Recent advances in carbon capture storage and utilisation technologies: a review

Springer Science and Business Media LLC - Tập 19 Số 2 - Trang 797-849 - 2021
Ahmed I. Osman1, Mahmoud Hefny2, M. I. A. Abdel Maksoud3, Ahmed M. Elgarahy4, David Rooney1
1School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast BT9 5AG, Northern Ireland, UK
2Geothermal Energy and Geofluids, Department of Earth Sciences, ETH Zurich, Zurich, Switzerland
3Materials Science Laboratory, Radiation Physics Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt
4Egyptian Propylene and Polypropylene Company (EPPC), Port-Said, Egypt

Tóm tắt

Abstract

Human activities have led to a massive increase in $$\hbox {CO}_{2}$$ CO 2 emissions as a primary greenhouse gas that is contributing to climate change with higher than $$1\,^{\circ }\hbox {C}$$ 1 C global warming than that of the pre-industrial level. We evaluate the three major technologies that are utilised for carbon capture: pre-combustion, post-combustion and oxyfuel combustion. We review the advances in carbon capture, storage and utilisation. We compare carbon uptake technologies with techniques of carbon dioxide separation. Monoethanolamine is the most common carbon sorbent; yet it requires a high regeneration energy of 3.5 GJ per tonne of $$\hbox {CO}_{2}$$ CO 2 . Alternatively, recent advances in sorbent technology reveal novel solvents such as a modulated amine blend with lower regeneration energy of 2.17 GJ per tonne of $$\hbox {CO}_{2}$$ CO 2 . Graphene-type materials show $$\hbox {CO}_{2}$$ CO 2 adsorption capacity of 0.07 mol/g, which is 10 times higher than that of specific types of activated carbon, zeolites and metal–organic frameworks. $$\hbox {CO}_{2}$$ CO 2 geosequestration provides an efficient and long-term strategy for storing the captured $$\hbox {CO}_{2}$$ CO 2 in geological formations with a global storage capacity factor at a Gt-scale within operational timescales. Regarding the utilisation route, currently, the gross global utilisation of $$\hbox {CO}_{2}$$ CO 2 is lower than 200 million tonnes per year, which is roughly negligible compared with the extent of global anthropogenic $$\hbox {CO}_{2}$$ CO 2 emissions, which is higher than 32,000 million tonnes per year. Herein, we review different $$\hbox {CO}_{2}$$ CO 2 utilisation methods such as direct routes, i.e. beverage carbonation, food packaging and oil recovery, chemical industries and fuels. Moreover, we investigated additional $$\hbox {CO}_{2}$$ CO 2 utilisation for base-load power generation, seasonal energy storage, and district cooling and cryogenic direct air $$\hbox {CO}_{2}$$ CO 2 capture using geothermal energy. Through bibliometric mapping, we identified the research gap in the literature within this field which requires future investigations, for instance, designing new and stable ionic liquids, pore size and selectivity of metal–organic frameworks and enhancing the adsorption capacity of novel solvents. Moreover, areas such as techno-economic evaluation of novel solvents, process design and dynamic simulation require further effort as well as research and development before pilot- and commercial-scale trials.

Từ khóa


Tài liệu tham khảo

Abd AA, Naji SZ, Hashim AS, Othman MR (2020) Carbon dioxide removal through physical adsorption using carbonaceous and non-carbonaceous adsorbents: a review. J Environ Chem Eng 8(5):104142. ISSN 2213-3437. https://doi.org/10.1016/j.jece.2020.104142

Abdeen FRH, Mel M, Jami MS, Ihsan SI, Ismail AF (2016) A review of chemical absorption of carbon dioxide for biogas upgrading. Chin J Chem Eng 24(6):693–702. ISSN 1004-9541. https://doi.org/10.1016/j.cjche.2016.05.006

Abdel Maksoud MIA, Fahim RA, Shalan AE, Elkodous MA, Olojede SO, Osman AI, Farrell C, Al-Muhtaseb AH, Awed AS, Ashour AH, Rooney DW (2020) Advanced materials and technologies for supercapacitors used in energy conversion and storage: a review. Environ Chem Lett. ISSN 1610-3661. https://doi.org/10.1007/s10311-020-01075-w

Abuilaiwi FA, Laoui T, Al-Harthi M, Atieh MA (2010) Modification and functionalization of multiwalled carbon nanotube (MWCNT) via fischer esterification. Arab J Sci Eng 35(1):37–48

Adams BM, Kuehn TH, Bielicki JM, Randolph JB, Saar MO (2014) On the importance of the thermosiphon effect in CPG (CO2 plume geothermal) power systems. Energy 69:409–418. ISSN 0360-5442. https://doi.org/10.1016/J.ENERGY.2014.03.032

Adams BM, Kuehn TH, Bielicki JM, Randolph JB, Saar MO (2015) A comparison of electric power output of CO2 plume geothermal (CPG) and brine geothermal systems for varying reservoir conditions. Appl Energy 140:365–377. ISSN 0306-2619. https://doi.org/10.1016/J.APENERGY.2014.11.043

Ali M, Sultana R, Tahir S, Watson IA, Saleem M (2017) Prospects of microalgal biodiesel production in Pakistan: a review. Renew Sustain Energy Rev 80:1588–1596. https://doi.org/10.1016/j.rser.2017.08.062

Al-Naddaf Q, Rownaghi AA, Rezaei FF (2020) Multicomponent adsorptive separation of CO2, CO, CH4, N2, and H2 over core-shell zeolite-5A@MOF-74 composite adsorbents. Chem Eng J 384:123251. ISSN 1385-8947. https://doi.org/10.1016/j.cej.2019.123251

An X, Li J, Zuo Y, Zhang Q, Wang D, Wang J (2007) A Cu/Zn/Al/Zr fibrous catalyst that is an improved CO2 hydrogenation to methanol catalyst. Catal Lett 118(3):264–269. https://doi.org/10.1007/s10562-007-9182-x

Apak R (2007) Alternative solution to global warming arising from CO2 emissions–partial neutralization of tropospheric H2CO3 with NH3. Environ Prog 26(4):355–359. https://doi.org/10.1002/ep.10228

Aplin AC, Matenaar IF, McCarty DK, van Der Pluijm BA (2006) Influence of mechanical compaction and clay mineral diagenesis on the microfabric and pore-scale properties of deep-water gulf of mexico mudstones. Clays Clay Miner 54(4):500–514

Armitage PJ, Worden RH, Faulkner DR, Aplin AC, Butcher AR, Iliffe J (2010) Diagenetic and sedimentary controls on porosity in Lower Carboniferous fine-grained lithologies, Krechba field, Algeria: a petrological study of a caprock to a carbon capture site. Mar Pet Geol 27(7):1395–1410. ISSN 02648172. https://doi.org/10.1016/j.marpetgeo.2010.03.018

Ashkanani HE, Wang R, Shi W, Siefert NS, Thompson RL, Smith K, Steckel JA, Gamwo IK, Hopkinson D, Resnik K, Morsi BI (2020) Levelized cost of CO2 captured using five physical solvents in pre-combustion applications. Int J Greenh Gas Control 101:103135. ISSN 1750-5836. https://doi.org/10.1016/j.ijggc.2020.103135

Ayodele BV, Khan MR, Cheng CK (2015) Syngas production from CO2 reforming of methane over ceria supported cobalt catalyst: effects of reactants partial pressure. J Nat Gas Sci Eng 27:1016–1023. https://doi.org/10.1016/j.jngse.2015.09.049

Azhand N, Sadeghizadeh A, Rahimi R (2020) Effect of superficial gas velocity on CO2 capture from air by Chlorella vulgaris microalgae in an airlift photobioreactor with external sparger. J Environ Chem Eng 8(4):104022. ISSN 2213-3437. https://doi.org/10.1016/j.jece.2020.104022

Bachu S, Bennion DB (2009) Interfacial tension between CO2, freshwater, and brine in the range of pressure from (2 to 27) MPa, temperature from (20 to 125) C, and water salinity from (0 to 334 000) mg L-1. J Chem Eng Data 54(3):765–775. ISSN 0021-9568. https://doi.org/10.1021/je800529x

Bae J-S, Shi S (2013) Macadamia nut shell-derived carbon composites for post combustion CO2 capture. Int J Greenh Gas Control 19:174–182. ISSN 1750-5836. https://doi.org/10.1016/j.ijggc.2013.08.013

Bailera M, Lisbona P, Romeo LM, Espatolero S (2017) Power to gas projects review: lab, pilot and demo plants for storing renewable energy and CO2. Renew Sustain Energy Rev 69:292–312. https://doi.org/10.1016/j.rser.2016.11.130

Balajii M, Niju S (2019) Biochar-derived heterogeneous catalysts for biodiesel production. Environ Chem Lett 2019:1–23

Barzagli F, Mani F, Peruzzini M (2016) Carbon dioxide uptake as ammonia and amine carbamates and their efficient conversion into urea and 1,3-disubstituted ureas. J CO2 Util 13:81–89. https://doi.org/10.1016/j.jcou.2015.12.006

Ben-Mansour R, Habib MA, Bamidele OE, Basha M, Qasem NAA, Peedikakkal A, Laoui T, Ali M (2016) Carbon capture by physical adsorption: materials, experimental investigations and numerical modeling and simulations: a review. Appl Energy 161:225–255. ISSN 0306-2619. https://doi.org/10.1016/j.apenergy.2015.10.011

Benson SM, Cole DR (2008) CO2 sequestration in deep sedimentary formations. Elements 4(5):325–331. ISSN 18115209. https://doi.org/10.2113/gselements.4.5.325

Bergmo PES, Grimstad AA, Lindeberg E (2011) Simultaneous CO2 injection and water production to optimise aquifer storage capacity. Int J Greenh Gas Control 5(3):555–564. ISSN 17505836. https://doi.org/10.1016/j.ijggc.2010.09.002

Billig E, Decker M, Benzinger W, Ketelsen F, Pfeifer P, Peters R, Stolten D, Thrän D (2019) Non-fossil CO2 recycling—the technical potential for the present and future utilization for fuels in Germany. J CO2 Util 30:130–141. https://doi.org/10.1016/j.jcou.2019.01.012

Bohm MC, Herzog HJ, Parsons JE, Sekar RC (2007) Capture-ready coal plants–options, technologies and economics. Int J Greenh Gas Control 1(1):113–120. ISSN 1750-5836. https://doi.org/10.1016/S1750-5836(07)00033-3

Boonpoke A, Chiarakorn S, Laosiripojana N, Towprayoon S, Chidthaisong A (2011) Synthesis of activated carbon and MCM-41 from bagasse and rice husk and their carbon dioxide adsorption capacity. J Sustain Energy Environ 2(2):77–81

Boonpoke A, Chiarakorn S, Laosiripojana N, Towprayoon S, Chidthaisong A (2012) Investigation of CO2 adsorption by bagasse-based activated carbon. Korean J Chem Eng 29(1):89–94. ISSN 1975-7220. https://doi.org/10.1007/s11814-011-0143-0

Bradshaw J, Boreham C, La Pedalina F (2005) Storage retention time of co2 in sedimentary basing; examples from petroleum systems. In: Greenhouse gas control technologies, vol 7, Elsevier, pp 541–549

Bradshaw J, Bachu S, Bonijoly D, Burruss R, Holloway S, Christensen NP, Mathiassen OM (2007) CO2 storage capacity estimation: issues and development of standards. Int J Greenh Gas Control 1(1):62–68. ISSN 17505836. https://doi.org/10.1016/S1750-5836(07)00027-8

