Recent advances in alloy-based anode materials for potassium ion batteries

Rare Metals - Tập 39 Số 9 - Trang 970-988 - 2020
Shihan Qi1,2, Jiwei Deng2, Wenchao Zhang3, Yuezhan Feng4, Jianmin Ma1
1School of Physics and Electronics, Hunan University, Changsha, China
2State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha, China
3Institute for Superconducting and Electronic Materials (ISEM), School of Mechanical, Materials, Mechatronics & Biomedical Engineering, Faculty of Engineering and Information Sciences, University of Wollongong, Wollongong, Australia
4Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, Zhengzhou University, Zhengzhou, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Wu Z, Yang J, Yu B, Shi B, Zhao C, Yu Z. Self-healing alginate–carboxymethyl chitosan porous scaffold as an effective binder for silicon anodes in lithium-ion batteries. Rare Met. 2019;38:832.

Xu B, Qi S, Jin M, Cai X, Lai L, Sun Z, Han X, Lin Z, Shao H, Peng P, Xiang Z, ten Elshof JE, Tan R, Liu C, Zhang Z, Duan X, Ma J. 2020 roadmap on two-dimensional materials for energy storage and conversion. Chin Chem Lett. 2019;30(12):2053.

Wu M, Xu B, Zhang Y, Qi S, Ni W, Hu J, Ma J. Perspectives in emerging bismuth electrochemistry. Chem Eng J. 2020;381:122558.

Wei Z, Ding B, Dou H, Gascon J, Kong XJ, Xiong Y, Cai B, Zhang R, Zhou Y, Long M, Miao J, Dou Y, Yuan D, Ma J. 2020 roadmap on pore materials for energy and environmental applications. Chin Chem Lett. 2019;30(12):2110.

Wu D, Wang C, Wu M, Chao Y, He P, Ma J. Porous bowl-shaped VS2 nanosheets/graphene composite for high-rate lithium-ion storage. J Energy Chem. 2020;43:24.

Yang J, Wan H, Zhang Z, Liu GZ, Xu XX, Hu YS, Yao XY. NASICON-structured Na3.1Zr1.95Mg0.05Si2PO12 solid electrolyte for solid-state sodium batteries. Rare Met. 2018;37(6):480.

Zhang BW, Sheng T, Wang YX, Chou S, Davey K, Dou SX, Qiao SZ. Long-life room-temperature sodium-sulfur batteries by virtue of transition-metal-nanocluster-sulfur interactions. Angew Chem Int Ed Engl. 2019;58(5):1484.

Yan Z, Yang QW, Wang Q, Ma J. Nitrogen doped porous carbon as excellent dual anodes for Li- and Na-ion batteries. Chin Chem Lett. 2020;31(2):583.

Wang L, Xie X, Dinh KN, Yan Q, Ma J. Synthesis, characterizations, and utilization of oxygen-deficient metal oxides for lithium/sodium-ion batteries and supercapacitors. Coordin Chem Rev. 2019;397:138.

An Y, Chen S, Zou M, Geng LB, Sun XZ, Zhang X, Wang K, Ma YW. Improving anode performances of lithium-ion capacitors employing carbon–Si composites. Rare Met. 2019;38(12):1113.

Wang R, Wang Q, Yao M, Chen KN, Wang XY, Liu LL, Niu ZQ, Chen J. Flexible ultrathin all-solid-state supercapacitors. Rare Met. 2018;37(6):536.

Liao J, Ni W, Wang C, Ma J. Layer-structured niobium oxides and their analogues for advanced hybrid capacitors. Chem Eng J. 2019. https://doi.org/10.1016/j.cej.2019.123489.

Choi J-W, Aurbach D. Promise and reality of post-lithium-ion batteries with high energy densities. Nat Rev Mater. 2016;1:16013.

Li J, Yang J, Wang J, Lu SG. A scalable synthesis of silicon nanoparticles as high-performance anode material for lithium-ion batteries. Rare Met. 2019;38(3):199.

