Ag 2 S nanocrystals. Mikrochim. Acta. 187, 1 (2020). https://doi.org/10.1007/s00604-020-04433-1
I.S. Kucherenko, O.O. Soldatkin, S.V. Dzyadevych, A.P. Soldatkin, Electrochemical biosensors based on multienzyme systems: main groups, advantages and limitations–a review. Anal. Chim. Acta. 1111, 114–131 (2020). https://doi.org/10.1016/j.aca.2020.03.034
E. Cesewski, B.N. Johnson, Electrochemical biosensors for pathogen detection. Biosens. Bioelectron. 159, 112214 (2020). https://doi.org/10.1016/j.bios.2020.112214
J. Rivnay, S. Inal, A. Salleo, R.M. Owens, M. Berggren, G.G. Malliaras, Organic electrochemical transistors. Nat. Rev. Mater. 3, 17086 (2018). https://doi.org/10.1038/natrevmats.2017.86
S. Vigneshvar, C.C. Sudhakumari, B. Senthilkumaran, H. Prakash, Recent advances in biosensor technology for potential applications—an overview. Front. Bioeng. Biotechnol. 4, 11 (2016). https://doi.org/10.3389/fbioe.2016.00011
G. Wang, X. He, L. Wang, A. Gu, Y. Huang, B. Fang, B. Geng, X. Zhang, Non-enzymatic electrochemical sensing of glucose. Microchim. Acta. 180, 161 (2013). https://doi.org/10.1007/s00604-012-0923-1
X. Wang, L. Chen, X. Su, S. Ai, Electrochemical immunosensor with graphene quantum dots and apoferritin-encapsulated Cu nanoparticles double-assisted signal amplification for detection of avian leukosis virus subgroup. J. Biosens. Bioelectron. 47, 171 (2013). https://doi.org/10.1016/j.bios.2013.03.021
A.D. Chowdhury, K. Takemura, T.C. Li, T. Suzuki, E.Y. Park, Electrical pulse-induced electrochemical biosensor for hepatitis E virus detection. Nat. Commun. 10, 1 (2019). https://doi.org/10.1038/s41467-019-11644-5
S.R. Ahmed, J. Mogus, R. Chand, E. Nagy, S. Neethirajan, Optoelectronic fowl adenovirus detection based on local electric field enhancement on graphene quantum dots and gold nanobundle hybrid. Biosens. Bioelectron. 103, 45 (2018). https://doi.org/10.1016/j.bios.2017.12.028
A. Kurdekar, L.A.A. Chunduri, E.P. Bulagonda, M.K. Haleyurgirisetty, V. Kamisetti, I.K. Hewlett, Comparative performance evaluation of carbon dot-based paper immunoassay on Whatman filter paper and nitrocellulose paper in the detection of HIV infection. Microfluid. Nanofluidics. 20, 1 (2016). https://doi.org/10.1007/s10404-016-1763-9
F. Lin, Y.W. Bao, F.G. Wu, Carbon dots for sensing and killing microorganisms. C J. Carbon Res. 5, 33 (2019). https://doi.org/10.3390/c5020033
T. Hoenen, A. Groseth, H. Feldmann, Therapeutic strategies to target the Ebola virus life cycle. Nat. Rev. Microbiol. 17, 593–606 (2019). https://doi.org/10.1038/s41579-019-0233-2
M.S. Maginnis, Virus-receptor interactions: the key to cellular invasion. J. Mol. Biol. (2018). https://doi.org/10.1016/j.jmb.2018.06.024
M.B. Battles, J.S. McLellan, Respiratory syncytial virus entry and how to block it. Nat. Rev. Microbiol. 17, 233–245 (2019). https://doi.org/10.1038/s41579-019-0149-x
M.Z. Fahmi, W. Sukmayani, S.Q. Khairunisa, A.M. Witaningrum, D.W. Indriati, M.Q.Y. Matondang, J.Y. Chang, T. Kotaki, M. Kameoka, Design of boronic acid-attributed carbon dots on inhibits HIV-1 entry. RSC Adv. 6, 92996 (2016). https://doi.org/10.1039/c6ra21062g
Y.Y. Aung, A.N. Kristanti, S.Q. Khairunisa, N. Nasronudin, M.Z. Fahmi, Inactivation of HIV-1 infection through integrative blocking with amino phenylboronic acid attributed carbon dots. ACS Biomater. Sci. Eng. 6, 4490–4501 (2020). https://doi.org/10.1021/acsbiomaterials.0c00508
A. Du Toit, The many faces of the HIV-1 spike. Nat. Rev. Microbiol. 12, 792 (2014). https://doi.org/10.1038/nrmicro3383