Brown DW (2000) A hot dry rock geothermal energy concept utilizing supercritical CO2 instead of water. In: Proceedings, twenty-fifth workshop on geothermal reservoir engineering, Stanford University, Stanford, California

Bui M, Adjiman CS, Bardow A, Anthony EJ, Boston A, Brown S, Fennell PS, Fuss S, Galindo A, Hackett LA et al (2018a) Carbon capture and storage (ccs): the way forward. Energy Environ Sci 11(5):1062–1176

Bui M, Claire SA, Bardow A, Edward JA, Boston A, Brown S, Fennell PS, Fuss S, Galindo A, Hackett LA, Hallett JP, Herzog HJ, Jackson G, Kemper J, Krevor S, Maitland GC, Matuszewski M, Metcalfe IS, Petit C, Puxty G, Reimer J, Reiner DM, Rubin ES, Scott SA, Shah N, Smit B, Martin Trusler JP, Webley P, Wilcox J, Dowell NM (2018b) Carbon capture and storage (CCS): the way forward. Energy Environ Sci 11(5):1062–1176. ISSN 1754-5692. https://doi.org/10.1039/C7EE02342A

Bui M, Fajardy M, Dowell NM (2018c) Bio-energy with carbon capture and storage (BECCS): opportunities for performance improvement. Fuel 213:164–175. ISSN 0016-2361. https://doi.org/10.1016/j.fuel.2017.10.100

Cai M, Palčić A, Subramanian V, Moldovan S, Ersen O, Valtchev V, Ordomsky VV, Khodakov AY (2016) Direct dimethyl ether synthesis from syngas on copper–zeolite hybrid catalysts with a wide range of zeolite particle sizes. J Catal 338:227–238. https://doi.org/10.1016/j.jcat.2016.02.025

Campbell M (2014) Technology innovation and advancements for shell cansolv co2 capture solvents. Energy Procedia 63:801–807

Cao M, Zhao L, Xu D, Ciora R, Liu PKT, Manousiouthakis VI, Tsotsis TT (2020) A carbon molecular sieve membrane-based reactive separation process for pre-combustion CO2 capture. J Membr Sci 605:118028.ISSN 0376-7388. https://doi.org/10.1016/j.memsci.2020.118028

Carbo MC, Jansen D, Hendriks C, de Visser E, Ruijg GJ, Davison J (2009) Opportunities for CO2 capture through oxygen conducting membranes at medium-scale oxyfuel coal boilers. Energy Procedia 1(1):487–494. ISSN 1876-6102. https://doi.org/10.1016/j.egypro.2009.01.065

Cha JS, Park SH, Jung S-C, Ryu C, Jeon J-K, Shin M-C, Park Y-K (2016) Production and utilization of biochar: a review. J Ind Eng Chem 40:1–15. https://doi.org/10.1016/j.jiec.2016.06.002

Chaix E, Guillaume C, Guillard V (2014) Oxygen and carbon dioxide solubility and diffusivity in solid food matrices: a review of past and current knowledge. Compr Rev Food Sci Food Saf 13(3):261–286. https://doi.org/10.1111/1541-4337.12058

Chandra V, Yu SU, Kim SH, Yoon YS, Kim DY, Kwon AH, Meyyappan M, Kim KS (2012) Highly selective CO2 capture on N-doped carbon produced by chemical activation of polypyrrole functionalized graphene sheets. Chem Commun 48(5):735–737. ISSN 1359-7345. https://doi.org/10.1039/C1CC15599G

Chaterjee S, Krupadam RJ (2019) Amino acid-imprinted polymers as highly selective co2 capture materials. Environ Chem Lett 17(1):465–472

Cheah WY, Show PL, Chang J-S, Ling TC, Juan JC (2015) Biosequestration of atmospheric CO2 and flue gas-containing CO2 by microalgae. Bioresour Technol 184:190–201. ISSN 0960-8524. https://doi.org/10.1016/j.biortech.2014.11.026

Chen SJ, Zhu M, Fu Y, Huang YX, Tao ZC, Li WL (2017) Using 13X, LiX, and LiPdAgX zeolites for CO2 capture from post-combustion flue gas. Appl Energy 191:87–98. ISSN 0306-2619. https://doi.org/10.1016/j.apenergy.2017.01.031

Chen S, Jun H, Xiang W (2018a) Application of chemical looping air separation for MILD oxy-combustion: identifying a suitable operational region. Appl Therm Eng 132:8–17. ISSN 1359-4311. https://doi.org/10.1016/j.applthermaleng.2017.12.070

Chen S, Zhu M, Tang Y, Yue F, Li W, Xiao B (2018b) Molecular simulation and experimental investigation of CO2 capture in a polymetallic cation-exchanged 13X zeolite. J Mater Chem A 6(40):19570–19583. ISSN 2050-7488. https://doi.org/10.1039/C8TA05647A

Chen S, Ran Yu, Soomro A, Xiang W (2019) Thermodynamic assessment and optimization of a pressurized fluidized bed oxy-fuel combustion power plant with CO2 capture. Energy 175:445–455. ISSN 0360-5442. https://doi.org/10.1016/j.energy.2019.03.090

Cho D-W, Kwon EE, Song H (2016) Use of carbon dioxide as a reaction medium in the thermo-chemical process for the enhanced generation of syngas and tuning adsorption ability of biochar. Energy Convers Manage 117:106–114. https://doi.org/10.1016/j.enconman.2016.03.027

Clavaud JB, Maineult A, Zamora M, Rasolofosaon P, Schlitter C (2008) Permeability anisotropy and its relations with porous medium structure. J Geophys Res Solid Earth. https://doi.org/10.1029/2007JB005004

Collotta M, Champagne P, Mabee W, Tomasoni G (2018) Wastewater and waste CO2 for sustainable biofuels from microalgae. Algal Res 29:12–21. https://doi.org/10.1016/j.algal.2017.11.013

Cook PJ (2009) Demonstration and deployment of carbon dioxide capture and storage in Australia. Energy Procedia 1(1):3859–3866. ISSN 1876-6102. https://doi.org/10.1016/j.egypro.2009.02.188

Corbo MR, Bevilacqua A, Campaniello D, D’Amato D, Speranza B, Sinigaglia M (2009) Prolonging microbial shelf life of foods through the use of natural compounds and non-thermal approaches—a review. Int J Food Sci Technol 44(2):223–241. https://doi.org/10.1111/j.1365-2621.2008.01883.x

Cormos C-C (2020) Energy and cost efficient manganese chemical looping air separation cycle for decarbonized power generation based on oxy-fuel combustion and gasification. Energy 191:116579. ISSN 0360-5442. https://doi.org/10.1016/j.energy.2019.116579

Dadson S, Hall JW, Garrick D, Sadoff C, Grey D, Whittington D (2017) Water security, risk, and economic growth: insights from a dynamical systems model. Water Resour Res 53(8):6425–6438. https://doi.org/10.1002/2017WR020640

Darensbourg DJ, Wei S-H, Yeung AD, Ellis WC (2013) An efficient method of depolymerization of poly(cyclopentene carbonate) to its comonomers: cyclopentene oxide and carbon dioxide. Macromolecules 46(15):5850–5855. https://doi.org/10.1021/ma401286x

de Ribeiro J, Nunes EH, Vasconcelos DC, Vasconcelos WL, Nascimento JF, Grava WM, Derks PW (2019) Role of the type of grafting solvent and its removal process on APTES functionalization onto SBA-15 silica for CO2 adsorption. J Porous Mater 26(6):1581–1591. ISSN 1573-4854. https://doi.org/10.1007/s10934-019-00754-6

Del Pozo-Insfran D, Balaban MO, Talcott ST (2006) Microbial stability, phytochemical retention, and organoleptic attributes of dense phase CO2 processed muscadine grape juice. J Agric Food Chem 54(15):5468–5473. https://doi.org/10.1021/jf060854o

Demirbas A (2008) Biofuels sources, biofuel policy, biofuel economy and global biofuel projections. Energy Convers Manage 49(8):2106–2116. https://doi.org/10.1016/j.enconman.2008.02.020

Dhyani V, Bhaskar T (2018) A comprehensive review on the pyrolysis of lignocellulosic biomass. Renew Energy 129:695–716. https://doi.org/10.1016/j.renene.2017.04.035

Din IU, Shaharun MS, Alotaibi MA, Alharthi AI, Naeem A (2019) Recent developments on heterogeneous catalytic CO2 reduction to methanol. J CO2 Util 34:20–33. https://doi.org/10.1016/j.jcou.2019.05.036

Dinca C, Slavu N, Cormoş C-C, Badea A (2018) CO2 capture from syngas generated by a biomass gasification power plant with chemical absorption process. Energy 149:925–936. https://doi.org/10.1016/j.energy.2018.02.109

Ding M, Flaig RW, Jiang HL, Yaghi OM (2019) Carbon capture and conversion using metal–organic frameworks and MOF-based materials. Chem Soc Rev 48(10):2783–2828. ISSN 0306-0012. https://doi.org/10.1039/C8CS00829A

Dong SL (2016) Carbon dioxide absorbers for food packaging applications. Trends Food Sci Technol 57:146–155. https://doi.org/10.1016/j.tifs.2016.09.014

Dong F, Lou H, Kodama A, Goto M, Hirose T (1999) The Petlyuk PSA process for the separation of ternary gas mixtures: exemplification by separating a mixture of CO2–CH4–N2. Sep Purific Technol 16(2):159–166. ISSN 1383-5866. https://doi.org/10.1016/S1383-5866(98)00122-1

Doughty C, Pruess K, Benson SM, Hovorka SD, Knox PR, Green CT (2001) Capacity investigation of brine-bearing sands of the Frio Formation for geologic sequestration of CO$$_\text{2}$$. In: First national conference on carbon sequestration, May 14–17, Washington, DC, sponsored by National Energy Technology Laboratory, CD-ROM. GCCC Digital Publication Series #01-03

Duan Z, Sun R (2003) An improved model calculating CO2 solubility in pure water and aqueous NaCl solutions from 273 to 533 K and from 0 to 2000 bar. Chem Geol 193(3–4):257–271. ISSN 00092541. https://doi.org/10.1016/S0009-2541(02)00263-2

Duan Z, Sun R, Zhu C, Chou IM (2006) An improved model for the calculation of CO2 solubility in aqueous solutions containing Na+, K+, Ca2+, Mg2+, Cl-, and SO42-. Mar Chem 98(2-4):131–139. ISSN 03044203. https://doi.org/10.1016/j.marchem.2005.09.001

Düren T (2007) How does the pore morphology influence the adsorption performance of metal-organic frameworks? A molecular simulation study of methane and ethane adsorption in Zn-MOFs. In: Xu R, Gao Z, Chen J, Yan W (eds) Studies in surface science and catalysis, vol 170, Elsevier, pp 2042–2047. ISBN 0167-2991. https://doi.org/10.1016/S0167-2991(07)81097-4

Eiken O (2019) Twenty years of monitoring CO2 injection at sleipner. In: Geophysics and geosequestration, vol 4, Cambridge University Press, pp 209–234. https://doi.org/10.1017/9781316480724.014

Eiken O, Ringrose P, Hermanrud C, Nazarian B, Torp TA, Høier L (2011) Lessons learned from 14 years of CCS operations: sleipner. In: Energy procedia, vol 4, Elsevier Ltd, pp 5541–5548. https://doi.org/10.1016/j.egypro.2011.02.541