Qi S, Xu B, Tiong VT, Hu J, Ma J. Progress on iron oxides and chalcogenides as anodes for sodium-ion batteries. Chem Eng J. 2020;379:122261.

Qi S, Wu D, Dong Y, Liao J, Foster CW, O’Dwyer C, Feng Y, Liu C, Ma J. Cobalt-based electrode materials for sodium-ion batteries. Chem Eng J. 2019;370:185.

Xu B, Qi S, He P, Ma J. Antimony- and bismuth-based chalcogenides for sodium-ion batteries. Chem Asian J. 2019;14(17):2925.

Hwang JY, Myung ST, Sun YK. Sodium-ion batteries: present and future. Chem Soc Rev. 2017;46:3529.

Wu M, Yang J, Ng DHL, Ma J. Rhenium diselenide anchored on reduced graphene oxide as anode with cyclic stability for potassium-ion battery. Phys Status Solidi RRL. 2019;13(10):1900329.

Zhang WC, Liu YJ, Guo ZP. Approaching high-performance potassium-ion batteries via advanced design strategies and engineering. Sci Adv. 2019;5:eaav7412.

Zhang W, Pang WK, Sencadas V, Guo Z. Understanding high-energy-density Sn4P3 anodes for potassium-ion batteries. Joule. 2018;2(8):1534.

Xu B, Qi S, Li F, Peng X, Cai J, Liang J, Ma J. Cotton-derived oxygen/sulfur co-doped hard carbon as advanced anode material for potassium-ion batteries. Chin Chem Lett. 2020;31(1):217.

Xie X, Qi S, Wu D, Wang H, Li F, Peng X, Cai J, Liang J, Ma J. Porous surfur-doped hard carbon for excellent potassium storage. Chin Chem Lett. 2020;31(1):223.

Wu X, Leonard DP, Ji X. Emerging non-aqueous potassium-ion batteries: challenges and opportunities. Chem Mater. 2017;29(12):5031.

Hwang JY, Myung ST, Sun YK. Recent progress in rechargeable potassium batteries. Adv Funct Mater. 2018;28(43):1802938.

Wu D, Zhang W, Feng Y, Ma J. Necklace-like carbon nanofibers encapsulating V3S4 microspheres for ultrafast and stable potassium-ion storage. J Mater Chem A. 2020;8:2618.

Zhao J, Zou X, Zhu Y, Xu Y, Wang C. Electrochemical intercalation of potassium into graphite. Adv Funct Mater. 2016;26(44):8103.

Kim H, Kim JC, Bianchini M, Seo DH, Rodriguez-Garcia J, Ceder G. Recent progress and perspective in electrode materials for K-ion batteries. Adv Energy Mater. 2018;8(9):1702384.

Song K, Liu C, Mi L, Chou S, Chen W, Shen C. Recent progress on the alloy-based anode for sodium-ion batteries and potassium-ion batteries. Small. 2019. https://doi.org/10.1002/smll.201903194.

Eftekhari A. Low voltage anode materials for lithium-ion batteries. Energy Storage Mater. 2017;7:157.

Hu Z, Liu Q, Chou SL, Dou SX. Advances and challenges in metal sulfides/selenides for next-generation rechargeable sodium-ion batteries. Adv Mater. 2017;29(48):1700606.

Sultana I, Rahman MM, Chen Y, Glushenkov AM. Potassium-ion battery anode materials operating through the alloying-dealloying reaction mechanism. Adv Funct Mater. 2018;28(5):1703857.

Wu Y, Huang HB, Feng Y, Wu ZS, Yu Y. The promise and challenge of phosphorus-based composites as anode materials for potassium-ion batteries. Adv Mater. 2019;31(50):1901414.

Wang B, Lv R, Lan D. Preparation and electrochemical properties of Sn/C composites. Rare Met. 2019;38(10):996.