M.S. Cohen, Y.Q. Chen, M. McCauley, T. Gamble, M.C. Hosseinipour, N. Kumarasamy, J.G. Hakim, J. Kumwenda, B. Grinsztejn, J.H.S. Pilotto, S.V. Godbole, S. Mehendale, S. Chariyalertsak, B.R. Santos, K.H. Mayer, I.F. Hoffman, S.H. Eshleman, E. Piwowar-Manning, L. Wang, J. Makhema, L.A. Mills, G. De Bruyn, I. Sanne, J. Eron, J. Gallant, D. Havlir, S. Swindells, H. Ribaudo, V. Elharrar, D. Burns, T.E. Taha, K. Nielsen-Saines, D. Celentano, M. Essex, T.R. Fleming, Prevention of HIV-1 infection with early antiretroviral therapy. N. Engl. J. Med. 365, 493 (2011). https://doi.org/10.1056/NEJMoa1105243
A. Shmakova, D. Germini, Y. Vassetzky, HIV-1, HAART and cancer: a complex relationship. Int. J. Cancer. 146, 2666–2679 (2020). https://doi.org/10.1002/ijc.32730
R. Granich, S. Crowley, M. Vitoria, Y.R. Lo, Y. Souteyrand, C. Dye, C. Gilks, T. Guerma, K.M. De Cock, B. Williams, Highly active antiretroviral treatment for the prevention of HIV transmission. J. Int. AIDS Soc. 13, 1 (2010). https://doi.org/10.1186/1758-2652-13-1
M.E. Cilento, K.A. Kirby, S.G. Sarafianos, Avoiding drug resistance in hiv reverse transcriptase. Chem. Rev. 121, 3271–3296 (2021). https://doi.org/10.1021/acs.chemrev.0c00967
D. Iannazzo, A. Pistone, S. Ferro, L. De Luca, A.M. Monforte, R. Romeo, M.R. Buemi, C. Pannecouque, Graphene quantum dots based systems as HIV inhibitors. Bioconjug. Chem. 29, 3084 (2018). https://doi.org/10.1021/acs.bioconjchem.8b00448
E. Ju, T. Li, Z. Liu, S.R. da Silva, S. Wei, X. Zhang, X. Wang, S.J. Gao, Specific inhibition of viral MicroRNAs by carbon dots-mediated delivery of locked nucleic acids for therapy of virus-induced cancer. ACS Nano. 14, 476–487 (2020). https://doi.org/10.1021/acsnano.9b06333
L.J. Ming, A.C.Y. Yin, Therapeutic effects of glycyrrhizic acid. Nat. Prod. Commun. 8, 415 (2013). https://doi.org/10.1177/1934578x1300800335
C.J. Lin, L. Chang, H.W. Chu, H.J. Lin, P.C. Chang, R.Y.L. Wang, B. Unnikrishnan, J.Y. Mao, S.Y. Chen, C.C. Huang, High amplification of the antiviral activity of curcumin through transformation into carbon quantum dots. Small. 15, 1902641 (2019). https://doi.org/10.1002/smll.201902641
X.X. Yang, C.M. Li, Y.F. Li, J. Wang, C.Z. Huang, Synergistic antiviral effect of curcumin functionalized graphene oxide against respiratory syncytial virus infection. Nanoscale 9, 16086–16092 (2017). https://doi.org/10.1039/c7nr06520e
S. Huang, B. Li, U. Ashraf, Q. Li, X. Lu, X. Gao, M. Cui, M. Imran, J. Ye, F. Cao, Quaternized cationic carbon dots as antigen delivery systems for improving humoral and cellular immune responses. ACS Appl. Nano Mater. 3, 9449–9461 (2020). https://doi.org/10.1021/acsanm.0c02062
Y. Li, W. Liu, C. Sun, M. Zheng, J. Zhang, B. Liu, Y. Wang, Z. Xie, N. Xu, Hybrids of carbon dots with subunit B of ricin toxin for enhanced immunomodulatory activity. J. Colloid Interface Sci. 523, 226–233 (2018). https://doi.org/10.1016/j.jcis.2018.03.108
T. Du, J. Liang, N. Dong, L. Liu, L. Fang, S. Xiao, H. Han, Carbon dots as inhibitors of virus by activation of type I interferon response. Carbon N. Y. 110, 278 (2016). https://doi.org/10.1016/j.carbon.2016.09.032
F. McNab, K. Mayer-Barber, A. Sher, A. Wack, A. O’garra, Type I interferons in infectious disease. Nat. Rev. Immunol. 15, 87–103 (2015). https://doi.org/10.1038/nri3787
L.M. Snell, T.L. McGaha, D.G. Brooks, Type I interferon in chronic virus infection and cancer. Trends Immunol. 38, 542–557 (2017). https://doi.org/10.1016/j.it.2017.05.005
WHO Coronavirus (COVID-19) Dashboard | WHO Coronavirus (COVID-19) Dashboard With Vaccination Data, (n.d.). (WHO, 2021) https://covid19.who.int/. Accessed 5 Oct 2021.