Endo K, Nguyen QS, Kentish SE, Stevens GW (2011) The effect of boric acid on the vapour liquid equilibrium of aqueous potassium carbonate. Fluid Phase Equilibria 309(2):109–113. ISSN 0378-3812. https://doi.org/10.1016/j.fluid.2011.06.031

Espinoza DN, Santamarina JC (2017) CO2 breakthrough—Caprock sealing efficiency and integrity for carbon geological storage. Int J Greenh Gas Control 66:218–229. ISSN 17505836. https://doi.org/10.1016/j.ijggc.2017.09.019

Ezekiel J, Ebigbo A, Adams BM, Saar MO (2020) Combining natural gas recovery and CO2-based geothermal energy extraction for electric power generation. Appl Energy 269:115012. ISSN 03062619. https://doi.org/10.1016/j.apenergy.2020.115012

Farha OK, Spokoyny AM, Mulfort KL, Galli S, Hupp JT, Mirkin CA (2009) Gas-sorption properties of cobalt(II)–carborane-based coordination polymers as a function of morphology. Small 5(15):1727–1731. ISSN 1613-6810. https://doi.org/10.1002/smll.200900085

Farha OK, Eryazici I, Jeong NC, Hauser BG, Wilmer CE, Sarjeant AA, Snurr RQ, Nguyen ST, Yazaydın AO, Hupp JT (2012) Metal-organic framework materials with ultrahigh surface areas: Is the sky the limit? J Am Chem Soc 134(36):15016–15021. ISSN 0002-7863

Faried M, Samer M, Abdelsalam E, Yousef RS, Attia YA, Ali AS (2017) Biodiesel production from microalgae: processes, technologies and recent advancements. Renew Sustain Energy Rev 79:893–913. https://doi.org/10.1016/j.rser.2017.05.199

Farmahini AH, Friedrich D, Brandani S, Sarkisov L (2020) Exploring new sources of efficiency in process-driven materials screening for post-combustion carbon capture. Energy Environ Sci 13(3):1018–1037. ISSN 1754-5692. https://doi.org/10.1039/C9EE03977E

Fawzy S, Osman AI, Doran J, Rooney DW (2020) Strategies for mitigation of climate change: a review. Environ Chem Lett. ISSN 1610-3661. https://doi.org/10.1007/s10311-020-01059-w

Fayaz M, Sayari A (2017) Long-term effect of steam exposure on CO2 capture performance of amine-grafted silica. ACS Appl Mater Interfaces 9(50):43747–43754. ISSN 1944-8244. https://doi.org/10.1021/acsami.7b15463

Fenghour A, Wakeham WA, Vesovic V (1998) The viscosity of carbon dioxide. J Phys Chem Ref Data 27(1):31–39. ISSN 00472689. https://doi.org/10.1063/1.556013

Fleming MR, Adams BM, Randolph JB, Ogland-Hand JO, Kuehn TH, Buscheck TA, Bielicki JM, Saar MO (2018) High efficiency and large-scale subsurface energy storage with CO2. In: 43rd Workshop on geothermal reservoir engineering, Stanford, CA

Furre AK, Eiken O (2014) Dual sensor streamer technology used in Sleipner CO2 injection monitoring. Geophys Prospect 62(5):1075–1088. ISSN 13652478. https://doi.org/10.1111/1365-2478.12120

Furukawa H, Ko N, Go, Aratani N, Choi SB, Choi E, Yazaydin A, Snurr RQ, O’Keeffe M, Kim J (2010) Ultrahigh porosity in metal-organic frameworks. Science 329(5990):424–428. ISSN 0036-8075. https://doi.org/10.1126/science.1192160

Fu K, Sema T, Liang Z, Liu H, Na Y, Shi H, Idem R, Tontiwachwuthikul (2012) Correction for “investigation of mass-transfer performance for CO2 absorption into diethylenetriamine (DETA) in a randomly packed column”. Ind Eng Chem Res 51(49):16162. ISSN 0888-5885. https://doi.org/10.1021/ie303149h

Gao J, Yin J, Zhu F, Chen X, Tong M, Kang W, Zhou Y, Lu J (2016) Integration study of a hybrid solvent MEA-methanol for post combustion carbon dioxide capture in packed bed absorption and regeneration columns. Sep Purific Technol 167:17–23. ISSN 1383-5866. https://doi.org/10.1016/j.seppur.2016.04.033

Garapati N, Randolph JB, Saar MO (2015) Brine displacement by CO2, energy extraction rates, and lifespan of a CO2-limited CO2-Plume Geothermal (CPG) system with a horizontal production well. Geothermics 55:182–194. ISSN 0375-6505. https://doi.org/10.1016/J.GEOTHERMICS.2015.02.005

GCCSI (2017) The Global Status of CCS: 2017, Docklands, Australia. https://www.globalccsinstitute.com/wp-content/uploads/2018/12/2017-Global-Status-Report.pdf. Accessed on 17 Sep 2020. https://www.globalccsinstitute.com/wp-content/uploads/2018/12/2017-Global-Status-Report.pdf

Ghosh S, Ramaprabhu S (2019) Green synthesis of transition metal nanocrystals encapsulated into nitrogen-doped carbon nanotubes for efficient carbon dioxide capture. Carbon 141:692–703. ISSN 0008-6223. https://doi.org/10.1016/j.carbon.2018.09.083

Gladis A, Gundersen MT, Fosbøl PL, Woodley JM, von Solms N (2017) Influence of temperature and solvent concentration on the kinetics of the enzyme carbonic anhydrase in carbon capture technology. Chem Eng J 309:772–786. ISSN 1385-8947. https://doi.org/10.1016/j.cej.2016.10.056

Gładysz P, Ziȩbik A (2016) Environmental analysis of bio-CCS in an integrated oxy-fuel combustion power plant with CO2 transport and storage. Biomass Bioenergy 85:109–118. ISSN 0961-9534. https://doi.org/10.1016/j.biombioe.2015.12.008

Godec ML, Kuuskraa VA, Dipietro P (2013) Opportunities for using anthropogenic CO2 for enhanced oil recovery and CO2 storage. In: Energy and fuels, vol 27, American Chemical Society, pp 4183–4189. https://doi.org/10.1021/ef302040u

González JF, Román S, González-García CM, Valente Nabais JM, Ortiz AL (2009) Porosity development in activated carbons prepared from walnut shells by carbon dioxide or steam activation. Ind Eng Chem Res 48(16):7474–7481. ISSN 0888-5885. https://doi.org/10.1021/ie801848x

González AS, Plaza MG, Rubiera F, Pevida C (2013) Sustainable biomass-based carbon adsorbents for post-combustion co2 capture. Chem Eng J 230:456–465

González-Aparicio I, Pérez-Fortes M, Zucker A, Tzimas E (2017) Opportunities of integrating CO2 utilization with RES-E: a power-to-methanol business model with wind power generation. Energy Procedia 114:6905–6918. https://doi.org/10.1016/j.egypro.2017.03.1833

Goodman A, Hakala A, Bromhal G, Deel D, Rodosta T, Frailey S, Small M, Allen D, Romanov V, Fazio J, Huerta N, McIntyre D, Kutchko B, Guthrie G (2011) US DOE methodology for the development of geologic storage potential for carbon dioxide at the national and regional scale. Int J Greenh Gas Control 5(4):952–965. ISSN 17505836. https://doi.org/10.1016/j.ijggc.2011.03.010

Grimm Lima M, Schädle P, Green CP, Vogler D, Saar MO, Kong XZ (2020) Permeability impairment and salt precipitation patterns during $$\text{CO }_{2}$$ injection into single natural brine-filled fractures. Water Resour Res 56(8): 8. ISSN 0043-1397. https://doi.org/10.1029/2020WR027213

Guéguen Y, Schubnel A (2003) Elastic wave velocities and permeability of cracked rocks. Tectonophysics 370(1–4):163–176

Guizani C, Louisnard O, Escudero Sanz FJ, Salvador S (2015) Gasification of woody biomass under high heating rate conditions in pure CO2. Biomass Bioenergy 83:169–182. https://doi.org/10.1016/j.biombioe.2015.09.017

Guo M, Kanezashi M, Nagasawa H, Yu L, Ohshita J, Tsuru T (2020) Amino-decorated organosilica membranes for highly permeable CO2 capture. J Membr Sci 611:118328. ISSN 0376-7388. https://doi.org/10.1016/j.memsci.2020.118328

Habib N, Shamair Z, Tara N, Nizami A, Hassan Akhtar F, Ahmad NM, Gilani MA, Bilad MR, Khan AL (2020) Development of highly permeable and selective mixed matrix membranes based on Pebax®1657 and NOTT-300 for CO2 capture. Sep Purific Technol 234:116101. ISSN 1383-5866. https://doi.org/10.1016/j.seppur.2019.116101

Hanjra MA, Ejaz Qureshi M (2010) Global water crisis and future food security in an era of climate change. Food Policy 35(5):365–377. https://doi.org/10.1016/j.foodpol.2010.05.006

Hasib-ur Rahman M, Siaj M, Larachi F (2010) Ionic liquids for CO2 capture—development and progress. Chem Eng Process Process Intensif 49(4):313–322. ISSN 0255-2701

He S, Chen G, Xiao H, Shi G, Ruan C, Ma Y, Dai H, Yuan B, Chen X, Yang X (2010) Facile preparation of N-doped activated carbon produced from rice husk for CO2 capture. J Colloid Interface Sci 582(Pt A):90–101. ISSN 0021-9797. https://doi.org/10.1016/j.jcis.2020.08.021

Hefny M (2019) Dataset for “Synchrotron-based pore-network modeling of two-phase flow in Nubian Sandstone and implications for capillary trapping of carbon dioxide”. ETH Zurich 11:2019. https://doi.org/10.3929/ETHZ-B-000377881

Hefny M (2020) Rock physics and heterogeneities characterization controlling fluid flow in reservoir rocks. PhD thesis, ETH Zurich, Zurich

Hefny M, Qin CZ, Saar MO, Ebigbo A (2020) Synchrotron-based pore-network modeling of two-phase flow in Nubian Sandstone and implications for capillary trapping of carbon dioxide. Int J Greenh Gas Control 103:103164. ISSN 17505836. https://doi.org/10.1016/j.ijggc.2020.103164

Helbig K, Thomsen L (2005) 75-plus years of anisotropy in exploration and reservoir seismics: a historical review of concepts and methods. Geophysics 70(6):9ND–23ND

Henao W, Jaramillo LY, López D, Romero-Sáez M, Buitrago-Sierra R (2020) Insights into the CO2 capture over amine-functionalized mesoporous silica adsorbents derived from rice husk ash. J Environ Chem Eng 8(5):104362. ISSN 2213-3437. https://doi.org/10.1016/j.jece.2020.104362

Honda S, Mori T, Goto H, Sugimoto H (2014) Carbon-dioxide-derived unsaturated alicyclic polycarbonate: synthesis, characterization, and post-polymerization modification. Polymer 55(19):4832–4836. https://doi.org/10.1016/j.polymer.2014.08.002

Hong SM, Kim SH, Lee KB (2013) Adsorption of carbon dioxide on 3-aminopropyl-triethoxysilane modified graphite oxide. Energy Fuels 27(6):3358–3363. ISSN 0887-0624. https://doi.org/10.1021/ef400467w

Hong J, Field R, Gazzino M, Ghoniem AF (2010) Operating pressure dependence of the pressurized oxy-fuel combustion power cycle. Energy 35(12):5391–5399. ISSN 0360-5442. https://doi.org/10.1016/j.energy.2010.07.016