Sultana I, Ramireddy T, Rahman MM, Chen Y, Glushenkov AM. Tin-based composite anodes for potassium-ion batteries. Chem Commun. 2016;52(59):9279.

Huang B, Pan Z, Su X, An L. Tin-based materials as versatile anodes for alkali (earth)-ion batteries. J Power Sources. 2018;395:41.

Wang Q, Zhao X, Ni C, Tian H, Li J, Zhang Z, Mao SX, Wang J, Xu Y. Reaction and capacity-fading mechanisms of tin nanoparticles in potassium-ion batteries. J Phys Chem C. 2017;121(23):12652.

Ramireddy T, Kali R, Jangid MK, Srihari V, Poswal HK, Mukhopadhyay A. Insights into electrochemical behavior, phase evolution and stability of Sn upon K-alloying/de-alloying via in situ studies. J Electrochem Soc. 2017;164:A2360.

Zhang W, Mao J, Li S, Chen Z, Guo Z. Phosphorus-based alloy materials for advanced potassium-ion battery anode. J Am Chem Soc. 2017;139(9):3316.

Huang K, Xing Z, Wang L, Wu X, Zhao W, Qi X, Wang H, Ju Z. Direct synthesis of 3D hierarchically porous carbon/Sn composites via in situ generated NaCl crystals as templates for potassium-ion batteries anode. J Mater Chem A. 2018;6(2):434.

Wang H, Xing Z, Hu Z, Zhang Y, Hu Y, Sun Y, Ju Z, Zhuang Q. Sn-based submicron-particles encapsulated in porous reduced graphene oxide network: advanced anodes for high-rate and long life potassium-ion batteries. Appl Mater Today. 2019;15:58.

Liu Z, Song T, Paik U. Sb-based electrode materials for rechargeable batteries. J Mater Chem A. 2018;6(18):8159.

Wang H, Wu X, Qi X, Zhao W, Ju Z. Sb nanoparticles encapsulated in 3D porous carbon as anode material for lithium-ion and potassium-ion batteries. Mater Res Bull. 2018;103:32.

Ko YN, Choi SH, Kim H, Kim HJ. One-pot formation of Sb-carbon microspheres with graphene sheets: potassium-ion storage properties and discharge mechanisms. ACS Appl Mater Interfaces. 2019;11(31):27973.

Zheng J, Yang Y, Fan X, Ji G, Ji X, Wang H, Hou S, Zachariah MR, Wang C. Extremely stable antimony-carbon composite anodes for potassium-ion batteries. Energy Environ Sci. 2019;12:615.

Yi Z, Lin N, Zhang W, Wang W, Zhu Y, Qian Y. Preparation of Sb nanoparticles in molten salt and their potassium storage performance and mechanism. Nanoscale. 2018;10(27):13236.

Han Y, Li T, Li Y, Tian J, Yi Z, Lin N, Qian Y. Stabilizing antimony nanocrystals within ultrathin carbon nanosheets for high-performance K-ion storage. Energy Storage Mater. 2019;20:46.

He XD, Liu ZH, Liao JY, Ding X, Hu Q, Xiao LN, Wang S, Chen CH. A three-dimensional macroporous antimony@carbon composite as a high-performance anode material for potassium-ion batteries. J Mater Chem A. 2019;7(16):9629.

Sultana I, Rahman MM, Liu J, Sharma N, Ellis AV, Chen Y, Glushenkov AM. Antimony-carbon nanocomposites for potassium-ion batteries: insight into the failure mechanism in electrodes and possible avenues to improve cyclic stability. J Power Sources. 2019;413:476.

Liu Q, Fan L, Ma R, Chen S, Yu X, Yang H, Xie Y, Han X, Lu B. Super long-life potassium-ion batteries based on an antimony@carbon composite anode. Chem Commun. 2018;54(83):11773.