WCW. Chan, Nano research for COVID-19. ACS Nano. 14, 3719 (2020). https://doi.org/10.1021/acsnano.0c02540.
W. Guan, Z. Ni, Y. Hu, W. Liang, C. Ou, J. He, L. Liu, H. Shan, C. Lei, D.S.C. Hui, B. Du, L. Li, G. Zeng, K.Y. Yuen, R. Chen, C. Tang, T. Wang, P. Chen, J. Xiang, S. Li, J.L. Wang, Z. Liang, Y. Peng, L. Wei, Y. Liu, Y.H. Hu, P. Peng, J.M. Wang, J. Liu, Z. Chen, G. Li, Z. Zheng, S. Qiu, J. Luo, C. Ye, S. Zhu, N. Zhong, Clinical characteristics of coronavirus disease 2019 in China. N. Engl. J. Med. 382, 1708 (2020). https://doi.org/10.1056/NEJMoa2002032
H.W. Zhang, J. Yu, H.J. Xu, Y. Lei, Z.H. Pu, W.C. Dai, F. Lin, Y.L. Wang, X.L. Wu, L.H. Liu, Corona virus international public health emergencies: implications for radiology management. Acad. Radiol. 27, 463–467 (2020). https://doi.org/10.1016/j.acra.2020.02.003
P.B. van Kasteren, B. van der Veer, S. van den Brink, L. Wijsman, J. de Jonge, A. van den Brandt, R. Molenkamp, C.B.E.M. Reusken, A. Meijer, Comparison of seven commercial RT-PCR diagnostic kits for COVID-19. J. Clin. Virol. 128, 104412 (2020). https://doi.org/10.1016/j.jcv.2020.104412
B. Udugama, P. Kadhiresan, H.N. Kozlowski, A. Malekjahani, M. Osborne, V.Y.C. Li, H. Chen, S. Mubareka, J.B. Gubbay, W.C.W. Chan, Diagnosing COVID-19: the disease and tools for detection. ACS Nano. 14, 3822 (2020). https://doi.org/10.1021/acsnano.0c02624
O. Vandenberg, D. Martiny, O. Rochas, A. van Belkum, Z. Kozlakidis, Considerations for diagnostic COVID-19 tests. Nat. Rev. Microbiol. 19, 171–183 (2021). https://doi.org/10.1038/s41579-020-00461-z
K.K.W. To, O.T.Y. Tsang, W.S. Leung, A.R. Tam, T.C. Wu, D.C. Lung, C.C.Y. Yip, J.P. Cai, J.M.C. Chan, T.S.H. Chik, Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: an observational cohort study. Lancet Infect. Dis. 20, 565–574 (2020). https://doi.org/10.1016/S1473-3099(20)30196-1
S. Alpdagtas, E. Ilhan, E. Uysal, M. Sengor, C.B. Ustundag, O. Gunduz, Evaluation of current diagnostic methods for COVID-19. APL Bioeng. 4, 41506 (2020). https://doi.org/10.1063/5.0021554
F. Xiang, X. Wang, X. He, Z. Peng, B. Yang, J. Zhang, Q. Zhou, H. Ye, Y. Ma, H. Li, Antibody detection and dynamic characteristics in patients with coronavirus disease 2019. Clin. Infect. Dis. 71, 1930–1934 (2020). https://doi.org/10.1093/cid/ciaa461
K.A. Madurani, S. Suprapto, M.Y. Syahputra, I. Puspita, A. Masudi, H.D. Rizqi, A.M. Hatta, J. Juniastuti, M.I. Lusida, F. Kurniawan, Recent development of detection methods for controlling COVID-19 outbreak. J. Electrochem. Soc. 168, 37511 (2021)
S.H. Qaddare, A. Salimi, Amplified fluorescent sensing of DNA usingensin luminescent carbon dots and AuNPs/GO as a sg platform: a novel coupling of FRET and DNA hybridization for homogeneous HIV-1 gene detection at femtomolar level. Biosens. Bioelectron. 89, 773–780 (2017). https://doi.org/10.1016/j.bios.2016.10.033