Hsan N, Dutta PK, Kumar S, Bera R, Das N (2019) Chitosan grafted graphene oxide aerogel: synthesis, characterization and carbon dioxide capture study. Int J Biol Macromol 125:300–306. ISSN 0141-8130. https://doi.org/10.1016/j.ijbiomac.2018.12.071

Huang C, Chen L, Tadikamalla PR, Gordon MM (2020) Valuation and investment strategies of carbon capture and storage technology under uncertainties in technology, policy and market. J Oper Res Soc. ISSN 0160-5682. https://doi.org/10.1080/01605682.2019.1678402

Hudson MR, Queen WL, Mason JA, Fickel DW, Lobo RF, Brown CM (2012) Unconventional, highly selective CO2 aAdsorption in zeolite SSZ-13. J Am Chem Soc 134(4):1970–1973. ISSN 0002-7863. https://doi.org/10.1021/ja210580b

Hu J, Liu Y, Liu J, Gu C, Wu D (2018) High CO2 adsorption capacities in UiO type MOFs comprising heterocyclic ligand. Microporous Mesoporous Mater 256:25–31. ISSN 1387-1811. https://doi.org/10.1016/j.micromeso.2017.07.051

Iaquaniello G, Centi G, Salladini A, Palo E, Perathoner S, Spadaccini L (2017) Waste-to-methanol: process and economics assessment. Bioresour Technol 243:611–619. https://doi.org/10.1016/j.biortech.2017.06.172

International Energy Agency (2008) CO2 capture and storage: a key carbon abatement option. https://doi.org/10.1787/9789264041417-en

IPCC (2005) IPCC special report on carbon dioxide capture and storage. Technical report, Cambridge University Press, Cambridge

IPCC (2014) Climate change 2014 mitigation of climate change: working group III contribution to the IPCC fifth assessment report of the intergovernmental panel on climate change, Cambridge University Press, Cambridge. ISBN 9781107415416. https://doi.org/10.1017/CBO9781107415416

Ishaq H, Siddiqui O, Chehade G, Dincer I (2020) A solar and wind driven energy system for hydrogen and urea production with CO2 capturing. Int J Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2020.01.208

Jadhav SG, Vaidya PD, Bhanage BM, Joshi JB (2014) Catalytic carbon dioxide hydrogenation to methanol: a review of recent studies. Chem Eng Res Des 92(11):2557–2567. https://doi.org/10.1016/j.cherd.2014.03.005

Jahandar Lashaki M, Sayari A (2018) CO2 capture using triamine-grafted SBA-15: the impact of the support pore structure. Chem Eng J 334:1260–1269. ISSN 1385-8947. https://doi.org/10.1016/j.cej.2017.10.103

James RE, Kearins D, Turner M, Woods M, Kuehn N, Zoelle A (2019) Cost and performance baseline for fossil energy plants volume 1: bituminous coal and natural gas to electricity. Technical report 2019

Jang JG, Lee HK (2016) Microstructural densification and CO2 uptake promoted by the carbonation curing of belite-rich Portland cement. Cem Concr Res 82:50–57. https://doi.org/10.1016/j.cemconres.2016.01.001

Jang JG, Kim HJ, Park SM, Lee HK (2015) The influence of sodium hydrogen carbonate on the hydration of cement. Constr Build Mater 94:746–749. https://doi.org/10.1016/j.conbuildmat.2015.07.121

Jansen D, Gazzani M, Manzolini G, van Dijk E, Carbo M (2015) Pre-combustion CO2 capture. Int J Greenh Gas Control 40:167–187. ISSN 1750-5836. https://doi.org/10.1016/j.ijggc.2015.05.028

Jena KK, Panda AP, Verma S, Mani GK, Swain SK, Alhassan SM (2019) MWCNTs-ZnO-SiO2 mesoporous nano-hybrid materials for CO2 capture. J Alloys Compd 800:279–285. ISSN 0925-8388. https://doi.org/10.1016/j.jallcom.2019.06.011

Jeremiáš M, Pohořelý M, Svoboda K, Skoblia S, Beňo Z, Šyc M (2018) CO2 gasification of biomass: the effect of lime concentration in a fluidised bed. Appl Energy 217:361–368. https://doi.org/10.1016/j.apenergy.2018.02.151

Jiamjirangkul P, Inprasit T, Intasanta V, Pangon A (2020) Metal organic framework-integrated chitosan/poly(vinyl alcohol) (PVA) nanofibrous membrane hybrids from green process for selective CO2 capture and filtration. Chem Eng Sci 221:115650. ISSN 0009-2509. https://doi.org/10.1016/j.ces.2020.115650

Jian-Gang L, Li X, Zhao Y-X, Ma H-L, Wang L-F, Wang X-Y, Yu-Fan Yu, Shen T-Y, Hao X, Zhang Y-T (2019) Co2 capture by ionic liquid membrane absorption for reduction of emissions of greenhouse gas. Environ Chem Lett 17(2):1031–1038

Jiang Y, Tan P, Qi SC, Liu XQ, Yan JH, Fan F, Sun LB (2019) Metal–organic frameworks with target-specific active sites switched by photoresponsive motifs: efficient adsorbents for tailorable CO2 capture. Angew Chem Int Edn 58(20):6600–6604. ISSN 1433-7851. https://doi.org/10.1002/anie.201900141

Jung JM, Lee J, Kim J, Kim KH, Kim HW, Jeon YJ, Kwon EE (2016) Enhanced thermal destruction of toxic microalgal biomass by using CO2. Sci Total Environ 566–567:575–583. https://doi.org/10.1016/j.scitotenv.2016.05.161

Kárászová M, Zach B, Petrusová Z, Červenka V, Bobák M, Šyc M, Izák P (2020) Post-combustion carbon capture by membrane separation, review. Sep Purif Technol 238:116448. ISSN 1383-5866. https://doi.org/10.1016/j.seppur.2019.116448

Karnwiboon K, Krajangpit W, Supap T, Muchan P, Saiwan C, Idem R, Koiwanit J (2019) Solvent extraction based reclaiming technique for the removal of heat stable salts (HSS) and neutral degradation products from amines used during the capture of carbon dioxide (CO2) from industrial flue gases. Sep Purif Technol 228:115744. ISSN 1383-5866. https://doi.org/10.1016/j.seppur.2019.115744

Khan AA, Halder GN, Saha AK (2016) Experimental investigation of sorption characteristics of capturing carbon dioxide into piperazine activated aqueous 2-amino-2-methyl-1-propanol solution in a packed column. Int J Greenh Gas Control 44:217–226. ISSN 1750-5836. https://doi.org/10.1016/j.ijggc.2015.11.020

Kim S, Lee J (2020) Pyrolysis of food waste over a Pt catalyst in CO2 atmosphere. J Hazard Mater 393:122449. https://doi.org/10.1016/j.jhazmat.2020.122449

Kim Y, Lim JA, Jeong SK, Yoon YI, Bae ST, Nam SC (2013) Comparison of carbon dioxide absorption in aqueous MEA, DEA, TEA, and AMP solutions. Bull Korean Chem Soc 34(3):783–787. ISSN 0253-2964

Kim YE, Moon SJ, Yoon YI, Jeong SK, Park KT, Bae ST, Nam SC (2014) Heat of absorption and absorption capacity of CO2 in aqueous solutions of amine containing multiple amino groups. Sep Purif Technol 122:112–118. ISSN 1383-5866. https://doi.org/10.1016/j.seppur.2013.10.030

Kim J, Lee J, Kim KH, Ok Yong Sik, Jeon YJ, Kwon EE (2017) Pyrolysis of wastes generated through saccharification of oak tree by using CO2 as reaction medium. Appl Therm Eng 110:335–345. https://doi.org/10.1016/j.applthermaleng.2016.08.200

Klaus S, Lehenmeier MW, Anderson CE, Rieger B (2011) Recent advances in CO2/epoxide copolymerization–new strategies and cooperative mechanisms. Coord Chem Rev 255(13):1460–1479. https://doi.org/10.1016/j.ccr.2010.12.002

Ko YG, Lee HJ, Oh HC, Choi US (2013) Amines immobilized double-walled silica nanotubes for CO2 capture. J Hazard Mater 250-251:53–60. ISSN 0304-3894. https://doi.org/10.1016/j.jhazmat.2013.01.035

Kobaku SPR, Kota AK, Lee DH, Mabry JM, Tuteja A (2012) Patterned superomniphobic-superomniphilic surfaces: templates for site-selective self-assembly. Angew Chem 124(40):10256–10260. ISSN 00448249. https://doi.org/10.1002/ange.201202823

Kong XZ, Saar MO (2013) Numerical study of the effects of permeability heterogeneity on density-driven convective mixing during CO2 dissolution storage. Int J Greenh Gas Control 19:160–173. ISSN 17505836. https://doi.org/10.1016/j.ijggc.2013.08.020

König DH, Freiberg M, Dietrich RU, Wörner A (2015) Techno-economic study of the storage of fluctuating renewable energy in liquid hydrocarbons. Fuel 159:289–297. https://doi.org/10.1016/j.fuel.2015.06.085

Koohestanian E, Sadeghi J, Mohebbi-Kalhori D, Shahraki F, Samimi A (2018) A novel process for CO2 capture from the flue gases to produce urea and ammonia. Energy 144:279–285. https://doi.org/10.1016/j.energy.2017.12.034

Kopp A, Class H, Helmig R (2009) Investigations on CO$$_\text{2 }$$ storage capacity in saline aquifers-part 2: estimation of storage capacity coefficients. Int J Greenh Gas Control 3(3):277–287. ISSN 17505836. https://doi.org/10.1016/j.ijggc.2008.10.001

Kosheleva RI, Mitropoulos AC, Kyzas GZ (2019) Synthesis of activated carbon from food waste. Environ Chem Lett 17(1):429–438

Kotowicz J, Balicki A (2014) Enhancing the overall efficiency of a lignite-fired oxyfuel power plant with CFB boiler and membrane-based air separation unit. Energy Convers Manag 80:20–31. ISSN 0196-8904. https://doi.org/10.1016/j.enconman.2013.12.069

Koytsoumpa EI, Bergins C, Kakaras E (2018) The CO2 economy: review of CO2 capture and reuse technologies. J Supercrit Fluids 132:3–16. ISSN 0896-8446. https://doi.org/10.1016/j.supflu.2017.07.029

Krishnamurthy KR (2017) Slipstream pilot-scale demonstration of a novel amine-based post-combustion technology for carbon dioxide capture from coal-fired power plant flue gas. Technical report

Krishnan A, Gopinath KP, Dai-Viet NV, Malolan R, Nagarajan VM, Arun J (2020) Ionic liquids, deep eutectic solvents and liquid polymers as green solvents in carbon capture technologies: a review. Environ Chem Lett 2020:1–24

Krull FF, Fritzmann C, Melin T (2008) Liquid membranes for gas/vapor separations. J Membr Sci 325(2):509–519. ISSN 0376-7388

Kumar R, Jayaramulu K, Maji TP, Rao CNR (2013) Hybrid nanocomposites of ZIF-8 with graphene oxide exhibiting tunable morphology, significant CO2 uptake and other novel properties. Chem Commun 49(43):4947–4949. ISSN 1359-7345. https://doi.org/10.1039/C3CC00136A

Kumar P, Faujdar E, Singh RK, Paul S, Kukrety A, Chhibber VK, Ray SS (2018) High co2 absorption of o-carboxymethylchitosan synthesised from chitosan. Environ Chem Lett 16(3):1025–1031

