Recent Trends in Sustainable Textile Waste Recycling Methods: Current Situation and Future Prospects

Springer Science and Business Media LLC - Tập 375 Số 5 - 2017
Nattha Pensupa1, Shao-Yuan Leu2, Yunzi Hu1, Chenyu Du3, Hao Liu2, Houde Jing2, Huaimin Wang1, Carol Sze Ki Lin1
1School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
2Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong
3School of Applied Sciences, University of Huddersfield, Huddersfield, UK

Tóm tắt

Từ khóa


Tài liệu tham khảo

Shishoo R (2012) Introduction: trends in the global textile industry. In: Shishoo R (ed) The global textile and clothing industry. Woodhead Publishing, Sawston, pp 1–7

Shui S, Plastina A (2011) A summary of the world apparel fiber consumption survey 2005–2008. Food and Agriculture Organization of the United Nation (FAO) and International Cotton Advisory Committee (ICAC), Washington, pp 1–11

Bartl A (2011) Textile Waste. In: Vallero DA (ed) Waste. Academic Press, Boston, pp 167–179. doi: 10.1016/B978-0-12-381475-3.10012-9

Statista (2016) Worldwide production volume of chemical and fibers from 1975 to 2014 The statistics portal. http://www.statista.com/statistics/263154/worldwide-production-volume-of-textile-fibers-since-1975/ . Accessed 25 May 2016

Tot BV (2004) Textile & apparel industry report. Available via FPT Securities. http://fpts.com.vn/FileStore2/File/2014/07/01/Textile%20and%20Apparel%20Industry%20Report%20(latest).pdf . Accessed 29 July 2016

Lenzing (2016) The global fibre market. http://www.lenzing.com/en/fibers/the-global-fiber-market.html . Accessed 29 July 2016

Vaidya AK (2006) Globalization: encyclopedia of trade, labor, and politics, vol 1. ABC-CLIO, Santa Barbara, pp 413–432

UN_Comtrade (2012) Apparel and Textiles: Trade Statistics. Michigan State University. http://globaledge.msu.edu/industries/apparel-and-textiles/tradestats . Accessed 27 May 2016

Huang N (2012) China—the king of textile industry. Businessvibes. https://www.businessvibes.com/blog/china-king-textile-industry . Accessed 31 Oct 2012

Sharma M, Dhiman R (2016) Determinants affecting Indian textile exports: a review. Biz Bytes J Manag Technol 6:193–199

Forsythe SM, Thomas JB (1989) Natural, synthetic, and blended fiber contents: an investigation of consumer preferences and perceptions. Cloth Text Res J 7(3):60–64

Shui S, Plastina A (2013) World apparel fibre consumption survey. Food and Agriculture Organization of the United Nations (FAO) and International Cotton Advisory Committee (ICAC). ICAC, Washington, pp 1–27

Nordås HK (2004) The global textile and clothing industry post the agreement on textiles and clothing. World Trade Organization 7 (1,000)

Textile_Exchange (2012) FastFacts: textile and product waste. http://textileexchange.org/ . http://www.purewaste.org/media/pdf/textile-product-waste-fast-facts.pdf . Accessed 1 Aug 2016

Association SMaRT (2011) Textile recycling checklist for communities [Online]. Secondary Materials and Recycled Textiles Association. http://www.smartasn.org/government/smart_checklist_rev08-03-11.pdf . Accessed 1 Aug 2016

Gracey F, Moon D (2012) Valuing our clothes: The evidence base. http://www.wrap.org.uk/sustainable-textiles/valuing-our-clothes%20 . Accessed 8 Sept 2016

Department EP (2015) Monitoring of solid waste in Hong Kong (waste statistics for 2014). Environmental Protection Department. https://www.wastereduction.gov.hk/sites/default/files/msw2014.pdf . Accessed 29 July 2016

Luz C (2007) Waste couture: environmental impact of the clothing industry. Environ Health Perspect 115(9):A448

Ghaly A, Ananthashankar R, Alhattab M, Ramakrishnan V (2014) Production, characterization and treatment of textile effluents: a critical review. J Chem Eng Process Tech 5:1–18

Alay E, Duran K, Korlu A (2016) A sample work on green manufacturing in textile industry. Sustain Chem Pharm 3:39–46. doi: 10.1016/j.scp.2016.03.001

Statista (2016) Cotton Production worldwide by country. The statistics Portal. http://www.statista.com/statistics/263055/cotton-production-worldwide-by-top-countries/ . Accessed 9 July 2016

