Recent advancements in multifunctional applications of sol-gel derived polymer incorporated TiO2-ZrO2 composite coatings: A comprehensive review
Tài liệu tham khảo
Khan, 2017, Antireflective coatings with enhanced adhesion strength, Nanoscale, 9, 11047, 10.1039/C7NR02334K
Wu, 2021, An environmental-friendly tannic acid/Zn conversion film with a good corrosion protection for iron, Surf. Interfaces, 10.1016/j.surfin.2021.101078
Pliskin, 1970, 11
Venables, 1983, Nucleation and growth of thin films, 341
Mashtalyar, 2019, Polymer-containing layers formed by PEO and spray-coating method, Mater. Today Proc., 11, 150, 10.1016/j.matpr.2018.12.123
Yumashev, 2020, Development of polymer film coatings with high adhesion to steel alloys and high wear resistance, Polym. Compos., 41, 2875, 10.1002/pc.25583
Egorkin, 2020, Atmospheric and marine corrosion of PEO and composite coatings obtained on Al-Cu-Mg aluminum alloy, Mater. (Basel), 13, 2739, 10.3390/ma13122739
Thainoi, 2017, Molecular beam epitaxy growth of InSb/GaAs quantum nanostructures, J. Cryst. Growth, 477, 30, 10.1016/j.jcrysgro.2017.01.011
Martin, 2009
Schneider, 2010, Laser ablation and thin film deposition, 89
Sridhar, 2013, Electrosprayed nanoparticles for drug delivery and pharmaceutical applications, Biomatter, 3, e24281, 10.4161/biom.24281
Tapia-Hernández, 2015, Micro-and nanoparticles by electrospray: advances and applications in foods, J. Agric. Food Chem., 63, 4699, 10.1021/acs.jafc.5b01403
Bhushani, 2014, Electrospinning and electrospraying techniques: potential food based applications, Trends Food Sci. Technol., 38, 21, 10.1016/j.tifs.2014.03.004
Mane, 2000, Chemical deposition method for metal chalcogenide thin films, Mater. Chem. Phys., 65, 1, 10.1016/S0254-0584(00)00217-0
Cui, 2011, Synthesis and characterization of co-electroplated Cu2ZnSnS4 thin films as potential photovoltaic material, Solar Energy Mater. Solar Cells, 95, 2136, 10.1016/j.solmat.2011.03.013
Venkateshwaran, 2019, Corrosion and magnetic characterization of electroplated NiFe and NiFeW soft magnetic thin films for MEMS applications, 447
Hussain, S.A. (2009). Langmuir-Blodgett Films a unique tool for molecular electronics. arXiv preprint arXiv:0908.1814.
Nisticò, 2017, Sol-gel chemistry, templating and spin-coating deposition: a combined approach to control in a simple way the porosity of inorganic thin films/coatings, Microporous Mesoporous Mater., 248, 18, 10.1016/j.micromeso.2017.04.017
Shibata, 2015, Advantages and disadvantages of vacuum-deposited and spin-coated amorphous organic semiconductor films for organic light-emitting diodes, J. Mater. Chem. C, 3, 11178, 10.1039/C5TC01911G
Schneller, 2013
Wypych, 1988
Wypych, 2016, Fillers in Different Processing Methods, 793
Martin, 1992, The deposition of thin films by filtered arc evaporation, Surf. Coat. Technol., 54, 136, 10.1016/S0257-8972(09)90040-8
Jones, 2009
Ritala, 2002, Atomic layer deposition, 103
Mashtalyar, 2021, Influence of ZrO2/SiO2 nanomaterial incorporation on the properties of PEO layers on Mg-Mn-Ce alloy, J. Magnes. Alloy., 10.1016/j.jma.2021.04.013
Molaei, 2020, Improving the wear resistance of plasma electrolytic oxidation (PEO) coatings applied on Mg and its alloys under the addition of nano-and micro-sized additives into the electrolytes: a review, J. Magnes. Alloy.