Zhang W, Miao W, Liu X, Li L, Yu Z, Zhang Q. High-rate and ultralong-stable potassium-ion batteries based on antimony-nanoparticles encapsulated in nitrogen and phosphorus co-doped mesoporous carbon nanofibers as an anode material. J Alloys Compd. 2018;769:141.

Gabaudan V, Touja J, Cot D, Flahaut E, Stievano L, Monconduit L. Double-walled carbon nanotubes, a performing additive to enhance capacity retention of antimony anode in potassium-ion batteries. Electrochem Commun. 2019;105:106493.

An Y, Tian Y, Ci L, Xiong S, Feng J, Qian Y. Micron-sized nanoporous antimony with tunable porosity for high-performance potassium-ion batteries. ACS Nano. 2018;12(12):12932.

Luo W, Li F, Zhang W, Han K, Gaumet JJ, Schaefer HE, Mai L. Encapsulating segment-like antimony nanorod in hollow carbon tube as long-lifespan, high-rate anodes for rechargeable K-ion batteries. Nano Res. 2019;12(5):1025.

Li X, Ni J, Savilov SV, Li L. Materials based on antimony and bismuth for sodium storage. Chem-Eur J. 2018;24:13719.

Lei K, Wang C, Liu L, Luo Y, Mu C, Li F, Chen J. A porous network of bismuth used as the anode material for high-energy-density potassium-ion batteries. Angew Chem Int Ed Engl. 2018;57(17):4687.

Yang CY, Chen J, Ji X, Pollard TP, Lu XJ, Sun CJ, Hou S, Liu Q, Liu CM, Qing TT, Wang YQ, Borodin O, Ren Y, Xu K, Wang CS. Aqueous Li-ion battery enabled by halogen conversion-intercalation chemistry in graphite. Nature. 2019;569(7755):245.

Fan X, Chen L, Ji X, Deng T, Hou S, Chen J, Zheng J, Wang F, Jiang J, Xu K, Wang CS. Highly fluorinated interphases enable high-voltage Li-metal batteries. Chem. 2018;4(1):174.

Zhang Q, Mao J, Pang WK, Zheng T, Sencadas V, Chen Y, Liu Y, Guo Z. Boosting the potassium storage performance of alloy-based anode materials via electrolyte salt chemistry. Adv Energy Mater. 2018;8(15):1703288.

Zhang R, Bao J, Wang Y, Sun CF. Concentrated electrolytes stabilize bismuth-potassium batteries. Chem Sci. 2018;9(29):6193.

Huang J, Lin X, Tan H, Zhang B. Bismuth microparticles as advanced anodes for potassium-ion battery. Adv Energy Mater. 2018;8(19):1703496.

Su S, Liu Q, Wang J, Fan L, Ma R, Chen S, Han X, Lu B. Control of SEI formation for stable potassium-ion battery anodes by Bi-MOF-derived nanocomposites. ACS Appl Mater Interfaces. 2019;11(25):22474.

Cheng X, Li D, Wu Y, Xu R, Yu Y. Bismuth nanospheres embedded in three-dimensional (3D) porous graphene frameworks as high performance anodes for sodium- and potassium-ion batteries. J Mater Chem A. 2019;7(9):4913.

Qi S, Xie X, Peng X, Ng DHL, Wu M, Liu Q, Yang J, Ma J. Mesoporous carbon-coated bismuth nanorods as anode for potassium-ion batteries. Phys Status Solidi RRL. 2019;13(10):1900209.

Yang H, Xu R, Yao Y, Ye S, Zhou X, Yu Y. Multicore-shell Bi@N-doped carbon nanospheres for high power density and long cycle life sodium- and potassium-ion anodes. Adv Funct Mater. 2019;29(13):1809195.

Yang D, Liu C, Rui X, Yan Q. Embracing high performance potassium-ion batteries with phosphorus-based electrodes: a review. Nanoscale. 2019;11(33):15402.

Liu C, Han X, Cao Y, Zhang S, Zhang Y, Sun J. Topological construction of phosphorus and carbon composite and its application in energy storage. Energy Storage Mater. 2019;20:343.