Gordon S, Yl Hsieh (2006) Cotton: Science and technology. Woodhead Publishing, Sawston, pp 576–586

Lee GF, Jones-Lee A (1993) Environmental impacts of alternative approaches for municipal solid waste management: an overview. Report by G Fred Lee & Associates, El Macero

Raj C, Arul S, Sendilvelan S, Saravanan C (2009) Bio gas from textile cotton waste- an alternate fuel for diesel engines. Open Waste Manage J 2:1–5

Exchange O (2010) Organic Cotton Market Report 2009. Organic Exchange, O’Donnell, Texas, pp 1–6

Hamner B (2006) Effects of green purchasing strategies on supplier behaviour. In: Sarkis J (ed) Greening the supply chain. Springer, Sawston, pp 25–37

Meyer A (2001) What’s in it for the customers? Successfully marketing green clothes. Bus Str Environ 10(5):317–330

Bansal P, Hunter T (2003) Strategic explanations for the early adoption of ISO 14001. J Bus Ethics 46(3):289–299

Lo CK, Yeung AC, Cheng T (2012) The impact of environmental management systems on financial performance in fashion and textiles industries. Int J Prod Econ 135(2):561–567

Standardization IOf (2015) The ISO survey of management system standard certifications-2014. http://www.iso.org/iso/iso_survey_executive-summary.pdf?v2014 . Accessed 29 July 2016

Hwang L (2008) Water management in China’s apparel and textile factories. Business for social responsibility. https://www.bsr.org/reports/ChinaWater_IssueBrief_042908.pdf . Accessed 29 July 2016

Kant R (2012) Textile dyeing industry an environmental hazard. Nat Sci 4(1):22

Zeronian SH, Inglesby MK (1995) Bleaching of cellulose by hydrogen peroxide. Cellulose 2(4):265–272. doi: 10.1007/bf00811817

Aly AS, Moustafa AB, Hebeish A (2004) Bio-technological treatment of cellulosic textiles. J Clean Prod 12(7):697–705. doi: 10.1016/S0959-6526(03)00074-X

Babu B, Parande A, Raghu S, Kumar T (2007) Cotton textile processing: waste generation and effluent treatment. J Cotton Sci 11:141–153

Jegatheesan V, Pramanik BK, Chen J, Navaratna D, Chang C-Y, Shu L (2016) Treatment of textile wastewater with membrane bioreactor: a critical review. Bioresour Technol 204:202–212. doi: 10.1016/j.biortech.2016.01.006

Hasanbeigi A (2014) Alternative and emerging technologies for an energy-efficient, water-efficient, and low-pollution textile industry. Lawrence Berkeley National Laboratory, Berkeley

ChemSec’s (2016) The textile process. textile guide. http://textileguide.chemsec.org/find/get-familiar-with-your-textile-production-processes/ . Accessed 29 May 2016

Wang Z, Huang K, Xue M, Liu Z (2011) Textile dyeing wastewater treatment. INTECH Open Access Publisher, Rijeka, pp 91–116

Dey S, Islam A (2015) A review on textile wastewater characterization in Bangladesh. Resour Environ 5(1):15–44

Roy R, Fakhruddin A, Khatun R, Islam M (2010) Reduction of COD and pH of textile industrial effluents by aquatic macrophytes and algae. J Bangladesh Acad Sci 34(1):9–14

Muhammad A, Shafeeq A, Butt M, Rizvi Z, Chughtai M, Rehman S (2008) Decolorization and removal of cod and bodfrom raw and biotreated textile dye bath effluent through advanced oxidation processes (AOPS). Braz J Chem Eng 25(3):453–459

Babu BR, Parande A, Raghu S (2007) Textile technology: an overview of wastes produced during cotton textile processing and effluent treatment methods. J Cotton Sci 11(1):12

Sun W, Chen J, Chen L, Wang J, Zhang Y (2016) Coupled electron beam radiation and MBR treatment of textile wastewater containing polyvinyl alcohol. Chemosphere 155:57–61. doi: 10.1016/j.chemosphere.2016.04.030

Ebeling JM, Sibrell PL, Ogden SR, Summerfelt ST (2003) Evaluation of chemical coagulation–flocculation aids for the removal of suspended solids and phosphorus from intensive recirculating aquaculture effluent discharge. Aquacult Eng 29(1–2):23–42. doi: 10.1016/S0144-8609(03)00029-3