Podgorbunsky, 2018, Formation on magnesium alloy MA8 bioactive coatings containing nanosized hydroxyapatite, J. Phys. Conf. Ser., 1092
Puetz, 2004, Dip coating technique, 37
Nadargi, 2010, Synthesis and characterization of transparent hydrophobic silica thin films by single step sol–gel process and dip coating, J. Alloy. Compd., 496, 436, 10.1016/j.jallcom.2010.01.157
Xie, 2006, Electrohydrodynamic atomization for biodegradable polymeric particle production, J. Colloid Interface Sci., 302, 103, 10.1016/j.jcis.2006.06.037
Figen, 2019, Polymeric and metal oxide structured nanofibrous composites fabricated by electrospinning as highly efficient hydrogen evolution catalyst, J. Colloid Interface Sci., 533, 82, 10.1016/j.jcis.2018.08.046
Reneker, 2007, Electrospinning of nanofibers from polymer solutions and melts, Adv. Appl. Mech., 41, 43, 10.1016/S0065-2156(07)41002-X
Kessick, 2004, The use of AC potentials in electrospraying and electrospinning processes, Polym. (Guildf), 45, 2981, 10.1016/j.polymer.2004.02.056
Tang, 2017, Controlled mesoporous film formation from the deposition of electrosprayed nanoparticles, Aerosol Sci. Technol., 51, 755, 10.1080/02786826.2017.1303573
Hogan, 2008, Porous film deposition by electrohydrodynamic atomization of nanoparticle sols, Aerosol Sci. Technol., 42, 75, 10.1080/02786820701787951
Eggen, 2015, Surface roughness and chemical properties of porous inorganic films, Thin Solid Films, 591, 111, 10.1016/j.tsf.2015.08.012
Hench, 1990, The sol-gel process, Chem. Rev., 90, 33, 10.1021/cr00099a003
Rao, 2017, Novel approaches for preparation of nanoparticles, 1
Brinker, 2013
Idumah, 2020, Recently emerging nanotechnological advancements in polymer nanocomposite coatings for anti-corrosion, anti-fouling and self-healing, Surf. Interfaces, 10.1016/j.surfin.2020.100734
Shi, 2017, Synthesis and evaluation of ion-imprinted sol–gel material of selenite, Anal. Methods, 9, 1658, 10.1039/C6AY03286A
Wright, 2000, 4
Ciesielczyk, 2014, The sol–gel approach as a method of synthesis of xMgO ySiO2 powder with defined physicochemical properties including crystalline structure, J. Solgel Sci. Technol., 71, 501, 10.1007/s10971-014-3398-1
Gill, 2018, Screening trials for the encapsulation of laccase enzymatic extract in silica sol-gel, J. Solgel Sci. Technol., 85, 657, 10.1007/s10971-017-4575-9
Mackenzie, 1988, Applications of the sol-gel process, J. Non Cryst. Solids, 100, 162, 10.1016/0022-3093(88)90013-0
Deng, 2000, Physical properties of silica aerogels prepared with polyethoxydisiloxanes, J. Solgel Sci. Technol., 19, 677, 10.1023/A:1008754504788
Rao, 2006, Synthesis of flexible silica aerogels using methyltrimethoxysilane (MTMS) precursor, J. Colloid Interface Sci., 300, 279, 10.1016/j.jcis.2006.03.044
Mokhtari, 2017, A novel method for the clean synthesis of nano-sized cobalt based blue pigments, RSC Adv., 7, 29899, 10.1039/C7RA03771F
Lu, 2017, Hydrodeoxygenation of guaiacol on Ru catalysts: influence of TiO2–ZrO2 composite oxide supports, Ind. Eng. Chem. Res., 56, 12070, 10.1021/acs.iecr.7b02569
Musat, 2008, ZnO/SiO2 nanocomposite thin films by sol–gel method, Phys. Status Solidi A, 205, 2075, 10.1002/pssa.200778939
Wilke, 1999, The influence of transition metal doping on the physical and photocatalytic properties of titania, J. Photochem. Photobiol. A Chem., 121, 49, 10.1016/S1010-6030(98)00452-3
Miller, 1997, Control of mixed oxide textural and acidic properties by the sol-gel method, Catal. Today, 35, 269, 10.1016/S0920-5861(96)00161-7
Cai, 1995, Temperature dependence of Raman scattering in stabilized cubic zirconia, Phys. Rev. B, 51, 201, 10.1103/PhysRevB.51.201
Morell, 1997, Raman scattering study of thermally reduced stabilized cubic zirconia, J. Appl. Phys., 81, 2830, 10.1063/1.363941
Gokul, 2017, Binary metal oxide nanoparticle incorporated composite multilayer thin films for sono-photocatalytic degradation of organic pollutants, Appl. Surf. Sci., 418, 119, 10.1016/j.apsusc.2016.12.232
Rashid, 2020, Recent advances in TiO2-functionalized textile surfaces, Surf. Interfaces
Corma, 1995, Inorganic solid acids and their use in acid-catalyzed hydrocarbon reactions, Chem. Rev., 95, 559, 10.1021/cr00035a006
Yuan, 2009, Highly ordered mesoporous titania–zirconia photocatalyst for applications in degradation of rhodamine-B and hydrogen evolution, Microporous Mesoporous Materials, 124, 169, 10.1016/j.micromeso.2009.05.006
Chen, 2018, Preparation of MoS 2/TiO2 based nanocomposites for photocatalysis and rechargeable batteries: progress, challenges, and perspective, Nanoscale, 10, 34, 10.1039/C7NR07366F
Fan, 2013, Synthesis of nanocomposite TiO2/ZrO2 prepared by different templates and photocatalytic properties for the photodegradation of Rhodamine B, Powder Technol., 235, 27, 10.1016/j.powtec.2012.09.042