O.J. Achadu, F. Abe, F. Hossain, F. Nasrin, M. Yamazaki, T. Suzuki, E.Y. Park, Sulfur-doped carbon dots@ polydopamine-functionalized magnetic silver nanocubes for dual-modality detection of norovirus. Biosens. Bioelectron. 193, 113540 (2021). https://doi.org/10.1016/j.mtphys.2021.100576
J.L. Wu, W.P. Tseng, C.H. Lin, T.F. Lee, M.Y. Chung, C.H. Huang, S.Y. Chen, P.R. Hsueh, S.C. Chen, Four point-of-care lateral flow immunoassays for diagnosis of COVID-19 and for assessing dynamics of antibody responses to SARS-CoV-2. J. Infect. 81, 435 (2020). https://doi.org/10.1016/j.jinf.2020.06.023
L.D. Xu, Q. Zhang, S.N. Ding, J.J. Xu, H.Y. Chen, Ultrasensitive detection of severe fever with thrombocytopenia syndrome virus based on immunofluorescent carbon dots/SiO2 nanosphere-based lateral flow assay. ACS Omega 4, 21431–21438 (2019). https://doi.org/10.1021/acsomega.9b03130
Y. Li, P. Ma, Q. Tao, H.J. Krause, S. Yang, G. Ding, H. Dong, X. Xie, Magnetic graphene quantum dots facilitate closed-tube one-step detection of SARS-CoV-2 with ultra-low field NMR relaxometry. Sens. Actuators B Chem. 337, 129786 (2021). https://doi.org/10.1016/j.snb.2021.129786
Modes of transmission of virus causing COVID-19: implications for IPC precaution recommendations, (WHO, 2020), https://www.who.int/news-room/commentaries/detail/modes-of-transmission-of-virus-causing-covid-19-implications-for-ipc-precaution-recommendations. Accessed 5 Oct 2021.
P.K. Raghav, S. Mohanty, Are graphene and graphene-derived products capable of preventing COVID-19 infection? Med. Hypotheses. 144, 110031 (2020). https://doi.org/10.1016/j.mehy.2020.110031
H. Mohammed, A. Kumar, E. Bekyarova, Y.M. Al-Hadeethi, X. Zhang, M. Chen, S. Ansari, A. Cochis, L. Rimondini, Antimicrobial mechanisms and effectiveness of graphene and graphene-functionalized biomaterials. A scope rReview. Front. Bioeng. Biotechnol. 8, 465 (2020). https://doi.org/10.3389/fbioe.2020.00465
M. Zare, M. Sillanpää, S. Ramakrishna, Essential role of quantum science and nanoscience in antiviral strategies for COVID-19. Mater. Adv. 2, 2188 (2021). https://doi.org/10.1039/D1MA00060H
F. Alizadeh, A. Khodavandi, Systematic review and meta-analysis of the efficacy of nanoscale materials against coronaviruses-possible potential antiviral agents for SARS-CoV-2. IEEE Trans. Nanobiosci. 19, 485 (2020). https://doi.org/10.1109/TNB.2020.2997257
S. Li, Z. Guo, G. Zeng, Y. Zhang, W. Xue, Z. Liu, Polyethylenimine-modified fluorescent carbon dots as vaccine delivery system for intranasal immunization. ACS Biomater. Sci. Eng. 4, 142 (2018). https://doi.org/10.1021/acsbiomaterials.7b00370
J. Cheng, Y. Xu, D. Zhou, K. Liu, N. Geng, J. Lu, Y. Liu, J. Liu, Novel carbon quantum dots can serve as an excellent adjuvant for the gp85 protein vaccine against avian leukosis virus subgroup J in chickens. Poult. Sci. 98, 5315 (2019). https://doi.org/10.3382/ps/pez313