Larson ED (2006) A review of life-cycle analysis studies on liquid biofuel systems for the transport sector. Energy Sustain Dev 10(2):109–126. https://doi.org/10.1016/S0973-0826(08)60536-0

Lazard (2018) Levelized cost of energy and levelized cost of storage. Technical report

Lee CB, Lee SW, Park JS, Lee DW, Hwang KR, Ryi SK, Kim SH (2013) Long-term CO2 capture tests of Pd-based composite membranes with module configuration. Int J Hydrogen Energy 38(19):7896–7903. ISSN 0360-3199

Lee SR, Lee J, Lee T, Tsang YF, Jeong KH, Oh JI, Kwon EE (2017a) Strategic use of CO2 for co-pyrolysis of swine manure and coal for energy recovery and waste disposal. J CO2 Util 22:110–116. 10.1016/j.jcou.2017.09.018

Lee J, Oh JI, Ok YS, Kwon EE (2017b) Study on susceptibility of CO2-assisted pyrolysis of various biomass to CO2. Energy 137:510–517. https://doi.org/10.1016/j.energy.2017.01.155

Lee J, Yang X, Cho SH, Kim JK, Lee SS, Tsang DSW, Ok YS, Kwon EE (2017c) Pyrolysis process of agricultural waste using CO2 for waste management, energy recovery, and biochar fabrication. Appl Energy 185:214–222. https://doi.org/10.1016/j.apenergy.2016.10.092

Lee T, Lee J, Ok YS, Oh JI, Lee SR, Rinklebe JR, Kwon EE (2017d) Utilizing CO2 to suppress the generation of harmful chemicals from thermal degradation of polyvinyl chloride. J Clea Prod 162:1465–1471. https://doi.org/10.1016/j.jclepro.2017.06.181

Lee J, Tsang YF, Kim S, Ok YS, Kwon EE (2017e) Energy density enhancement via pyrolysis of paper mill sludge using CO2. J CO2 Util 17:305–311. 10.1016/j.jcou.2017.01.001

Lee DJ, Jeong KH, Lee DH, Lee SH, Jung MW, Jang YN, Jo GG, Kwag JH, Yi H, Park YK, Kwon EE (2019) Catalytic pyrolysis of swine manure using CO2 and steel slag. Environ Int 133:105204. https://doi.org/10.1016/j.envint.2019.105204

Lee JH, Im K, Han S, Yoo SJ, Kim J, Kim JH (2020) Bimodal-porous hollow MgO sphere embedded mixed matrix membranes for CO2 capture. Sep Purif Technol 250:117065. ISSN 1383-5866. https://doi.org/10.1016/j.seppur.2020.117065

Lemmon EW, McLinden MO, Friend DG (2018) Thermophysical properties of fluid systems. In Linstrom PJ, Mallard WG (eds) NIST standard reference database number 69 and NIST chemistry WebBook. National Institute of Standards and Technology, Gaithersburg MD, 20899. https://doi.org/10.18434/T4D303

Li H, Eddaoudi M, O’Keeffe M, Yaghi OM (1999) Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature, 402(6759):276–279. ISSN 1476-4687. https://doi.org/10.1038/46248

Li JR, Ma Y, Colin McCarthy M, Sculley J, Yu J, Jeong HK, Balbuena PB, Zhou HC (2011a) Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks. Coord Chem Rev 255(15):1791–1823. ISSN 0010-8545. https://doi.org/10.1016/j.ccr.2011.02.012

Li H, Wilhelmsen O, Lv Y, Wang W, Yan J (2011b) Viscosities, thermal conductivities and diffusion coefficients of CO2 mixtures: review of experimental data and theoretical models. ISSN 17505836

Li G, Xiao P, Xu D, Webley PA (2011c) Dual mode roll-up effect in multicomponent non-isothermal adsorption processes with multilayered bed packing. Chem Eng Sci, 66(9):1825–1834. ISSN 0009-2509. https://doi.org/10.1016/j.ces.2011.01.023

Li JR, Sculley J, Zhou HC (2012a) Metal–organic frameworks for separations. Chem Rev 112(2):869–932. ISSN 0009-2665. https://doi.org/10.1021/cr200190s

Li X, Boek E, Maitland GC, Martin Trusler JP (2012b) Interfacial tension of (Brines + CO2): (0.864 NaCl + 0.136 KCl) at temperatures between (298 and 448) K, pressures between (2 and 50) MPa, and total molalities of (1 to 5) mol$$\cdot$$kg-1. J Chem Eng Data 57(4):1078–1088. ISSN 15205134. https://doi.org/10.1021/je201062r

Li B, Zhang Z, Li Y, Yao K, Zhu Y, Deng Z, Yang F, Zhou X, Li G, Wu H, Nijem N, Chabal YJ, Lai Z, Han Y, Shi Z, Feng S, Li J (2012c) Enhanced binding affinity, remarkable selectivity, and high capacity of CO2 by dual functionalization of a rht-type metal–organic framework. Angew Chem Int Edn 51(6):1412–1415. ISSN 1433-7851. https://doi.org/10.1002/anie.201105966

Li W, Yang H, Jiang X, Liu Q (2016) Highly selective CO2 adsorption of ZnO based N-doped reduced graphene oxide porous nanomaterial. Appl Surf Sci 360:143–147. ISSN 0169-4332. https://doi.org/10.1016/j.apsusc.2015.10.212

Li H, Yan D, Zhang Z, Lichtfouse E (2019a) Prediction of co2 absorption by physical solvents using a chemoinformatics-based machine learning model. Environ Chem Lett 17(3):1397–1404

Li J, Michalkiewicz B, Min J, Ma C, Chen X, Gong J, Mijowska E, Tang T (2019b) Selective preparation of biomass-derived porous carbon with controllable pore sizes toward highly efficient CO2 capture. Chem Eng J 360:250–259. ISSN 1385-8947. https://doi.org/10.1016/j.cej.2018.11.204

Lin LY, Bai H (2010) Continuous generation of mesoporous silica particles via the use of sodium metasilicate precursor and their potential for CO2 capture. Microporous Mesoporous Mater 136(1):25–32. ISSN 1387-1811. https://doi.org/10.1016/j.micromeso.2010.07.012

Lin YF, Wang WW, Chang Cy (2018) Environmentally sustainable, fluorine-free and waterproof breathable PDMS/PS nanofibrous membranes for carbon dioxide capture. J Mater Chem A 6(20):9489–9497. ISSN 2050-7488. https://doi.org/10.1039/C8TA00275D

Liu JL, Lin RB (2013) Structural properties and reactivities of amino-modified silica fume solid sorbents for low-temperature CO2 capture. Powder Technol 241:188–195. ISSN 0032-5910. https://doi.org/10.1016/j.powtec.2013.03.022

Liu Y, Wang ZU, Zhou HC (2012) Recent advances in carbon dioxide capture with metal-organic frameworks. Greenh Gases Sci Technol 2(4):239–259. ISSN 2152-3878. https://doi.org/10.1002/ghg.1296

Liu L, Jin S, Ko K, Kim K, Ahn IS, Lee CH (2020) Alkyl-functionalization of (3-Aminopropyl)triethoxysilane-grafted zeolite beta for carbon dioxide capture in temperature swing adsorption. Chem Eng J 382:122834. ISSN 1385-8947. https://doi.org/10.1016/j.cej.2019.122834

Lozano-Castelló D, Cazorla-Amorós D, Linares-Solano A, Quinn DF (2002) Activated carbon monoliths for methane storage: influence of binder. Carbon 40(15):2817–2825. ISSN 0008-6223. https://doi.org/10.1016/S0008-6223(02)00194-X

Luo K, Zhang C, Zhu S, Bai Y, Li F (2016) Tar formation during coal pyrolysis under N2 and CO2 atmospheres at elevated pressures. J Anal Appl Pyrol 118:130–135. https://doi.org/10.1016/j.jaap.2016.01.009

Lux S, Baldauf-Sommerbauer G, Siebenhofer M (2018) Hydrogenation of inorganic metal carbonates: a review on its potential for carbon dioxide utilization and emission reduction. ChemSusChem 11(19):3357–3375. ISSN 1864-5631. https://doi.org/10.1002/cssc.201801356

Ma S, Chen G, Zhu S, Wen J, Gao R, Ma L, Chai J (2016) Experimental study of mixed additive of Ni(II) and piperazine on ammonia escape in CO2 capture using ammonia solution. Appl Energy 169:597–606. ISSN 0306-2619. https://doi.org/10.1016/j.apenergy.2016.02.070

Mahapatra K, Ramteke DS, Paliwal LJ (2012) Production of activated carbon from sludge of food processing industry under controlled pyrolysis and its application for methylene blue removal. J Anal Appl Pyrol 95:79–86. ISSN 0165-2370. https://doi.org/10.1016/j.jaap.2012.01.009

Malik A, Lenzen M, Ralph PJ, Tamburic B (2015) Hybrid life-cycle assessment of algal biofuel production. Bioresour Technol 184:436–443. https://doi.org/10.1016/j.biortech.2014.10.132

Martinez MJ, Hesse MA (2016) Two-phase convective CO2 dissolution in saline aquifers. Water Resour Res 52(1):585–599. ISSN 0043-1397. https://doi.org/10.1002/2015WR017085

Masel R, Liu Z, Zhao D, Chen Q, Lutz D, Nereng L (2016) CO2 conversion to chemicals with emphasis on using renewable energy/resources to drive the conversion. In: RSC green chemistry, vol 2016, Royal Society of Chemistry, pp 215–257. ISBN 9781782620396. https://doi.org/10.1039/9781782622444-00215

Mason JA, McDonald TM, Bae TH, Bachman JE, Sumida K, Dutton JJ, Kaye SS, Long JR (2015) Application of a high-throughput analyzer in evaluating solid adsorbents for post-combustion carbon capture via multicomponent adsorption of CO2, N2, and H2O. J Am Chem Soc 137(14):4787–4803. ISSN 0002-7863. https://doi.org/10.1021/jacs.5b00838

McDonald JL, Sykora RE, Hixon P, Mirjafari A, Davis JH (2014) Impact of water on co2 capture by amino acid ionic liquids. Environ Chem Lett 12(1):201–208

Mekonnen TH, Mussone PG, Choi P, Bressler DC (2014) Adhesives from waste protein biomass for oriented strand board composites: development and performance. Macromol Mater Eng 299(8):1003–1012. https://doi.org/10.1002/mame.201300402

Meng LY, Park SJ (2012) Effect of exfoliation temperature on carbon dioxide capture of graphene nanoplates. J Colloid Interface Sci 386(1):285–290. ISSN 0021-9797. https://doi.org/10.1016/j.jcis.2012.07.025

Michael K, Golab A, Shulakova V, Ennis-King J, Allinson G, Sharma S, Aiken T (2010) Geological storage of CO2 in saline aquifers—a review of the experience from existing storage operations. Int J Greenh Gas Control 4(4):659–667. ISSN 17505836. https://doi.org/10.1016/j.ijggc.2009.12.011

Millward AR, Yaghi OM (2005) Metal–organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature. J Am Chem Soc 127(51):17998–17999. ISSN 0002-7863. https://doi.org/10.1021/ja0570032

Minju N, Nair BN, Peer Mohamed A, Ananthakumar S (2017) Surface engineered silica mesospheres—a promising adsorbent for CO2 capture. Sep Purif Technol 181:192–200. ISSN 1383-5866. https://doi.org/10.1016/j.seppur.2017.03.038