Morosanova, 2012, Silica and silica–titania sol–gel materials: synthesis and analytical application, Talanta, 102, 114, 10.1016/j.talanta.2012.07.043
Shao, 2012, Two step synthesis of a mesoporous titania–silica composite from titanium oxychloride and sodium silicate, Powder Technol., 217, 489, 10.1016/j.powtec.2011.11.008
Kickelbick, 2003, Concepts for the incorporation of inorganic building blocks into organic polymers on a nanoscale, Prog. Polym. Sci., 28, 83, 10.1016/S0079-6700(02)00019-9
Novak, 1993, Hybrid nanocomposite materials—Between inorganic glasses and organic polymers, Adv. Mater., 5, 422, 10.1002/adma.19930050603
Haas, 2000, Hybrid Inorganic–organic polymers based on organically modified Si-alkoxides, Adv Eng. Mater., 2, 571, 10.1002/1527-2648(200009)2:9<571::AID-ADEM571>3.0.CO;2-M
Wang, 2008, Novel transparent ternary nanocomposite films of trialkoxysilane-capped poly (methyl methacrylate)/zirconia/titania with incorporating networks, Mater. Chem. Phys., 110, 463
Kresge, 1992, Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism, Nature, 359, 710, 10.1038/359710a0
He, 2002, Recent advances in synthesis and applications of transition metal containing mesoporous molecular sieves, Angew. Chem. Int. Ed., 41, 214, 10.1002/1521-3773(20020118)41:2<214::AID-ANIE214>3.0.CO;2-D
Schüth, 2001, Non-siliceous mesostructured and mesoporous materials, Chem. Mater., 13, 3184, 10.1021/cm011030j
Sayari, 1997, Non-silica periodic mesostructured materials: recent progress, Microporous Mater., 12, 149, 10.1016/S0927-6513(97)00059-X
Han, 2016, Multiphase media antiadhesive coatings: hierarchical Self-Assembled porous materials generated using breath figure patterns, ACS Nano, 10, 11087, 10.1021/acsnano.6b05961
Kuo, 2009, A facile route to create surface porous polymer films via phase separation for antireflection applications, ACS Appl. Mater. Interfaces, 1, 72, 10.1021/am800002x
Prasanna, 2018, Metal oxide curcumin incorporated polymer patches for wound healing, Appl. Surf. Sci., 449, 603, 10.1016/j.apsusc.2018.01.143
Suriyakumar, 2018, Metal organic framework laden poly (ethylene oxide) based composite electrolytes for all-solid-state Li-S and Li-metal polymer batteries, Electrochim. Acta, 285, 355, 10.1016/j.electacta.2018.08.012
Fu, 2019, Composites of metal oxides and intrinsically conducting polymers as supercapacitor electrode materials: the best of both worlds?, J. Mater. Chem. A, 7, 14937, 10.1039/C8TA10587A
Swain, 2013, Development of new alginate entrapped Fe (III)–Zr (IV) binary mixed oxide for removal of fluoride from water bodies, Chem.l Eng. J., 215, 763, 10.1016/j.cej.2012.10.098
Caruso, 2001, Sol− gel nanocoating: an approach to the preparation of structured materials, Chem. Mater., 13, 3272, 10.1021/cm001257z
Schattka, 2002, Photocatalytic activities of porous titania and titania/zirconia structures formed by using a polymer gel templating technique, Chem. Mater., 14, 5103, 10.1021/cm021238k
Thomas, 2007, Review on polymer, hydrogel and microgel metal nanocomposites: a facile nanotechnological approach, J. Macromol. Sci. Part A Pure Appl. Chem., 45, 107, 10.1080/10601320701683470
Mai, 2014, Polymer-directed synthesis of metal oxide-containing nanomaterials for electrochemical energy storage, Nanoscale, 6, 106, 10.1039/C3NR04791A
Shchukin, 2003, Photocatalytic properties of porous metal oxide networks formed by nanoparticle infiltration in a polymer gel template, J. Phys. Chem. B, 107, 952, 10.1021/jp026929i
Paille, 2018, A fully noble metal-free photosystem based on cobalt-polyoxometalates immobilized in a porphyrinic metal–organic framework for water oxidation, J. Am. Chem. Soc., 140, 3613, 10.1021/jacs.7b11788
Yamani, 2019, Preparation of polypyrrole (PPy)-derived polymer/ZrO2 nanocomposites, J. Therm. Anal. Calorim., 135, 2089, 10.1007/s10973-018-7347-z
Dakshayini, 2019, Role of conducting polymer and metal oxide-based hybrids for applications in ampereometric sensors and biosensors, Microchem. J., 147, 7, 10.1016/j.microc.2019.02.061
Bukkitgar, 2017, Fabrication of a TiO2 and clay nanoparticle composite electrode as a sensor, Anal. Methods, 9, 4387, 10.1039/C7AY01068K
Yi, 2019, Infiltration synthesis of diverse metal oxide nanostructures from epoxidized diene–styrene block copolymer templates, ACS Appl. Polym. Mater., 1, 672, 10.1021/acsapm.8b00138
Unmüssig, 2019, Synthesis of Pt@ TiO2 nanocomposite electrocatalysts for enhanced methanol oxidation by hydrophobic nanoreactor templating, Phys. Chem. Chem. Phys., 21, 13555, 10.1039/C9CP00502A
Xia, 2019, Tuning Cooperative Assembly with Bottlebrush Block Co-polymers for Porous Metal Oxide Films Using Solvent Mixtures, Langmuir, 35, 9572, 10.1021/acs.langmuir.9b01363
Kilpi, 2018, Tribological properties of thin films made by atomic layer deposition sliding against silicon, J. Vac. Sci. Technol. A Vac. Surf. Films, 36, 01A122, 10.1116/1.5003729