Verma AK, Dash RR, Bhunia P (2012) A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters. J Environ Manage 93(1):154–168. doi: 10.1016/j.jenvman.2011.09.012

Ciardelli G, Capannelli G, Bottino A (2000) Ozone treatment of textile wastewaters for reuse. Water Sci Technol 44(5):61–67

Lin S, Peng C (1995) Treatment of textile wastewater by Fenton’s reagent. J Environ Sci Health Part A Environ Sci En 30(1):89–98

Aravind P, Subramanyan V, Ferro S, Gopalakrishnan R (2016) Eco-friendly and facile integrated biological-cum-photo assisted electrooxidation process for degradation of textile wastewater. Water Res 93:230–241. doi: 10.1016/j.watres.2016.02.041

Banat IM, Nigam P, Singh D, Marchant R (1996) Microbial decolorization of textile-dye-containing effluents: a review. Bioresour Technol 58(3):217–227. doi: 10.1016/S0960-8524(96)00113-7

Govindwar SP, Kurade MB, Tamboli DP, Kabra AN, Kim PJ, Waghmode TR (2014) Decolorization and degradation of xenobiotic azo dye Reactive Yellow-84A and textile effluent by Galactomyces geotrichum. Chemosphere 109:234–238. doi: 10.1016/j.chemosphere.2014.02.009

Jadhav J, Govindwar S (2006) Biotransformation of malachite green by Saccharomyces cerevisiae MTCC 463. Yeast 23(4):315–323

Saratale RG, Saratale GD, Chang JS, Govindwar SP (2009) Decolorization and biodegradation of textile dye Navy blue HER by Trichosporon beigelii NCIM-3326. J Hazard Mater 166(2–3):1421–1428. doi: 10.1016/j.jhazmat.2008.12.068

Fu Y, Viraraghavan T (2001) Fungal decolorization of dye wastewaters: a review. Bioresour Technol 79(3):251–262. doi: 10.1016/S0960-8524(01)00028-1

Deng D, Guo J, Zeng G, Sun G (2008) Decolorization of anthraquinone, triphenylmethane and azo dyes by a new isolated Bacillus cereus strain DC11. Int Biodeterior Biodegrad 62(3):263–269. doi: 10.1016/j.ibiod.2008.01.017

Przystaś W, Zabłocka-Godlewska E, Grabińska-Sota E (2009) Screening of dyes decolorizing microorganisms strains. Pol J Environ Stud 18(2B):69–73

Ali N, Hameed A, Ahmed S (2010) Role of brown-rot fungi in the bioremoval of azo dyes under different conditions. Braz J Microbiol 41:907–915

Rani B, Kumar V, Singh J, Bisht S, Teotia P, Sharma S, Kela R (2014) Bioremediation of dyes by fungi isolated from contaminated dye effluent sites for bio-usability. Braz J Microbiol 45(3):1055–1063

Przystaś W, Zabłocka-Godlewska E, Grabińska-Sota E (2013) Effectiveness of dyes removal by mixed fungal cultures and toxicity of their metabolites. Water Air Soil Pollut 224(5):1534. doi: 10.1007/s11270-013-1534-0

Abadulla E, Tzanov T, Costa S, Robra K-H, Cavaco-Paulo A, Gübitz GM (2000) Decolorization and detoxification of textile dyes with a laccase from Trametes hirsuta. Appl Environ Microbiol 66(8):3357–3362

Tauber MM, Guebitz GM, Rehorek A (2005) Degradation of azo dyes by laccase and ultrasound treatment. Appl Environ Microbiol 71(5):2600–2607

Cardoso JC, Bessegato GG, Boldrin Zanoni MV (2016) Efficiency comparison of ozonation, photolysis, photocatalysis and photoelectrocatalysis methods in real textile wastewater decolorization. Water Res 98:39–46. doi: 10.1016/j.watres.2016.04.004

Vigneswaran C, Ananthasubramanian M, Kandhavadivu P (2014) Bioprocessing of organic cotton textiles. In: Bioprocessing of textiles. Woodhead Publishing India, Sawston, p 319–397. doi: http://dx.doi.org/10.1016/B978-93-80308-42-5.50007-X

Meksi N, Haddar W, Hammami S, Mhenni MF (2012) Olive mill wastewater: a potential source of natural dyes for textile dyeing. Ind Crops Prod 40:103–109. doi: 10.1016/j.indcrop.2012.03.011