Miranda-Barbosa E, Sigfússon B, Carlsson J, Tzimas E (2017) Advantages from combining CCS with geothermal energy. Energy Procedia 114:6666–6676. ISSN 1876-6102. https://doi.org/10.1016/j.egypro.2017.03.1794

Mishra AK, Ramaprabhu s (2012) Nanostructured polyaniline decorated graphene sheets for reversible CO2 capture. J Mater Chem 22(9):3708–3712. ISSN 0959-9428. https://doi.org/10.1039/C2JM15385H

Mishra AK, Ramaprabhu S (2014) Enhanced CO2 capture in Fe3O4-graphene nanocomposite by physicochemical adsorption. J Appl Phys 116(6):64306. ISSN 0021-8979. https://doi.org/10.1063/1.4892458

Mo L, Zhang F, Deng M (2015) Effects of carbonation treatment on the properties of hydrated fly ash-MgO-Portland cement blends. Constr Build Mater 96:147–154. https://doi.org/10.1016/j.conbuildmat.2015.07.193

Molino A, Chianese S, Musmarra D (2016) Biomass gasification technology: the state of the art overview. J Energy Chem 25(1):10–25. https://doi.org/10.1016/j.jechem.2015.11.005

Mondal U, Yadav GD (2019) Perspective of dimethyl ether as fuel: part I. Catalysis. J CO2 Util 32:299–320. 10.1016/j.jcou.2019.02.003

Morad MM, El-Maghawry HAMM, Wasfy KI (2017) A developed solar-powered desalination system for enhancing fresh water productivity. Solar Energy 146:20–29. https://doi.org/10.1016/j.solener.2017.02.002

Muller N, Qi R, Mackie E, Pruess K, Blunt MJ (2009) CO2 injection impairment due to halite precipitation. In: Energy procedia, vol 1, Elsevier, pp 3507–3514. https://doi.org/10.1016/j.egypro.2009.02.143

Murcia Valderrama MA, van Putten RJ, Gruter GJM (2019) The potential of oxalic–and glycolic acid based polyesters (review). Towards CO2 as a feedstock (carbon capture and utilization–CCU). Eur Polym J 119:445–468. https://doi.org/10.1016/j.eurpolymj.2019.07.036

Nakamura T, Senior CL (2005) Recovery and sequestration of CO2 from stationary combustion systems by photosynthesis of microalgae. Technical report

Nasri NS, Hamza UD, Ismail SN, Ahmed MM, Mohsin R (2014) Assessment of porous carbons derived from sustainable palm solid waste for carbon dioxide capture. J Clean Prod 71:148–157. ISSN 0959-6526. https://doi.org/10.1016/j.jclepro.2013.11.053

Nazlina Mohd Yasin H, Maeda T, Hu A, Cp Yu, Wood TK (2015) CO2 sequestration by methanogens in activated sludge for methane production. Appl Energy 142:426–434. https://doi.org/10.1016/j.apenergy.2014.12.069

NETL (2015) Carbon storage atlas, 5th edn. Technical report, National Energy Technology Laboratory

Niven RK (2005) Ethanol in gasoline: environmental impacts and sustainability review article. Renew Sustain Energy Rev 9(6):535–555. https://doi.org/10.1016/j.rser.2004.06.003

Ochedi FO, Yu J, Yu H, Liu Y, Hussain A (2020) Carbon dioxide capture using liquid absorption methods: a review. Environ Chem Lett 2020:1–33

Olah GA, Goeppert A, Surya Prakash GK (2009) Chemical recycling of carbon dioxide to methanol and dimethyl ether: from greenhouse gas to renewable, environmentally carbon neutral fuels and synthetic hydrocarbons. J Organ Chem 74(2):487–498. https://doi.org/10.1021/jo801260f

Omoregbe O, Mustapha AN, Steinberger-Wilckens R, El-Kharouf A, Onyeaka H (2020) Carbon capture technologies for climate change mitigation: a bibliometric analysis of the scientific discourse during 1998–2018. Energy Rep 6:1200–1212. ISSN 2352-4847. https://doi.org/10.1016/j.egyr.2020.05.003

Osman AI, Abu-Dahrieh JK, Laffir F, Curtin T, Thompson JM, Rooney DW (2016) A bimetallic catalyst on a dual component support for low temperature total methane oxidation. Appl Catal B Environ 187:408–418. ISSN 0926-3373. https://doi.org/10.1016/j.apcatb.2016.01.017

Osman AI, Abu-Dahrieh JK, Cherkasov N, Fernandez-Garcia J, Walker D, Walton RI, Rooney DW, Rebrov E (2018a) A highly active and synergistic Pt/Mo2C/Al2O3 catalyst for water-gas shift reaction. Mol Catal 455:38–47. ISSN 2468-8231. https://doi.org/10.1016/j.mcat.2018.05.025

Osman AI, Abu-Dahrieh JK, McLaren M, Laffir E, Rooney DW (2018b) Characterisation of robust combustion catalyst from aluminium foil waste. ChemistrySelect 3(5):1545–1550. ISSN 2365-6549. https://doi.org/10.1002/slct.201702660

Osman AI, Blewitt J, Abu-Dahrieh JK, Farrell C, Al-Muhtaseb AH, Harrison J, Rooney DW (2019) Production and characterisation of activated carbon and carbon nanotubes from potato peel waste and their application in heavy metal removal. Environ Sci Pollut Res 26(36):37228–37241. ISSN 16147499. https://doi.org/10.1007/s11356-019-06594-w

Osman AI, Deka TJ, Baruah DC, Rooney DW (2020a) Critical challenges in biohydrogen production processes from the organic feedstocks. Biomass Convers Biorefinery. ISSN 2190-6823. https://doi.org/10.1007/s13399-020-00965-x

Osman AI, Farrell C, Al-Muhtaseb AH, Harrison J, Rooney DW (2020b) The production and application of carbon nanomaterials from high alkali silicate herbaceous biomass. Sci Rep 10(1):2563. ISSN 20452322. https://doi.org/10.1038/s41598-020-59481-7

Osman AI, O’Connor E, McSpadden G, Abu-Dahrieh JK, Farrell C, Al-Muhtaseb AH, Harrison J, Rooney DW (2020c) Upcycling brewer’s spent grain waste into activated carbon and carbon nanotubes for energy and other applications via two-stage activation. J Chem Technol Biotechnol 95(1):183–195. ISSN 0268-2575. https://doi.org/10.1002/jctb.6220

Otto A, Grube T, Schiebahn S, Stolten D (2015) Closing the loop: aptured CO2 as a feedstock in the chemical industry. Energy Environ Sci 8(11):3283–3297. ISSN 17545706. https://doi.org/10.1039/c5ee02591e

Park M, Sub Kwak B, Jo SW, Kang M (2015) Effective CH4 production from CO2 photoreduction using TiO2/xmol% Cu-TiO2 double-layered films. Energy Convers Manag 103:431–438. https://doi.org/10.1016/j.enconman.2015.06.029

Park J, Lim Suh B, Kim J (2020) Computational design of a photoresponsive metal–organic framework for post combustion carbon capture. J Phys Chem C 124(24):13162–13167. ISSN 1932-7447. https://doi.org/10.1021/acs.jpcc.0c01878

Parvez AM, Mujtaba IM, Wu T (2016) Energy, exergy and environmental analyses of conventional, steam and CO2-enhanced rice straw gasification. Energy 94:579–588. https://doi.org/10.1016/j.energy.2015.11.022

Pfister M, Belaissaoui B, Favre E (2017) Membrane gas separation processes from wet postcombustion flue gases for carbon capture and use: a critical reassessment. Ind Eng Chem Res 56(2):591–602. ISSN 0888-5885. https://doi.org/10.1021/acs.iecr.6b03969

Piermartini P, Boeltken T, Selinsek M, Pfeifer P (2017) Influence of channel geometry on Fischer–Tropsch synthesis in microstructured reactors. Chem Eng J 313:328–335. https://doi.org/10.1016/j.cej.2016.12.076

Pietzcker RC, Longden T, Chen W, Fu S, Kriegler E, Kyle P, Luderer G (2014) Long-term transport energy demand and climate policy. Energy 64:95–108. https://doi.org/10.1016/j.energy.2013.08.059

Pinto F, André R, Miranda M, Neves D, Varela F, Santos J (2016) Effect of gasification agent on co-gasification of rice production wastes mixtures. Fuel 180:407–416. https://doi.org/10.1016/j.fuel.2016.04.048

Plaza MG, González AS, Pevida C, Pis JJ, Rubiera F (2012) Valorisation of spent coffee grounds as CO2 adsorbents for postcombustion capture applications. Appl Energy 99:272–279. ISSN 0306-2619. https://doi.org/10.1016/j.apenergy.2012.05.028

Poliakoff M, Leitner W, Streng ES (2015) The twelve principles of CO2 chemistry. Faraday Discuss 183(0):9–17. ISSN 13645498. https://doi.org/10.1039/c5fd90078f

Portillo E, Alonso-Fari nas B, Vega F, Cano M, Navarrete B (2019) Alternatives for oxygen-selective membrane systems and their integration into the oxy-fuel combustion process: a review. Sep Purif Technol 229:115708. ISSN 1383-5866. https://doi.org/10.1016/j.seppur.2019.115708

Pourebrahimi S, Kazemeini M, Babakhani EG, Taheri A (2015) Removal of the CO2 from flue gas utilizing hybrid composite adsorbent MIL-53(Al)/GNP metal-organic framework. Microporous Mesoporous Mate 218:144–152. ISSN 1387-1811. https://doi.org/10.1016/j.micromeso.2015.07.013

Pour N, Webley PA, Cook PJ (2017) A sustainability framework for bioenergy with carbon capture and storage (BECCS) technologies. Energy Procedia 114:6044–6056. ISSN 1876-6102. https://doi.org/10.1016/j.egypro.2017.03.1741

Pour N, Webley PA, Cook PJ (2018) Potential for using municipal solid waste as a resource for bioenergy with carbon capture and storage (BECCS). Int J Greenh Gas Control 68:1–15. ISSN 1750-5836. https://doi.org/10.1016/j.ijggc.2017.11.007

Prasetya N, Himma NF, Sutrisna PD, Wenten IG, Ladewig BP (2019) A review on emerging organic-containing microporous material membranes for carbon capture and separation. Chem Eng J. ISSN 1385-8947

Prashantha Kumar HG, Xavior MA (2014) Graphene reinforced metal matrix composite (GRMMC): a review. Procedia Eng 97:1033–1040. ISSN 1877-7058. https://doi.org/10.1016/j.proeng.2014.12.381

Puligundla P, Jung J, Ko S (2012) Carbon dioxide sensors for intelligent food packaging applications. Food Control 25(1):328–333. https://doi.org/10.1016/j.foodcont.2011.10.043

Qazvini OT, Telfer SG (2020) A robust metal–organic framework for post-combustion carbon dioxide capture. J Mater Chem A 8(24):12028–12034. ISSN 2050-7488. https://doi.org/10.1039/D0TA04121A

Qin C, Yin J, Ran J, Zhang L, Feng B (2014) Effect of support material on the performance of K2CO3-based pellets for cyclic CO2 capture. Appl Energy 136:280–288. ISSN 0306-2619. https://doi.org/10.1016/j.apenergy.2014.09.043