Ćurković, 2021, Corrosion behavior of amorphous sol–gel TiO2–ZrO2 nano thickness film on stainless steel, Coatings, 11, 988, 10.3390/coatings11080988
Habibah, 2011, Influence of heat treatment on the properties of MgO thin films as dielectric layer, 16
Zhao, 2018, Effects of heating mode and temperature on the microstructures, electrical and optical properties of molybdenum thin Films, Mater. (Basel), 11, 1634, 10.3390/ma11091634
Abdel-Latif, 2015, Influence of heat treatment on the structural, optical and electrical properties of Cd20Sn10Se70 thin films, Mater. Sci. Semicond. Process, 30, 502, 10.1016/j.mssp.2014.10.027
Nasrin, 2018, Effect of heat treatment on infrared and ultraviolet–visible spectroscopic studies of the PPnBMA thin films, Appl. Phys. A, 124, 1, 10.1007/s00339-018-2270-5
Matin, 2012, Heat treatment and aging effect on the structural and optical properties of plasma polymerized 2, 6-diethylaniline thin films, Thin Solid Films, 520, 6463, 10.1016/j.tsf.2012.07.008
Rajeshwar, 2001, Semiconductor-based composite materials: preparation, properties, and performance, Chem. Mater., 13, 2765, 10.1021/cm010254z
Sharma, 2014, Hydrotreating of heavy gas oil on mesoporous mixed metal oxides (M–Al2O3, M= TiO2, ZrO2, SnO2) supported NiMo catalysts: influence of surface acidity, Ind. Eng. Chem. Res., 53, 18729, 10.1021/ie500840d
Dastan, 2017, Effect of preparation methods on the properties of titania nanoparticles: solvothermal versus sol–gel, Appl. Phys. A, 123, 699, 10.1007/s00339-017-1309-3
Hagfeldt, 1995, Light-induced redox reactions in nanocrystalline systems, Chem. Rev., 95, 49, 10.1021/cr00033a003
Mardare, 1999, Optical dispersion analysis of TiO2 thin films based on variable-angle spectroscopic ellipsometry measurements, Mater. Sci. Eng. B, 68, 42, 10.1016/S0921-5107(99)00335-9
Fang, 2003, Preparation of titania particles by thermal hydrolysis of TiCl4 in n-propanol solution, Mater. Chem. Phys., 78, 739, 10.1016/S0254-0584(02)00416-9
Liu, 2020, Engineering the Metal-Support Interaction on Pt/TiO2 Catalyst to Boost the H2-SCR of NOx, Ind. Eng. Chem. Res
Nebel, 2019, Selectivity of photoelectrochemical water splitting on TiO2 anatase single crystals, J. Phys. Chem. C, 123, 10857, 10.1021/acs.jpcc.8b11730
Arulraj, 2019, Photovoltaic performance of natural metal free photo-sensitizer for TiO2 based dye-sensitized solar cells, Opt. (Stuttg), 181, 619, 10.1016/j.ijleo.2018.12.104
Sansotera, 2019, Absorption and photocatalytic degradation of VOCs by perfluorinated ionomeric coating with TiO2 nanopowders for air purification, Chem. Eng. J., 361, 885, 10.1016/j.cej.2018.12.136
Peter, 2019, Fabric impregnated with TiO2 gel with self-cleaning property, Int. J. Appl. Ceram. Technol., 16, 666, 10.1111/ijac.13075
Negishi, 2019, Effect of dissolved silica on photocatalytic water purification with a TiO2 ceramic catalyst, Water Res., 150, 40, 10.1016/j.watres.2018.11.047
Jones, 2007, Cleavage of peptides and proteins using light-generated radicals from titanium dioxide, Anal. Chem., 79, 1327, 10.1021/ac0613737
Li, 2009, Nanocomposites of ferroelectric polymers with TiO2 nanoparticles exhibiting significantly enhanced electrical energy density, Adv. Mater., 21, 217, 10.1002/adma.200801106
Contado, 2008, TiO2 in commercial sunscreen lotion: flow field-flow fractionation and ICP-AES together for size analysis, Anal. Chem., 80, 7594, 10.1021/ac8012626
Egerton, 2008, Interaction of TiO2 nano-particles with organic UV absorbers, J. Photochem. Photobiol. A Chem., 193, 10, 10.1016/j.jphotochem.2007.06.001
Wu, 2019, Solution-processed anatase titania nanowires: from hyperbranched design to optoelectronic applications, Acc. Chem. Res., 52, 633, 10.1021/acs.accounts.8b00476
Mechiakh, 2007, TiO2 thin films prepared by sol–gel method for waveguiding applications: correlation between the structural and optical properties, Opt. Mater. (Amst), 30, 645, 10.1016/j.optmat.2007.02.047
Masoudi, 2018, Multifunctional fluorescent titania nanoparticles: green preparation and applications as antibacterial and cancer theranostic agents, Artif. Cells Nanomed. Biotechnol., 46, 248, 10.1080/21691401.2018.1454932
Molaei, 2020, Improving surface features of PEO coatings on titanium and titanium alloys with zirconia particles: a review, Surf. Interfaces
Zhang, 2017, Preparation of chitosan-TiO2 composite film with efficient antimicrobial activities under visible light for food packaging applications, Carbohydr. Polym., 169, 101, 10.1016/j.carbpol.2017.03.073
Roy, 2018, Electrical characteristics of dip coated TiO2 thin films with various withdrawal speeds for resistive switching applications, Appl. Surf. Sci., 449, 181, 10.1016/j.apsusc.2018.01.207