Huang X, Liu D, Guo X, Sui X, Qu D, Chen J. Phosphorus/carbon composite anode for potassium-ion batteries: insights into high initial coulombic efficiency and superior cyclic performance. ACS Sustain Chem Eng. 2018;6(12):16308.

Wu X, Zhao W, Wang H, Qi X, Xing Z, Zhuang Q, Ju Z. Enhanced capacity of chemically bonded phosphorus/carbon composite as an anode material for potassium-ion batteries. J Power Sources. 2018;378:460.

Yang W, Lu Y, Zhao C, Liu H. First-principles study of black phosphorus as anode material for rechargeable potassium-ion batteries. Electron Mater Lett. 2019. https://doi.org/10.1007/s13391-019-00178-z.

Sultana I, Rahman MM, Ramireddy T, Chen Y, Glushenkov AM. High capacity potassium-ion battery anodes based on black phosphorus. J Mater Chem A. 2017;5(45):23506.

Liu D, Huang X, Qu D, Zheng D, Wang G, Harris J, Si J, Ding T, Chen J, Qu D. Confined phosphorus in carbon nanotube-backboned mesoporous carbon as superior anode material for sodium/potassium-ion batteries. Nano Energy. 2018;52:1.

Chang WC, Wu JH, Chen KT, Tuan HY. Red phosphorus potassium-ion battery anodes. Adv Sci. 2019;6(9):1801354.

Wang H, Wang L, Wang L, Xing Z, Wu X, Zhao W, Qi X, Ju Z, Zhuang Q. Phosphorus particles embedded in reduced graphene oxide matrix to enhance capacity and rate capability for capacitive potassium-ion storage. Chem Eur J. 2018;24:13897.

Gabaudan V, Berthelot R, Sougrati MT, Lippens PE, Monconduit L, Stievano L. SnSb vs. Sn: improving the performance of Sn-based anodes for K-ion batteries by synergetic alloying with Sb. J Mater Chem A. 2019;7(25):15262.

Wang Z, Dong K, Wang D, Luo S, Liu Y, Wang Q, Zhang Y, Hao A, Shi C, Zhao N. A nanosized SnSb alloy confined in N-doped 3D porous carbon coupled with ether-based electrolytes toward high-performance potassium-ion batteries. J Mater Chem A. 2019;7(23):14309.

Huang Z, Chen Z, Ding S, Chen C, Zhang M. Multi-protection from nanochannels and graphene of SnSb-graphene-carbon composites ensuring high properties for potassium-ion batteries. Solid State Ion. 2018;324:267.

Zhang W, Wu Z, Zhang J, Liu G, Yang NH, Liu RS, Pang WK, Li W, Guo Z. Unraveling the effect of salt chemistry on long-durability high-phosphorus-concentration anode for potassium ion batteries. Nano Energy. 2018;53:967.

Li D, Zhang Y, Sun Q, Zhang S, Wang Z, Liang Z, Si P, Ci L. Hierarchically porous carbon supported Sn4P3 as a superior anode material for potassium-ion batteries. Energy Storage Mater. 2019;23:367.

Yang W, Zhang J, Huo D, Sun S, Tao S, Wang Z, Wang J, Wu D, Qian B. Facile synthesis of tin phosphide/reduced graphene oxide composites as anode material for potassium-ion batteries. Ionics. 2019;25(10):4795.

Zhao X, Wang W, Hou Z, Wei G, Yu Y, Zhang J, Quan Z. SnP0.94 nanoplates/graphene oxide composite for novel potassium-ion battery anode. Chem Eng J. 2019;370:677.

Lao M, Zhang Y, Luo W, Yan Q, Sun W, Dou SX. Alloy-based anode materials toward advanced sodium-ion batteries. Adv Mater. 2017;29(48):1700622.

Lee S, Jung SC, Han YK. First-principles molecular dynamics study on ultrafast potassium ion transport in silicon anode. J Power Sources. 2019;415:119.