Quadrelli EA, Centi G, Duplan JL, Perathoner S (2011) Carbon dioxide recycling: emerging large-scale technologies with industrial potential. ChemSusChem 4(9):1194–1215. https://doi.org/10.1002/cssc.201100473

Rafiee A, Khalilpour KR, Milani D, Panahi M (2018) Trends in CO2 conversion and utilization: a review from process systems perspective. J Environ Chem Eng 6(5):5771–5794. https://doi.org/10.1016/j.jece.2018.08.065

Randolph JB, Saar MO (2011) Combining geothermal energy capture with geologic carbon dioxide sequestration. Geophys Res Lett 38(10):L10401. ISSN 00948276. https://doi.org/10.1029/2011GL047265

Rashidi NA, Yusup S, Borhan A, Loong LH (2014) Experimental and modelling studies of carbon dioxide adsorption by porous biomass derived activated carbon. Clean Technol Environ Policy 16(7):1353–1361. ISSN 1618-9558. https://doi.org/10.1007/s10098-014-0788-6

Rezaei E, Catalan LJJ (2010) Evaluation of CO2 utilization for methanol production via tri-reforming of methane. J CO2 Util 42:101272. 10.1016/j.jcou.2020.101272

Rochelle GT (2009) Amine scrubbing for $$\text{ CO}_{2}$$ capture. Science 325(5948):1652–1654. https://doi.org/10.1126/science.1176731

Román S, González JF, González-García CM, Zamora F (2008) Control of pore development during CO2 and steam activation of olive stones. Fuel Process Technol 89(8):715–720. ISSN 0378-3820. https://doi.org/10.1016/j.fuproc.2007.12.015

Russo ME, Olivieri G, Marzocchella A, Salatino P, Caramuscio P, Cavaleiro C (2013) Post-combustion carbon capture mediated by carbonic anhydrase. Sep Purif Technol 107:331–339. ISSN 1383-5866. https://doi.org/10.1016/j.seppur.2012.06.022

Salvi AP, Vaidya PD, Kenig EY (2014) Kinetics of carbon dioxide removal by ethylenediamine and diethylenetriamine in aqueous solutions. Can J Chem Eng 92(12):2021–2028. ISSN 0008-4034. https://doi.org/10.1002/cjce.22064

Santamaría M, Azqueta D (2015) Promoting biofuels use in Spain: a cost-benefit analysis. Renew Sustain Energy Rev 50:1415–1424. https://doi.org/10.1016/j.rser.2015.04.192

Sanz-Pérez ES, Arencibia A, Sanz R, Calleja G (2015) An investigation of the textural properties of mesostructured silica-based adsorbents for predicting CO2 adsorption capacity. RSC Adv 5(125):103147–103154. ISSN 2046-2069. https://doi.org/10.1039/C5RA19105J

Sanz-Pérez ES, Arencibia A, Calleja G, Sanz R (2018) Tuning the textural properties of HMS mesoporous silica. Functionalization towards CO2 adsorption. Microporous Mesoporous Mater 260:235–244. ISSN 1387-1811. https://doi.org/10.1016/j.micromeso.2017.10.038

Saravanan K, Ham H, Tsubaki N, Bae JW (2017) Recent progress for direct synthesis of dimethyl ether from syngas on the heterogeneous bifunctional hybrid catalysts. Appl Catal B Environ 217:494–522. https://doi.org/10.1016/j.apcatb.2017.05.085

Schlissel D (2018) Holy Grail of carbon capture continues to elude coal industry. Technical report

Scrivener KL, Kirkpatrick RJ (2008) Innovation in use and research on cementitious material. Cem Concr Res 38(2):128–136. https://doi.org/10.1016/j.cemconres.2007.09.025

Selley RC, Sonnenberg SA (2015) Sedimentary basins and petroleum systems. In: Elements of petroleum geology, Elsevier, pp 377–426. https://doi.org/10.1016/b978-0-12-386031-6.00008-4

Semelsberger TA, Borup RL, Greene HL (2006) Dimethyl ether (DME) as an alternative fuel. J Power Sour 156(2):497–511. https://doi.org/10.1016/j.jpowsour.2005.05.082

Sevilla M, Fuertes AB (2011) Sustainable porous carbons with a superior performance for CO2 capture. Energy Environ Sci 4(5):1765–1771. ISSN 1754-5692. https://doi.org/10.1039/C0EE00784F

Sevilla M, Falco C, Titirici MM, Fuertes AB (2012) High-performance CO2 sorbents from algae. RSC Adv 2(33):12792–12797. ISSN 2046-2069. https://doi.org/10.1039/C2RA22552B

Shin D, Kang S (2018) Numerical analysis of an ion transport membrane system for oxy–fuel combustion. Appl Energy 230:875–888. ISSN 0306-2619. https://doi.org/10.1016/j.apenergy.2018.09.016

Shi B, Wu E, Wu W, Kuo PC (2018) Multi-objective optimization and exergoeconomic assessment of a new chemical-looping air separation system. Energy Convers Manag 157:575–586. ISSN 0196-8904. https://doi.org/10.1016/j.enconman.2017.12.030

Singh A, Olsen SI (2011) A critical review of biochemical conversion, sustainability and life cycle assessment of algal biofuels. Appl Energy 88(10):3548–3555. https://doi.org/10.1016/j.apenergy.2010.12.012

Singh A, Stéphenne K (2014) Shell cansolv co2 capture technology: achievement from first commercial plant. Energy Procedia 63:1678–1685

Singh G, Syafiqah Ismail I, Bilen C, Shanbhag D, Sathish CI, Ramadass K, Vinu A (2019) A facile synthesis of activated porous carbon spheres from d-glucose using a non-corrosive activating agent for efficient carbon dioxide capture. Appl Energy 255:113831. . ISSN 0306-2619. https://doi.org/10.1016/j.apenergy.2019.113831

Singh G, Lee J, Karakoti A, Bahadur R, Yi J, Zhao D, AlBahily K, Vinu A (2020) Emerging trends in porous materials for CO2 capture and conversion. Chem Soc Rev 49(13):4360–4404. ISSN 0306-0012. https://doi.org/10.1039/D0CS00075B

Song CF, Kitamura Y, Li SH (2012) Evaluation of Stirling cooler system for cryogenic CO2 capture. Appl Energy 98:491–501. ISSN 0306-2619. https://doi.org/10.1016/j.apenergy.2012.04.013

Song Z, Dong Q, Xu WL, Zhou F, Liang X, Yu M (2018) Molecular layer deposition-modified 5A zeolite for highly efficient CO2 capture. ACS Appl Mater Interfaces 10(1):769–775. ISSN 1944-8244. https://doi.org/10.1021/acsami.7b16574

Song C, Liu Q, Qi Y, Chen G, Song Y, Kansha Y, Kitamura Y (2019a) Absorption-microalgae hybrid CO2 capture and biotransformation strategy—a review. Int J Greenh Gas Control 88:109–117. ISSN 1750-5836. https://doi.org/10.1016/j.ijggc.2019.06.002

Song C, Liu J, Qiu Y, Xie M, Sun J, Qi Y, Li S, Kitamura Y (2019b) Bio-regeneration of different rich CO2 absorption solvent via microalgae cultivation. Bioresour Technol 290:121781. ISSN 0960-8524. https://doi.org/10.1016/j.biortech.2019.121781

Span R, Wagner W (1996) A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 MPa. J Phys Chem Ref Data 25(6):1509–1596. ISSN 0047-2689. https://doi.org/10.1063/1.555991

Sreedhar I, Nahar T, Venugopal A, Srinivas B (2017a) Carbon capture by absorption—path covered and ahead. Renew Sustain Energy Rev 76:1080–1107. ISSN 1364-0321. https://doi.org/10.1016/j.rser.2017.03.109

Sreedhar I, Vaidhiswaran R, Kamani BM, Venugopal A (2017b) Process and engineering trends in membrane based carbon capture. Renew Sustain Energy Rev 68:659–684. ISSN 1364-0321. https://doi.org/10.1016/j.rser.2016.10.025

Srivastava D, Wei C, Cho K (2003) Nanomechanics of carbon nanotubes and composites. Appl Mech Rev 56(2):215–230. ISSN 0003-6900

Srivastava RK, Shetti NP, Reddy KR, Aminabhavi TM (2020) Biofuels, biodiesel and biohydrogen production using bioprocesses: a review. Environ Chem Lett 2020:1–24

Stanly S, Jelmy EJ, Nair CPR, John H (2019) Carbon dioxide adsorption studies on modified montmorillonite clay/reduced graphene oxide hybrids at low pressure. J Environ Chem Eng 7(5):103344. ISSN 2213-3437. https://doi.org/10.1016/j.jece.2019.103344

Stéphenne K (2014) Start-up of world’s first commercial post-combustion coal fired CCS project: contribution of shell Cansolv to SaskPower boundary dam ICCS project. Energy Procedia 63:6106–6110. ISSN 1876-6102. https://doi.org/10.1016/j.egypro.2014.11.642

Strömberg L, Lindgren G, Jacoby J, Giering R, Anheden M, Burchhardt U, Altmann H, Kluger F, Stamatelopoulos GN (2009) Update on Vattenfall’s 30 MWth oxyfuel pilot plant in Schwarze Pumpe. Energy Procedia 1(1):581–589. ISSN 1876-6102. https://doi.org/10.1016/j.egypro.2009.01.077

Su F, Lu C, Chen HS (2011) Adsorption, desorption, and thermodynamic studies of CO2 with high-amine-loaded multiwalled carbon nanotubes. Langmuir 27(13):8090–8098. ISSN 0743-7463. https://doi.org/10.1021/la201745y

Sun H, Wang Y, Xu S, Osman AI, Stenning G, Han J, Sun S, Rooney D, Williams PT, Wang F, Wu C (2020) Understanding the interaction between active sites and sorbents during the integrated carbon capture and utilization process. Fuel 286:119308. ISSN 0016-2361. https://doi.org/10.1016/j.fuel.2020.119308

Tarkowski R, Uliasz-Misiak B (2019) Prospects for the use of carbon dioxide in enhanced geothermal systems in Poland. J Clean Prod 229:1189–1197. ISSN 0959-6526. https://doi.org/10.1016/j.jclepro.2019.05.036

Tavakkoli S, Lokare OR, Vidic RD, Khanna V (2017) A techno-economic assessment of membrane distillation for treatment of Marcellus shale produced water. Desalination 416:24–34. https://doi.org/10.1016/j.desal.2017.04.014

Theo WL, Shiun Lim J, Hashim H, Mustaffa AA Ho WS (2016) Review of pre-combustion capture and ionic liquid in carbon capture and storage. Appl Energy 183:1633–1663. ISSN 0306-2619. https://doi.org/10.1016/j.apenergy.2016.09.103

Troschl C, Meixner K, Fritz I, Leitner K, Ap Romero, Kovalcik A, Sedlacek P, Drosg B (2018) Pilot-scale production of poly-$$\beta$$-hydroxybutyrate with the cyanobacterium Synechocytis sp. CCALA192 in a non-sterile tubular photobioreactor. Algal Res 34:116–125. https://doi.org/10.1016/j.algal.2018.07.011

Tu Z, Guo M, Sun Poon S, Shi C (2016) Effects of limestone powder on CaCO3 precipitation in CO2 cured cement pastes. Cem Concr Compos 72:9–16. https://doi.org/10.1016/j.cemconcomp.2016.05.019

Tuteja A, Choi W, Ma M, Mabry JM, Mazzella SA, Rutledge GC, McKinley GH, Cohen RE (2007) Designing superoleophobic surfaces. Science 318(5856):1618–1622. ISSN 0036-8075. https://doi.org/10.1126/science.1148326