Yahia, 2019, Multifunction applications of TiO2/poly (vinyl alcohol) nanocomposites for laser attenuation applications, Phys. B Condens. Matter, 556, 48, 10.1016/j.physb.2018.12.031
Choi, 2007, Fluorescent TiO2 powders prepared using a new perylene diimide dye: applications in latent fingermark detection, Forensic Sci. Int., 173, 154, 10.1016/j.forsciint.2006.09.014
Weir, 2012, Titanium dioxide nanoparticles in food and personal care products, Environ. Sci. Technol., 46, 2242, 10.1021/es204168d
Chraska, 2000, On the size-dependent phase transformation in nanoparticulate zirconia, Mater. Sci. Eng. A, 286, 169, 10.1016/S0921-5093(00)00625-0
Wang, 2016, Good biocompatibility and sintering properties of zirconia nanoparticles synthesized via vapor-phase hydrolysis, Sci. Rep., 6, 1
Tan, 1998, Electronic conductivity of a ZrO2 thin film as an oxygen sensor, Thin Solid Films, 330, 59, 10.1016/S0040-6090(98)00759-7
Burkhard, 1991, ZrO2 oxygen sensors: an evaluation of behavior at temperatures as low as 300 C, Solid State Ion., 48, 333, 10.1016/0167-2738(91)90053-E
Subbarao, 1986, Oxygen sensors and pumps, Adv. Ceram., 24, 731
Yang, 2019, Atomic-layer-deposited ZrO2-doped CeO2 thin film for facilitating oxygen reduction reaction in solid oxide fuel cell, Appl. Surf. Sci., 473, 102, 10.1016/j.apsusc.2018.12.142
Ai, 2017, Highly stable sr-free cobaltite-based perovskite cathodes directly assembled on a barrier-layer-free Y2O3-ZrO2 electrolyte of solid oxide fuel cells, ChemSusChem, 10, 993, 10.1002/cssc.201601645
Li, 2015, Direct write printing of three-dimensional ZrO2 biological scaffolds, Mater. Des., 72, 16, 10.1016/j.matdes.2015.02.018
Shao, 2018, Effects of a bone graft substitute consisting of porous gradient HA/ZrO2 and gelatin/chitosan slow-release hydrogel containing BMP-2 and BMSCs on lumbar vertebral defect repair in rhesus monkey, J. Tissue Eng. Regen. Med., 12, e1813, 10.1002/term.2601
Manicone, 2007, An overview of zirconia ceramics: basic properties and clinical applications, J. Dent., 35, 819, 10.1016/j.jdent.2007.07.008
Viazzi, 2006, Synthesis by sol-gel route and characterization of Yttria Stabilized Zirconia coatings for thermal barrier applications, Surf. Coat. Technol., 201, 3889, 10.1016/j.surfcoat.2006.07.241
Qian, 2018, Study of different Ti/Zr ratios on the physicochemical properties and catalytic activities for CuO/Ti–Zr–O composites, Ind. Eng. Chem. Res., 57, 12792, 10.1021/acs.iecr.8b02674
Ravichandran, 1999, Thermal conductivity of plasma-sprayed monolithic and multilayer coatings of alumina and yttria-stabilized zirconia, J. Am. Ceram. Soc., 82, 673, 10.1111/j.1151-2916.1999.tb01816.x
Wang, 2009, Commercial thermal barrier coatings with a double-layer bond coat on turbine vanes and the process repeatability, Surf. Coat. Technol., 203, 2186, 10.1016/j.surfcoat.2009.02.007
Yamaguchi, 1994, Application of ZrO2 as a catalyst and a catalyst support, Catal Today, 20, 199, 10.1016/0920-5861(94)80003-0
Gowri, 2014, Structural, optical, antibacterial and antifungal properties of zirconia nanoparticles by biobased protocol, J. Mater. Sci. Technol., 30, 782, 10.1016/j.jmst.2014.03.002
Thamaraiselvi, 2004, Biological evaluation of bioceramic materials-a review, Carbon N. Y., 24, 172
He, 2015, Addition of Zn to the ternary Mg–Ca–Sr alloys significantly improves their antibacterial properties, J. Mater. Chem. B, 3, 6676, 10.1039/C5TB01319D
Xu, 2015, Promoting bone-like apatite formation on titanium alloys through nanocrystalline tantalum nitride coatings, J. Mater. Chem. B, 3, 4082, 10.1039/C5TB00236B
Somiya, 1988, Japanese Patent. NGK Spark Plug KK. Zirconia implant during low-temperature ageing, and its restraint by coating, Advances in Ceramics, 24, 49
Panda, 2013, Growth, dielectric properties, and memory device applications of ZrO2 thin films, Thin Solid Films, 531, 1, 10.1016/j.tsf.2013.01.004
Lv, 2015, Effects of atomic oxygen exposure on the tribological performance of ZrO2-reinforced polyimide nanocomposites for low earth orbit space applications, Compos. Part B Eng., 77, 215, 10.1016/j.compositesb.2015.03.029
Gong, 2018, Solution processable high quality ZrO2 dielectric films for low operation voltage and flexible organic thin film transistor applications, J. Phys. D Appl. Phys., 51, 10.1088/1361-6463/aaac1b
Reddy, 2019, Template-free synthesis of tetragonal Co-doped ZrO2 nanoparticles for applications in electrochemical energy storage and water treatment, Electrochim. Acta, 317, 416, 10.1016/j.electacta.2019.06.010
Ji, 2019, Improved surface-enhanced Raman scattering properties of ZrO2 Nanoparticles by Zn doping, Nanomaterials, 9, 983, 10.3390/nano9070983
Zhao, 2019, ZrO2 functionalized graphene Oxide/SEBS-Based nanocomposites for efficient electromagnetic interference shielding applications, J.Vinyl Addit. Technol., 25, E130, 10.1002/vnl.21662