Ji B, Zhang F, Song X, Tang Y. A novel potassium-ion-based dual-ion battery. Adv Mater. 2017;29(19):1700519.

Xie D, Zhang M, Wu Y, Xiang L, Tang Y. A flexible dual-ion battery based on sodium-ion quasi-solid-state electrolyte with long cycling life. Adv Funct Mater. 2020;30(5):1906770.

Zhou X, Liu Q, Jiang C, Ji B, Ji X, Tang Y, Cheng HM. Beyond conventional batteries: strategies towards low-cost dual-ion batteries with high performance. Angew Chem Int Ed. 2019;59(20):3802.

Chang X, Zhou X, Ou X, Lee CS, Zhou J, Tang Y. Ultrahigh nitrogen doping of carbon nanosheets for high capacity and long cycling potassium ion storage. Adv Energy Mater. 2019;9(47):1902672.

Gabaudan V, Berthelot R, Stievano L, Monconduit L. Electrochemical alloying of lead in potassium-ion batteries. ACS Omega. 2018;3(9):12195.

Yang Q, Wang Z, Xi W, He G. Tailoring nanoporous structures of Ge anodes for stable potassium-ion batteries. Electrochem Commun. 2019;101:68.

Cheng XB, Zhang R, Zhao CZ, Wei F, Zhang JG, Zhang Q. A review of solid electrolyte interphases on lithium metal anode. Adv Sci. 2016;3(3):1500213.

Zhang J, Wang DW, Lv W, Zhang S, Liang Q, Zheng D, Kang F, Yang QH. Achieving superb sodium storage performance on carbon anodes through an ether-derived solid electrolyte interphase. Energy Environ Sci. 2017;10(1):370.

Dugas R, Ponrouch A, Gachot G, David R, Palacin MR, Tarascon JM. Na reactivity toward carbonate-based electrolytes: the effect of FEC as additive. J Electrochem Soc. 2016;163(10):A2333.

Zhang XQ, Chen X, Cheng XB, Li BQ, Shen X, Yan C, Huang JQ, Zhang Q. Highly stable lithium metal batteries enabled by regulating the solvation of lithium ions in nonaqueous electrolytes. Angew Chem Int Ed Engl. 2018;57(19):5301.

He H, Sun D, Tang Y, Wang H, Shao M. Understanding and improving the initial Coulombic efficiency of high-capacity anode materials for practical sodium ion batteries. Energy Storage Mater. 2019;23:233.

Ling L, Bai Y, Wang Z, Ni Q, Chen G, Zhou Z, Wu C. Remarkable effect of sodium alginate aqueous binder on anatase TiO2 as high-performance anode in sodium ion batteries. ACS Appl Mater Interfaces. 2018;10(6):5560.

Cheng XB, Zhang R, Zhao CZ, Zhang Q. Toward safe lithium metal anode in rechargeable batteries: a review. Chem Rev. 2017;117(15):10403.

Sun C, Liu J, Gong Y, Wilkinson DP, Zhang J. Recent advances in all-solid-state rechargeable lithium batteries. Nano Energy. 2017;33:363.

Kumari P, Awasthi K, Agarwal S, Ichikawa T, Kumar M, Jain A. Flower-like Bi2S3 nanostructures as highly efficient anodes for all-solid-state lithium-ion batteries. RSC Adv. 2019;9(51):29549.

Kumari P, Sharma K, Pal P, Kumar M, Ichikawa T, Jain A. Highly efficient & stable Bi & Sb anodes using lithium borohydride as solid electrolyte in Li-ion batteries. RSC Adv. 2019;9(23):13077.

Nam DH, Kim JW, Lee JH, Lee SY, Shin HAS, Lee SH, Joo YC. Tunable Sn structures in porosity-controlled carbon nanofibers for all-solid-state lithium-ion battery anodes. J Mater Chem A. 2015;3(20):11021.