Nasirizadeh N, Dehghanizadeh H, Yazdanshenas ME, Moghadam MR, Karimi A (2012) Optimization of wool dyeing with rutin as natural dye by central composite design method. Ind Crops Prod 40:361–366. doi: 10.1016/j.indcrop.2012.03.035

Haddar W, Elksibi I, Meksi N, Mhenni MF (2014) Valorization of the leaves of fennel (Foeniculum vulgare) as natural dyes fixed on modified cotton: a dyeing process optimization based on a response surface methodology. Ind Crops Prod 52:588–596. doi: 10.1016/j.indcrop.2013.11.019

Punrattanasin N, Nakpathom M, Somboon B, Narumol N, Rungruangkitkrai N, Mongkholrattanasit R (2013) Silk fabric dyeing with natural dye from mangrove bark (Rhizophora apiculata Blume) extract. Ind Crops Prod 49:122–129. doi: 10.1016/j.indcrop.2013.04.041

Jabasingh SA, Sahu P, Yimam A (2016) Enviro-friendly biofinishing of cotton fibers using Aspergillus nidulans AJSU04 cellulases for enhanced uptake of Myrobalan dye from Terminalia chebula. Dyes Pigm 129:129–140. doi: 10.1016/j.dyepig.2016.02.019

Payne A (2015) Open- and closed-loop recycling of textile and apparel products. In: Muthu SS (ed) Handbook of life cycle assessment (LCA) of textiles and clothing. Woodhead Publishing, Sawston, Cambridge, UK, pp 103–123. doi: 10.1016/B978-0-08-100169-1.00006-X

Joung H-M, Park-Poaps H (2013) Factors motivating and influencing clothing disposal behaviours. Int J Consum Stud 37(1):105–111. doi: 10.1111/j.1470-6431.2011.01048.x

Wallander M (2012) Why textile waste should be banned from landfills. Retrieved October 5:2013

Mitchell JL, Carr DJ, Niven BE, Harrison K, Girvan E (2012) Physical and mechanical degradation of shirting fabrics in burial conditions. Forensic Sci Int 222(1–3):94–101. doi: 10.1016/j.forsciint.2012.05.005

The Science Learning Hub (2008) Measuring biodegradability. The University of Waikato, New Zealand. Available via University of Waikato, New Zealand. http://sciencelearn.org.nz/Contexts/Enviro-imprints/Looking-Closer/Measuring-biodegradability . Accessed 19 June 2016

Li L, Frey M, Browning KJ (2010) Biodegradability study on cotton and polyester fabrics. J Eng Fiber Fabr 5(4):42–53

IWTO (2016) Wool and Biodegradability. International Wool Textile Organization (IWTO). http://www.iwto.org/uploaded/Fact_Sheets/Wool_and_Biodegradability_IWTO_Fact_Sheet_update.pdf . Accessed 31 July 2016

Khubaib A, Muhammad M (2011) Biodegradation of Textile Materials University of Boras, Sweden

Tojo N (2012) Prevention of textile waste: material flows of textiles in three Nordic countries and suggestions on policy instruments. Nordic council of ministers, Copenhagen

Ryu C, Phan AN, Sharifi VN, Swithenbank J (2007) Combustion of textile residues in a packed bed. Exp Therm Fluid Sci 31(8):887–895. doi: 10.1016/j.expthermflusci.2006.09.004

WHO (2016) Dioxins and their effects on human health. World Health Organization. http://www.who.int/mediacentre/factsheets/fs225/en/ . Accessed 1 May 2016

Wanassi B, Azzouz B, Hassen MB (2016) Value-added waste cotton yarn: optimization of recycling process and spinning of reclaimed fibers. Ind Crops Prod 87:27–32

Binici H, Gemci R, Aksogan O, Kaplan H (2010) Insulation properties of bricks made with cotton and textile ash wastes. Int J Mater Res 101(7):894–899. doi: 10.3139/146.110348

Bediako JK, Wei W, Yun Y-S (2016) Low-cost renewable adsorbent developed from waste textile fabric and its application to heavy metal adsorption. J Taiwan Inst Chem Eng 63:250–258. doi: 10.1016/j.jtice.2016.03.009

Algin HM, Turgut P (2008) Cotton and limestone powder wastes as brick material. Constr Build Mater 22(6):1074–1080. doi: 10.1016/j.conbuildmat.2007.03.006

Binici H, Temiz H, Aksoǧan O, Ulusoy A (2009) The engineering properties of fired brick incorporating textile waste ash and basaltic pumice. J Fac Eng Archit Gaz 24(3):485–498