Shao, 2014, Sol–gel synthesis of photoactive zirconia–titania from metal salts and investigation of their photocatalytic properties in the photodegradation of methylene blue, Powder Technol., 258, 99, 10.1016/j.powtec.2014.03.024
Silahua-Pavón, 2019, Production of 5-HMF from glucose using TiO2-ZrO2 catalysts: effect of the sol-gel synthesis additive, Catal. Commun., 129, 10.1016/j.catcom.2019.105723
Alotaibi, 2015, Aerosol assisted chemical vapour deposition of a ZrO2-TiO2 composite thin film with enhanced photocatalytic activity, RSC Adv., 5, 67944, 10.1039/C5RA12340B
Sada, 2019, Preparation and characterization of organic chelate ligand (OCL)-templated TiO2–ZrO2 nanofiltration membranes, J. Memb. Sci., 591, 10.1016/j.memsci.2019.117304
Anisah, 2019, Hydrothermal stability and permeation properties of TiO2-ZrO2 (5/5) nanofiltration membranes at high temperatures, Sep. Purif. Technol., 212, 1001, 10.1016/j.seppur.2018.12.006
Fukumoto, 2014, Development and gas permeation properties of microporous amorphous TiO2–ZrO2–organic composite membranes using chelating ligands, J. Memb. Sci., 461, 96, 10.1016/j.memsci.2014.02.031
Che, 2016, Enhancing current density of perovskite solar cells using TiO2-ZrO2 composite scaffold layer, Mater. Sci. Semicond. Process, 56, 29, 10.1016/j.mssp.2016.07.003
Tsoncheva, 2018, Titania and zirconia binary oxides as catalysts for total oxidation of ethyl acetate and methanol decomposition, J. Environ. Chem. Eng., 6, 2540, 10.1016/j.jece.2018.03.053
Pérez-Hernández, 2008, Synthesis of mixed ZrO2–TiO2 oxides by sol–gel: microstructural characterization and infrared spectroscopy studies of NOx, J. Mol. Catal. A Chem., 281, 200, 10.1016/j.molcata.2007.11.008
Seo, 2014, Ultrasonochemical coating and characterization of TiO2-coated zirconia fine particles, J. Ind. Eng. Chem., 20, 1819, 10.1016/j.jiec.2013.08.036
Gionco, 2013, Structural and spectroscopic properties of high temperature prepared ZrO2–TiO2 mixed oxides, J. Solid State Chem., 201, 222, 10.1016/j.jssc.2013.02.040
Liu, 2003, A novel TiO2/ZrxTi1−xO2 composite photocatalytic films, Catal. Commun., 4, 343, 10.1016/S1566-7367(03)00084-0
Gu, 2016, A ternary nanooxide NiO-TiO2-ZrO2/SO42− as efficient solid superacid catalysts for electro-oxidation of glucose, Electrochim. Acta, 194, 367, 10.1016/j.electacta.2016.02.113
An, 2019, Coral reef-like Pt/TiO2-ZrO2 porous composites for enhanced photocatalytic hydrogen production performance, Mol. Catal., 475
Sponza, 2016, Treatment of olive mill wastewater by photooxidation with ZrO2-doped TiO2 nanocomposite and its reuse capability, Environ. Technol., 37, 865, 10.1080/09593330.2015.1088579
Lee, 2017, Phosphate-modified TiO2/ZrO2 nanofibrous web composite membrane for enhanced performance and durability of high-temperature proton exchange membrane fuel cells, Energy Fuels, 31, 7645, 10.1021/acs.energyfuels.7b00941
Kitiyanan, 2006, Structural and photovoltaic properties of binary TiO2–ZrO2 oxides system prepared by sol–gel method, Compos. Sci. Technol., 66, 1259, 10.1016/j.compscitech.2005.10.035
Nakayama, 2007, Preparation and characterization of TiO2–ZrO2 and thiol-acrylate resin nanocomposites with high refractive index via UV-induced crosslinking polymerization, Compos. Part A Appl. Sci. Manuf., 38, 1996, 10.1016/j.compositesa.2007.05.005
Chee Kimling, 2012, Uranyl-sorption properties of amorphous and crystalline TiO2/ZrO2 millimeter-sized hierarchically porous beads, Environ. Sci. Technol., 46, 7913, 10.1021/es3011157
Li, 2012, Synthesis and characterization of sulfated TiO2 nanorods and ZrO2/TiO2 nanocomposites for the esterification of biobased organic acid, ACS Appl. Mater. Interfaces, 4, 4499, 10.1021/am300510u
Rtimi, 2015, Preparation and mechanism of Cu-decorated TiO2–ZrO2 films showing accelerated bacterial inactivation, ACS Appl. Mater. Interfaces, 7, 12832, 10.1021/acsami.5b02168
Aneziris, 2010, Thermal shock performance of fine grained Al2O3 ceramics with TiO2 and ZrO2 additions for refractory applications, Adv. Eng. Mater., 12, 478, 10.1002/adem.201000037
Dong, 2012, Dielectric property and electrical conduction mechanism of ZrO2–TiO2 composite thin films, J. Mater. Sci. Mater. Electron., 23, 174, 10.1007/s10854-011-0378-x
Wang, 2008, Novel transparent ternary nanocomposite films of trialkoxysilane-capped poly (methyl methacrylate)/zirconia/titania with incorporating networks, Mater. Chem. Phys., 110, 463
Schattka, 2002, Photocatalytic activities of porous titania and titania/zirconia structures formed by using a polymer gel templating technique, Chem. Mater., 14, 5103, 10.1021/cm021238k
Yuan, 2004, Facile and generalized preparation of hierarchically mesoporous−macroporous binary metal oxide materials, Chem. Mater., 16, 5096, 10.1021/cm0494812