US USGS (2001) Geological survey world petroleum assessment 2000-description and results, dds-60. United States Geological Survey 2001

Vafajoo L, Afshar SHA, Firouzbakht B (2009) Developing a mathematical model for the complete kinetic cycle of direct synthesis of DME from Syngas through the CFD technique

Vakharia V, Salim W, Wu D, Han Y, Chen Y, Zhao L, Winston Ho WS (2018) Scale-up of amine-containing thin-film composite membranes for CO2 capture from flue gas. J Membr Sci 555:379–387. ISSN 0376-7388. https://doi.org/10.1016/j.memsci.2018.03.074

van der Meer LGH (1995) The CO$$_\text{2 }$$ storage efficiency of aquifers. Energy Convers Manag 36(6-9):513–518. ISSN 01968904. https://doi.org/10.1016/0196-8904(95)00056-J

van der Zwaan B, Smekens K (2009) CO2 Capture and storage with leakage in an energy-climate model. Environ Model Assess 14(2):135–148. ISSN 1573-2967. https://doi.org/10.1007/s10666-007-9125-3

Varghese AM, Suresh Kumar Reddy K, Singh S, Karanikolos GN (2020) Performance enhancement of CO2 capture adsorbents by UV treatment: the case of self-supported graphene oxide foam. Chem Eng J 386:124022. ISSN 1385-8947. https://doi.org/10.1016/j.cej.2020.124022

Vega F, Baena-Moreno VM, Gallego Fernández LM, Portillo E, Navarrete B, Zhang Z (2020) Current status of CO2 chemical absorption research applied to CCS: towards full deployment at industrial scale. Appl Energy 260:114313. ISSN 0306-2619. https://doi.org/10.1016/j.apenergy.2019.114313

Wang J, Zhang X, Zhou Y (2011a) Carbon dioxide capture under ambient conditions using 2-chloroethylamine. Environ Chem Lett 9(4):535–537

Wang Y, Guan C, Wang K, Xian Guo C, Li CM (2011b) Nitrogen, hydrogen, carbon dioxide, and water vapor sorption properties of three-dimensional graphene. J Chem Eng Data 56(3):642–645. ISSN 0021-9568. https://doi.org/10.1021/je100840n

Wang Q, Li K, Guo Z, Fang M, Luo Z, Cen K (2018) Effects of CO2 atmosphere on slow pyrolysis of high-ash lignite. Carbon Resour Convers 1(1):94–103. https://doi.org/10.1016/j.crcon.2018.04.002

Wang P, Sun J, Guo Y, Zhao C, Li W, Wang G, Lei S, Lu P (2019) Structurally improved, urea-templated, K2CO3-based sorbent pellets for CO2 capture. Chem Eng J 374:20–28. ISSN 1385-8947. https://doi.org/10.1016/j.cej.2019.05.091

Wang Y, Jia H, Chen P, Fang X, Du T (2020a) Synthesis of La and Ce modified X zeolite from rice husk ash for carbon dioxide capture. J Mater Res Technol 9(3):4368–4378. ISSN 2238-7854. https://doi.org/10.1016/j.jmrt.2020.02.061

Wang R, Jiang L, Li Q, Gao G, Zhang S, Wang L (2020b) Energy-saving CO2 capture using sulfolane-regulated biphasic solvent. Energy 211:118667. ISSN 0360-5442. https://doi.org/10.1016/j.energy.2020.118667

Wang Y, Wang H, Zhang TC, Yuan S, Liang B (2020c) N-doped porous carbon derived from rGO-incorporated polyphenylenediamine composites for CO2 adsorption and supercapacitors. J Power Sour 472:228610. ISSN 0378-7753. https://doi.org/10.1016/j.jpowsour.2020.228610

Wannakao S, Artrith N, Limtrakul J, Kolpak AM (2015) Engineering transition-metal-coated tungsten carbides for efficient and selective electrochemical reduction of CO2 to methane. ChemSusChem 8(16):2745–2751. https://doi.org/10.1002/cssc.201500245

Weber K, Quicker P (2018) Properties of biochar. Fuel 217:240–261. https://doi.org/10.1016/j.fuel.2017.12.054

Wei H, Deng S, Hu B, Chen Z, Wang B, Huang J, Yu G (2012) Granular bamboo-derived activated carbon for high CO2 adsorption: the dominant role of narrow micropores. ChemSusChem 5(12):2354–2360. ISSN 1864-5631. https://doi.org/10.1002/cssc.201200570

Wei W, Lin K-H, Chang J-S (2018) Economic and life-cycle greenhouse gas optimization of microalgae-to-biofuels chains. Bioresour Technol 267:550–559. https://doi.org/10.1016/j.biortech.2018.07.083

Wei X, Manovic V, Hanak DP (2020) Techno-economic assessment of coal- or biomass-fired oxy-combustion power plants with supercritical carbon dioxide cycle. Energy Convers Manag 221:113143. ISSN 0196-8904. https://doi.org/10.1016/j.enconman.2020.113143

Wienchol P, Szlȩk A, Ditaranto M (2020) Waste-to-energy technology integrated with carbon capture—challenges and opportunities. Energy 198:117352. ISSN 0360-5442. https://doi.org/10.1016/j.energy.2020.117352

Wright HMN, Cashman KV, Gottesfeld EH, Roberts JJ (2009) Pore structure of volcanic clasts: measurements of permeability and electrical conductivity. Earth Planet Sci Lett 280(1–4):93–104

Wu X, Wang M, Liao P, Shen J, Li Y (2020) Solvent-based post-combustion CO2 capture for power plants: a critical review and perspective on dynamic modelling, system identification, process control and flexible operation. Appl Energy 257:113941. ISSN 0306-2619. https://doi.org/10.1016/j.apenergy.2019.113941

Xu C, Hedin N (2014) Microporous adsorbents for CO2 capture—a case for microporous polymers? Mater Today 17(8):397–403. ISSN 1369-7021

Xu M, Chen S, Seo DK, Deng S (2019) Evaluation and optimization of VPSA processes with nanostructured zeolite NaX for post-combustion CO2 capture. Chem Eng J 371:693–705. ISSN 1385-8947. https://doi.org/10.1016/j.cej.2019.03.275

Yang Q, Li H, Wang D, Zhang X, Guo X, Pu S, Guo R, Chen J (2020) Utilization of chemical wastewater for CO2 emission reduction: purified terephthalic acid (PTA) wastewater-mediated culture of microalgae for CO2 bio-capture. Appl Energy 276:115502. ISSN 0306-2619. https://doi.org/10.1016/j.apenergy.2020.115502

Yan Q, Lin Y, Kong C, Chen L (2013) Remarkable CO2/CH4 selectivity and CO2 adsorption capacity exhibited by polyamine-decorated metal–organic framework adsorbents. Chem Commun 49(61):6873–6875. ISSN 1359-7345. https://doi.org/10.1039/C3CC43352H

Ye J, Xiao J, Huo X, Gao Y, Hao J, Song M (2020) Effect of CO2 atmosphere on biomass pyrolysis and in-line catalytic reforming. Int J Energy Res 44(11):8936–8950. https://doi.org/10.1002/er.5602

Yun S, Oh SY, Kim JK (2020) Techno-economic assessment of absorption-based CO2 capture process based on novel solvent for coal-fired power plant. Appl Energy 268:114933. ISSN 0306-2619. https://doi.org/10.1016/j.apenergy.2020.114933

Zhan BJ, Poon CS, Shi CJ (2016) Materials characteristics affecting CO2 curing of concrete blocks containing recycled aggregates. Cem Concr Compos 67:50–59. https://doi.org/10.1016/j.cemconcomp.2015.12.003

Zhang J, Singh R, Webley PA (2008) Alkali and alkaline-earth cation exchanged chabazite zeolites for adsorption based CO2 capture. Microporous Mesoporous Mater 111(1):478–487. ISSN 1387-1811. https://doi.org/10.1016/j.micromeso.2007.08.022

Zhang X, Fu K, Liang Z, Rongwong W, Yang Z, Idem R, Tontiwachwuthikul P (2014) Experimental studies of regeneration heat duty for CO2 desorption from diethylenetriamine (DETA) solution in a stripper column packed with Dixon ring random packing. Fuel 136:261–267. ISSN 0016-2361. https://doi.org/10.1016/j.fuel.2014.07.057

Zhang H, Liu R, Lal R (2016) Optimal sequestration of carbon dioxide and phosphorus in soils by gypsum amendment. Environ Chem Lett 14(4):443–448

Zhang N, Pan Z, Zhang Z, Zhang W, Zhang L, Baena-Moreno LM, Lichtfouse E (2020a) Co2 capture from coalbed methane using membranes: a review. Environ Chem Lett 2020:1–18

Zhang Z, Wang T, Blunt MJ, Anthony EJ, Park AHA, Hughes RW, Webley PA, Yan J (2020b) Advances in carbon capture, utilization and storage. Appl Energy 278:115627. ISSN 0306-2619. https://doi.org/10.1016/j.apenergy.2020.115627

Zhao G, Aziz B, Hedin N (2010) Carbon dioxide adsorption on mesoporous silica surfaces containing amine-like motifs. Appl Energy 87(9):2907–2913. ISSN 0306-2619. https://doi.org/10.1016/j.apenergy.2009.06.008

Zhao B, Su Y (2014) Process effect of microalgal-carbon dioxide fixation and biomass production: a review. Renew Sustain Energy Rev 31:121–132. ISSN 1364-0321. https://doi.org/10.1016/j.rser.2013.11.054

Zheng B, Yun R, Bai J, Lu Z, Du L, Li Y (2013) Expanded porous MOF-505 analogue exhibiting large hydrogen storage capacity and selective carbon dioxide adsorption. Inorgan Chem 52(6):2823–2829. ISSN 0020-1669. https://doi.org/10.1021/ic301598n

Zhou Y, Tol RSJ (2005) Evaluating the costs of desalination and water transport. Water Resour Res. https://doi.org/10.1029/2004WR003749

Zhou D, Liu Q, Cheng QY, Zhao YC, Cui Y, Wang T, Han BH (2012) Graphene–manganese oxide hybrid porous material and its application in carbon dioxide adsorption. Chin Sci Bull 57(23):3059–3064. ISSN 1861-9541. https://doi.org/10.1007/s11434-012-5158-3

Zhou Y, Wang J, Chen P, Ji C, Kang Q, Lu B, Li K, Liu J, Ruan R (2017) Bio-mitigation of carbon dioxide using microalgal systems: advances and perspectives. Renew Sustain Energy Rev 76:1163–1175. ISSN 1364-0321. https://doi.org/10.1016/j.rser.2017.03.065

Zhou DD, Zhang XW, Mo ZW, Xu YZ, Tian XY, Li Y, Chen XM, Zhang ZP (2019) Adsorptive separation of carbon dioxide: from conventional porous materials to metal–organic frameworks. EnergyChem 1(3):100016. ISSN 2589-7780. https://doi.org/10.1016/j.enchem.2019.100016

Zhou T, Shi H, Ding X, Zhou Y (2021) Thermodynamic modeling and rational design of ionic liquids for pre-combustion carbon capture. Chem Eng Sci 229:116076. ISSN 0009-2509. https://doi.org/10.1016/j.ces.2020.116076

Zoback MD, Byerlee JD (1976) Effect of high-pressure deformation on permeability of Ottawa sand. AAPG Bull 60(9):1531–1542