Binici H, Gemci R, Kucukonder A, Solak HH (2012) Investigating sound insulation, thermal conductivity and radioactivity of chipboards produced with cotton waste, fly ash and barite. Constr Build Mater 30:826–832. doi: 10.1016/j.conbuildmat.2011.12.064

Fattahi Meyabadi T, Dadashian F, Mir Mohamad Sadeghi G, Ebrahimi Zanjani Asl H (2014) Spherical cellulose nanoparticles preparation from waste cotton using a green method. Powder Technol 261:232–240. doi: 10.1016/j.powtec.2014.04.039

Sun X, Lu C, Liu Y, Zhang W, Zhang X (2014) Melt-processed poly(vinyl alcohol) composites filled with microcrystalline cellulose from waste cotton fabrics. Carbohydr Polym 101:642–649. doi: 10.1016/j.carbpol.2013.09.088

Dobircau L, Sreekumar PA, Saiah R, Leblanc N, Terrié C, Gattin R, Saiter JM (2009) Wheat flour thermoplastic matrix reinforced by waste cotton fibre: agro-green-composites. Compos A 40(4):329–334. doi: 10.1016/j.compositesa.2008.11.004

Ramamoorthy SK, Persson A, Skrifvars M (2014) Reusing textile waste as reinforcements in composites. J Appl Polym Sci 131(17):16. doi: 10.1002/app.40687

Bodur MS, Bakkal M, Savas M, Berkalp OB (2014) A new approach for the development of textile waste cotton reinforced composites (T-FRP): laminated hybridization vs. coupling agents. J Polym Eng 34(7):639–648. doi: 10.1515/polyeng-2013-0281

Briga-Sá A, Nascimento D, Teixeira N, Pinto J, Caldeira F, Varum H, Paiva A (2013) Textile waste as an alternative thermal insulation building material solution. Constr Build Mater 38:155–160. doi: 10.1016/j.conbuildmat.2012.08.037

Zou Y, Reddy N, Yang Y (2011) Reusing polyester/cotton blend fabrics for composites. Compos B 42(4):763–770. doi: 10.1016/j.compositesb.2011.01.022

Bakkal M, Bodur MS, Berkalp OB, Yilmaz S (2012) The effect of reprocessing on the mechanical properties of the waste fabric reinforced composites. J Mater Process Technol 212(11):2541–2548. doi: 10.1016/j.jmatprotec.2012.03.008

Wilkins TA, Arpat AB (2005) The cotton fiber transcriptome. Physiol Plant 124(3):295–300

Anderson DB, Kerr T (1938) Growth and structure of cotton fiber. Ind Eng Chem 30(1):48–54

Quiroz-Castañeda RE, Folch-Mallol JL (2013) Hydrolysis of biomass mediated by cellulases for the production of sugars. In: Chandel AK, Silva SSD (eds) Sustainable degradation of lignocellulosic biomass techniques, applications and commercialization. InTech, Rijeka, pp 119–155

Ruel K, Nishiyama Y, Joseleau J-P (2012) Crystalline and amorphous cellulose in the secondary walls of Arabidopsis. Plant Sci 193–194:48–61. doi: 10.1016/j.plantsci.2012.05.008

Bisaria V, Martin A (1991) Bioprocessing of agro-residues to glucose and chemicals. In: Martin AM (ed) Bioconversion of waste materials to industrial products. Elsevier, Barking, pp 187–223

Pensupa N, Jin M, Kokolski M, Archer DB, Du C (2013) A solid state fungal fermentation-based strategy for the hydrolysis of wheat straw. Bioresour Technol 149:261–267

Sternberg D (1975) Production of cellulase by Trichoderma. In: Biotechnology and bioengineering symposium, pp 35–53

Gusakov AV (2011) Alternatives to Trichoderma reesei in biofuel production. Trends Biotechnol 29(9):419–425. doi: 10.1016/j.tibtech.2011.04.004

Merino ST, Cherry J (2007) Progress and challenges in enzyme development for biomass utilization. In: Olsson L. (eds) Biofuels. Advances in Biochemical Engineering/Biotechnology, vol 108. Springer, Berlin, p 95–120

Bommarius AS, Sohn M, Kang Y, Lee JH, Realff MJ (2014) Protein engineering of cellulases. Curr Opin Biotechnol 29:139–145

Béguin P, Aubert JP (1994) The biological degradation of cellulose. FEMS Microbiol Rev 13(1):25–58