Zhang, 2015, Multi-layer and open three-dimensionally ordered macroporous TiO2–ZrO2 composite: diversified design and the comparison of multiple mode photocatalytic performance, Mater. Des., 86, 818, 10.1016/j.matdes.2015.07.166
Yuan, 2009, Highly ordered mesoporous titania–zirconia photocatalyst for applications in degradation of rhodamine-B and hydrogen evolution, Microporous Mesoporous Mater., 124, 169, 10.1016/j.micromeso.2009.05.006
Choi, 2013, High surface area mesoporous titanium–zirconium oxide nanofibrous web: a heavy metal ion adsorbent, J. Mater. Chem. A, 1, 5847, 10.1039/c3ta00030c
Wolosiuk, 2014, Silver nanoparticle-mesoporous oxide nanocomposite thin films: a platform for spatially homogeneous SERS-active substrates with enhanced stability, ACS Appl. Mater. Interfaces, 6, 5263, 10.1021/am500631f
Ragesh, 2014, A review on ‘self-cleaning and multifunctional materials, J. Mater. Chem. A, 2, 14773, 10.1039/C4TA02542C
Pinho, 2011, Titania-silica nanocomposite photocatalysts with application in stone self-cleaning, J. Phys. Chem. C, 115, 22851, 10.1021/jp2074623
Li, 2013, Synthesis of raspberry-like SiO2–TiO2 nanoparticles toward antireflective and self-cleaning coatings, ACS Appl. Mater. Interfaces, 5, 5282, 10.1021/am401124j
Si, 2015, Superhydrophobic nanocoatings: from materials to fabrications and to applications, Nanoscale, 7, 5922, 10.1039/C4NR07554D
Nakajima, 2000, Photoinduced amphiphilic surface on polycrystalline anatase TiO2 thin films, Langmuir, 16, 7048, 10.1021/la0004348
Yu, 2003, Photocatalytic activity, antibacterial effect, and photoinduced hydrophilicity of TiO2 films coated on a stainless steel substrate, Environ. Sci. Technol., 37, 2296, 10.1021/es0259483
Ollis, 1991, Photocatalyzed destruction of water contaminants, Environ. Sci. Technol., 25, 1522, 10.1021/es00021a001
Anheden, 1996, Photocatalytic Treatment of Wastewater From 5–Fluorouracil Manufacturing, J. Sol. Energy Eng., 118, 2, 10.1115/1.2847912
Schwarz, 1997, A new method to determine the generation of hydroxyl radicals in illuminated TiO2 suspensions, J. Phys. Chem. B, 101, 7127, 10.1021/jp971315c
Shapovalov, 2002, Nature of the excited states of the rutile TiO2 (110) surface with adsorbed water, Surf. Sci., 498, L103, 10.1016/S0039-6028(01)01595-3
Guan, 2005, Relationship between photocatalytic activity, hydrophilicity and self-cleaning effect of TiO2/SiO2 films, Surf. Coat. Technol., 191, 155, 10.1016/j.surfcoat.2004.02.022
Wang, 2020, Robust superhydrophobic mesh coated by PANI/TiO2 nanoclusters for oil/water separation with high flux, self-cleaning, photodegradation and anti-corrosion, Sep. Purif. Technol., 235, 10.1016/j.seppur.2019.116166
Zhou, 2007, Multi-modal mesoporous TiO2–ZrO2 composites with high photocatalytic activity and hydrophilicity, Nanotechnology, 19, 10.1088/0957-4484/19/03/035610
Simon, 2018, Development of thick superhydrophilic TiO2–ZrO2 transparent coatings realized through the inclusion of poly (methyl methacrylate) and pluronic-F127, ACS Omega, 3, 14924, 10.1021/acsomega.8b01940
Lin, 2012, Synthesis of ultrathin and compact Au@ MnO2 nanoparticles for shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS), J. Raman Spectrosc., 43, 40, 10.1002/jrs.3007
Zhang, 2014, Multifunctional Fe3O4@TiO2@ Au magnetic microspheres as recyclable substrates for surface-enhanced Raman scattering, Nanoscale, 6, 5971, 10.1039/C4NR00975D
Moskovits, 2005, Surface-enhanced Raman spectroscopy: a brief retrospective, J. Raman Spectrosc., 36, 485, 10.1002/jrs.1362
Zayak, 2011, Chemical Raman enhancement of organic adsorbates on metal surfaces, Phys. Rev. Lett., 106, 10.1103/PhysRevLett.106.083003
Ko, 2008, Nanostructured surfaces and assemblies as SERS media, Small, 4, 1576, 10.1002/smll.200800337
Wang, 2007, Plasmonic nanostructures: artificial molecules, Acc. Chem. Res., 40, 53, 10.1021/ar0401045
Willets, 2007, Localized surface plasmon resonance spectroscopy and sensing, Annu. Rev. Phys. Chem., 58, 267, 10.1146/annurev.physchem.58.032806.104607
Anema, 2011, Shell-isolated nanoparticle-enhanced Raman spectroscopy: expanding the versatility of surface-enhanced Raman scattering, Annu. Rev. Anal. Chem., 4, 129, 10.1146/annurev.anchem.111808.073632
Montes-García, 2017, Pillar [5]arene-based supramolecular plasmonic thin films for label-free, quantitative and multiplex SERS detection, ACS Appl. Mater. Interfaces, 9, 26372, 10.1021/acsami.7b08297
Sun, 2008, Nanoparticle metal− semiconductor charge transfer in ZnO/PATP/Ag assemblies by surface-enhanced raman spectroscopy, J. Phys. Chem. C, 112, 6093, 10.1021/jp711240a
Sun, 2007, ZnO nanoparticle size-dependent excitation of surface Raman signal from adsorbed molecules: observation of a charge-transfer resonance, Appl. Phys. Lett., 91, 10.1063/1.2817529
Yang, 2008, Observation of enhanced Raman scattering for molecules adsorbed on TiO2 nanoparticles: charge-transfer contribution, J. Phys. Chem. C, 112, 20095, 10.1021/jp8074145