Liu H, Sun J, Leu SY, Chen S (2016) Toward a fundamental understanding of cellulase-lignin interactions in the whole slurry enzymatic saccharification process. Biofuels Bioprod Biorefin. doi: 10.1002/bbb.1670

Linder M, Teeri TT (1997) Biochemistry and genetics of cellulases and hemicellulases and their application. The roles and function of cellulose-binding domains. J Biotechnol 57(1):15–28. doi: 10.1016/S0168-1656(97)00087-4

Jeoh T, Ishizawa CI, Davis MF, Himmel ME, Adney WS, Johnson DK (2007) Cellulase digestibility of pretreated biomass is limited by cellulose accessibility. Biotechnol Bioeng 98(1):112–122

Tzi BN, Randy C (2011) Cellulase: types and action, mechanism, and uses. Nova Science Publisher, New York

Leu SY, Zhu J (2012) Substrate-related factors affecting enzymatic saccharification of lignocelluloses: our recent understanding. Bioenergy Res 6:1–11

Chang VS, Holtzapple MT (2000) Fundamental factors affecting biomass enzymatic reactivity. In: Sachs J (ed) Twenty-first symposium on biotechnology for fuels and chemicals. Springer, Sawston, pp 5–37

Hall M, Bansal P, Lee JH, Realff MJ, Bommarius AS (2010) Cellulose crystallinity–a key predictor of the enzymatic hydrolysis rate. FEBS J 277(6):1571–1582

Choi WI (2016) Effects of Physical Pretreatment by a Continuous Twin Screw-driven Reactor (CTSR) on the Enzymatic Hydrolysis of Miscanthus sinensis var. purpurascens. In: 38th Symposium on Biotechnology for Fuels and Chemicals. Simb

Alvira P, Tomás-Pejó E, Ballesteros M, Negro M (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101(13):4851–4861

Kumar R, Wyman CE (2009) Does change in accessibility with conversion depend on both the substrate and pretreatment technology? Bioresour Technol 100(18):4193–4202

Puri VP (1984) Effect of crystallinity and degree of polymerization of cellulose on enzymatic saccharification. Biotechnol Bioeng 26(10):1219–1222

Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44(22):3358–3393

Mansfield SD, Mooney C, Saddler JN (1999) Substrate and enzyme characteristics that limit cellulose hydrolysis. Biotechnol Prog 15(5):804–816

Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83(1):1–11

Caulfield DF, Moore WE (1974) Effect of varying crystallinity of cellulose on enzymic hydrolysis. Wood Sci 6(4):375–379. Food and Agricultural Organisation of the United Nation. http://agris.fao.org/agris-search/search.do?recordID=US201303161990 . Accessed 12 Aug 2017

Chandra RP, Bura R, Mabee W, Berlin DA, Pan X, Saddler J (2007) Substrate pretreatment: The key to effective enzymatic hydrolysis of lignocellulosics? Biofuels. Springer, Berlin, pp 67–93

Zhang YHP, Lynd LR (2004) Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnol Bioeng 88(7):797–824

Chu CY, Wu SY, Tsai CY, Lin CY (2011) Kinetics of cotton cellulose hydrolysis using concentrated acid and fermentative hydrogen production from hydrolysate. Int J Hydrogen Energy 36(14):8743–8750

Shen F, Xiao W, Lin L, Yang G, Zhang Y, Deng S (2013) Enzymatic saccharification coupling with polyester recovery from cotton-based waste textiles by phosphoric acid pretreatment. Bioresour Technol 130:248–255. doi: 10.1016/j.biortech.2012.12.025

Kuo CH, Lin PJ, Wu YQ, Ye LY, Yang DJ, Shieh CJ, Lee CK (2014) Simultaneous saccharification and fermentation of waste textiles for ethanol production. BioResources 9(2):2866–2875

Arthe R, Rajesh R, Rajesh E, Rajendran R, Jeyachandran S (2008) Production of bio-ethanol from cellulosic cotton waste through microbial extracellular enzymatic hydrolysis and fermentation. EJEAF Chem 7(6):2984–2992

Mahalakshmi M, Angayarkanni J, Rajendran R, Rajesh R (2011) Bioconversion of cotton waste from textile mills to bioethanol by microbial saccharification and fermentation. Ann Biol Res 2(3):380–388

Ouchi A, Toida T, Kumaresan S, Ando W, Kato J (2010) A new methodology to recycle polyester from fabric blends with cellulose. Cellulose 17(1):215–222

Jeihanipour A, Taherzadeh MJ (2009) Ethanol production from cotton-based waste textiles. Bioresour Technol 100(2):1007–1010. doi: 10.1016/j.biortech.2008.07.020

Jeihanipour A, Karimi K, Niklasson C, Taherzadeh MJ (2010) A novel process for ethanol or biogas production from cellulose in blended-fibers waste textiles. Waste Manag 30(12):2504–2509. doi: 10.1016/j.wasman.2010.06.026

Sankauskaite A, Stygiene L, Tumeniene MD, Krauledas S, Jovaisiene L, Puodziuniene R (2014) Investigation of cotton component destruction in cotton/polyester blended textile waste materials. Mater Sci 20(2):189–192

Csiszar E, Urbánszki K, Szakacs G (2001) Biotreatment of desized cotton fabric by commercial cellulase and xylanase enzymes. J Mol Catal B Enzym 11(4):1065–1072

Khan MMR, Mondal MIH (2012) Bleach washing combined with pumice stone for the modification of denim garments. Orient J Chem 28(3):1241–1242

Vasconcelos A, Cavaco-Paulo A (2006) Enzymatic removal of cellulose from cotton/polyester fabric blends. Cellulose 13(5):611–618

Hong F, Guo X, Zhang S, S-f Han, Yang G, Jönsson LJ (2012) Bacterial cellulose production from cotton-based waste textiles: enzymatic saccharification enhanced by ionic liquid pretreatment. Bioresour Technol 104:503–508. doi: 10.1016/j.biortech.2011.11.028

De Silva R, Wang X, Byrne N (2014) Recycling textiles: the use of ionic liquids in the separation of cotton polyester blends. RSC Adv 4(55):29094–29098

Sun Y, Lin L, Pang C, Deng H, Peng H, Li J, He B, Liu S (2007) Hydrolysis of cotton fiber cellulose in formic acid. Energy Fuels 21(4):2386–2389

Farone WA, Cuzens JE (1996) Method of producing sugars using strong acid hydrolysis of cellulosic and hemicellulosic materials. Google patents

Wooley R, Ruth M, Sheehan J, Ibsen K, Majdeski H, Galvez A (1999) Lignocellulosic biomass to ethanol process design and economics utilizing co-current dilute acid prehydrolysis and enzymatic hydrolysis current and futuristic scenarios. DTIC document

Mosier N, Wyman C, Dale B, Elander R, Lee Y, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96(6):673–686

Von Sivers M, Zacchi G (1995) A techno-economical comparison of three processes for the production of ethanol from pine. Bioresour Technol 51(1):43–52

Wyman CE, Dale BE, Elander RT, Holtzapple M, Ladisch MR, Lee Y (2005) Coordinated development of leading biomass pretreatment technologies. Bioresour Technol 96(18):1959–1966

Silverstein RA, Chen Y, Sharma-Shivappa RR, Boyette MD, Osborne J (2007) A comparison of chemical pretreatment methods for improving saccharification of cotton stalks. Bioresour Technol 98(16):3000–3011

Öztürk HB, Abu‐Rous M, MacNaughtan B, Schuster KC, Mitchell JR, Bechtold T (2010) Changes in the inter- and intra-fibrillar structure of lyocell (TENCEL®) fibers after KOH treatment. In: Heinze T, Janura M, Koschella A (eds) Macromolecular symposia, vol 2. Wiley Online Library, pp 24–37

Holtzapple MT, Davison RR, Nagwani M (1997) Calcium hydroxide pretreatment of biomass. Google patents

Chang VS, Burr B, Holtzapple MT (1997) Lime pretreatment of switchgrass. In: Sachs J (ed) Biotechnology for fuels and chemicals. Springer, Sawston, pp 3–19

Heinze T, Koschella A (2005) Solvents applied in the field of cellulose chemistry: a mini review. Polimeros 15(2):84–90

Cai J, Zhang L, Zhou J, Li H, Chen H, Jin H (2004) Novel fibers prepared from cellulose in NaOH/urea aqueous solution. Macromol Rapid Commun 25(17):1558–1562

Kamida K, Okajima K, Matsui T, Kowsaka K (1984) Study on the solubility of cellulose in aqueous alkali solution by deuteration IR and 13C NMR. Polym J 16(12):857–866

Wang Y (2008) Cellulose fiber dissolution in sodium hydroxide solution at low temperature: dissolution kinetics and solubility improvement. ProQuest