Zhou, 2015, Plasmon-enhanced light harvesting: applications in enhanced photocatalysis, photodynamic therapy and photovoltaics, RSC Adv., 5, 29076, 10.1039/C5RA01819F
Jayram, 2016, Analysis on superhydrophobic silver decorated copper oxide nanostructured thin films for SERS studies, J. Colloid Interface Sci., 477, 209, 10.1016/j.jcis.2016.05.051
Yang, 2017, Highly-dispersed TiO2 nanoparticles with abundant active sites induced by surfactants as a prominent substrate for SERS: charge transfer contribution, Phys. Chem. Chem. Phys., 19, 22302, 10.1039/C7CP04361A
Xu, 2011, Silver nanoparticles coated zinc oxide nanorods array as superhydrophobic substrate for the amplified SERS effect, J. Phys. Chem. C, 115, 9977, 10.1021/jp201897j
Kneipp, 2008, SERS-A single-molecule and nanoscale tool for bioanalytics, Chem. Soc. Rev., 37, 1052, 10.1039/b708459p
Su, 2017, Multicolor gold–silver nano-mushrooms as ready-to-use SERS probes for ultrasensitive and multiplex DNA/miRNA detection, Anal. Chem., 89, 2531, 10.1021/acs.analchem.6b04729
Song, 2016, A novel biosensor based on Au@ Ag core–shell nanoparticles for SERS detection of arsenic (III), Talanta, 146, 285, 10.1016/j.talanta.2015.08.052
Fioravanti, 2020, Characterization of SERS platforms designed by electrophoretic deposition on CVD graphene and ITO/glass, Mater. Adv., 10.1039/D0MA00333F
Liu, 2016, Fe3O4@ Graphene Oxide@ Ag particles for surface magnet solid-phase extraction surface-enhanced Raman scattering (SMSPE-SERS): from sample pretreatment to detection all-in-one, ACS Appl. Mater. Interfaces, 8, 14160, 10.1021/acsami.6b02944
Guo, 2008, Nanostructured materials for electrochemical energy conversion and storage devices, Adv.Mater., 20, 2878, 10.1002/adma.200800627
Liang, 2019, Toward fiber-, paper-, and foam-based flexible solid-state supercapacitors: electrode materials and device designs, Nanoscale, 11, 7041, 10.1039/C8NR10301A
Scrosati, 2011, Lithium-ion batteries. A look into the future, Energy Environ. Sci., 4, 3287, 10.1039/c1ee01388b
Yang, 2013, Use of organic precursors and graphenes in the controlled synthesis of carbon-containing nanomaterials for energy storage and conversion, Acc. Chem. Res., 46, 116, 10.1021/ar3001475
Brezesinski, 2009, Templated nanocrystal-based porous TiO2 films for next-generation electrochemical capacitors, J. Am. Chem. Soc., 131, 1802, 10.1021/ja8057309
Frackowiak, 2001, Carbon materials for the electrochemical storage of energy in capacitors, Carbon N. Y., 39, 937, 10.1016/S0008-6223(00)00183-4
Chmiola, 2006, Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer, Science, 313, 1760, 10.1126/science.1132195
Pang, 2000, Novel electrode materials for thin-film ultracapacitors: comparison of electrochemical properties of sol-gel-derived and electrodeposited manganese dioxide, J. Electrochem. Soc., 147, 444, 10.1149/1.1393216
Zheng, 1995, Hydrous ruthenium oxide as an electrode material for electrochemical capacitors, J. Electrochem. Soc., 142, 2699, 10.1149/1.2050077
Guo, 2019, High-performance asymmetric electrochromic-supercapacitor device based on poly (indole-6-carboxylicacid)/TiO2 nanocomposites, ACS Appl. Mater. Interfaces, 11, 6491, 10.1021/acsami.8b19505
Sundriyal, 2019, Significantly enhanced performance of rGO/TiO2 nanosheet composite electrodes based 1.8 V symmetrical supercapacitor with use of redox additive electrolyte, J. Alloy. Compd., 790, 377, 10.1016/j.jallcom.2019.03.150
Lee, 2006, Recent progress in the synthesis of porous carbon materials, Adv. Mater., 18, 2073, 10.1002/adma.200501576
Zhai, 2011, Carbon materials for chemical capacitive energy storage, Adv. Mater., 23, 4828, 10.1002/adma.201100984
Sridhar, 2020, Carbon nano-fiber forest foundation for ruthenium oxide pseudo-electrochemical capacitors, Mater. Adv., 1, 215, 10.1039/D0MA00023J
Park, 2020, Combustion-driven synthesis route for tunable TiO2/RuO2 hybrid composites as high-performance electrode materials for supercapacitors, Chem. Eng. J., 384, 10.1016/j.cej.2019.123269
Azizi, 2019, Reduced graphene Oxide/Poly (1, 5 dihydroxynaphthalene)/TiO2 nanocomposite conducting polymer coated on gold as a supercapacitor electrode, Electrochim. Acta, 298, 726, 10.1016/j.electacta.2018.12.074
Mudila, 2016, Electrochemical performance of zirconia/graphene oxide nanocomposites cathode designed for high power density supercapacitor, J. Anal. Sci. Technol., 7, 1, 10.1186/s40543-016-0084-7
Zhang, 2019, Polypyrrole wrapped graphene/TiO2 composites hydrogels for high performance supercapacitors, Mater. Res. Express, 6, 10.1088/2053-1591/ab1a85
Guo, 2009, Synthesis of sulfated ZrO2/MWCNT composites as new supports of Pt catalysts for direct methanol fuel cell application, Appl. Catal. B Environ., 89, 597, 10.1016/j.apcatb.2009.01.025