Zhou Q, Zhang L, Li M, Wu X, Cheng G (2005) Homogeneous hydroxyethylation of cellulose in NaOH/urea aqueous solution. Polym Bull 53(4):243–248

Tan HT, Lee KT, Mohamed AR (2011) Pretreatment of lignocellulosic palm biomass using a solvent-ionic liquid [BMIM] Cl for glucose recovery: an optimisation study using response surface methodology. Carbohydr Polym 83(4):1862–1868

Singh S, Simmons BA, Vogel KP (2009) Visualization of biomass solubilization and cellulose regeneration during ionic liquid pretreatment of switchgrass. Biotechnol Bioeng 104(1):68–75

Mäki-Arvela P, Anugwom I, Virtanen P, Sjöholm R, Mikkola J-P (2010) Dissolution of lignocellulosic materials and its constituents using ionic liquids—a review. Ind Crops Prod 32(3):175–201

Swatloski RP, Spear SK, Holbrey JD, Rogers RD (2002) Dissolution of cellulose with ionic liquids. J Am Chem Soc 124(18):4974–4975

Hayes DJ (2009) An examination of biorefining processes, catalysts and challenges. Catal Today 145(1):138–151

Swatloski R, Rogers R, Holbrey J (2003) University of Alabama. USA, WO Patent 3:029329

Zhao D, Liao Y, Zhang Z (2007) Toxicity of ionic liquids. Clean Soil Air Water 35(1):42–48

Fu D, Mazza G (2011) Aqueous ionic liquid pretreatment of straw. Bioresour Technol 102(13):7008–7011

Brodeur G, Yau E, Badal K, Collier J, Ramachandran K, Ramakrishnan S (2011) Chemical and physicochemical pretreatment of lignocellulosic biomass: a review. Enzyme Res 2011:787532

Schacht C, Zetzl C, Brunner G (2008) From plant materials to ethanol by means of supercritical fluid technology. J Supercrit Fluids 46(3):299–321

Gu T, Held MA, Faik A (2013) Supercritical CO2 and ionic liquids for the pretreatment of lignocellulosic biomass in bioethanol production. Environ Technol 34(13–14):1735–1749

Saka S, Ueno T (1999) Chemical conversion of various celluloses to glucose and its derivatives in supercritical water. Cellulose 6(3):177–191. doi: 10.1023/a:1009232508644

Muratov G, Kim C (2002) Enzymatic hydrolysis of cotton fibers in supercritical CO2. Biotechnol Bioprocess Eng 7(2):85–88. doi: 10.1007/bf02935884

Kabongo JD (2013) Waste Valorization. In: Idowu SO, Capaldi N, Zu L, Gupta AD (eds) Encyclopedia of corporate social responsibility. Springer, Berlin, pp 2701–2706. doi: 10.1007/978-3-642-28036-8_680

Senthilkumar M, Gnanapragasam G, Arutchelvan V, Nagarajan S (2011) Treatment of textile dyeing wastewater using two-phase pilot plant UASB reactor with sago wastewater as co-substrate. Chem Eng J 166(1):10–14. doi: 10.1016/j.cej.2010.07.057

Wang J, Yan J, Xu W (2015) Treatment of dyeing wastewater by MIC anaerobic reactor. Biochem Eng J 101:179–184. doi: 10.1016/j.bej.2015.06.001

Gnanapragasam G, Senthilkumar M, Arutchelvan V, Velayutham T, Nagarajan S (2011) Bio-kinetic analysis on treatment of textile dye wastewater using anaerobic batch reactor. Bioresour Technol 102(2):627–632. doi: 10.1016/j.biortech.2010.08.012

Lay CH, Kuo SY, Sen B, Chen CC, Chang JS, Lin CY (2012) Fermentative biohydrogen production from starch-containing textile wastewater. Int J Hydrogen Energy 37(2):2050–2057. doi: 10.1016/j.ijhydene.2011.08.003

Li YC, Chu CY, Wu SY, Tsai CY, Wang CC, Hung CH, Lin CY (2012) Feasible pretreatment of textile wastewater for dark fermentative hydrogen production. Int J Hydrogen Energy 37(20):15511–15517. doi: 10.1016/j.ijhydene.2012.03.131

Opwisa K, Gutmanna JS (2012) Generation of biogas from textile waste waters. Chem Eng 27:103–108

Apollo S, Onyango MS, Ochieng A (2014) Integrated UV photodegradation and anaerobic digestion of textile dye for efficient biogas production using zeolite. Chem Eng J 245:241–247. doi: 10.1016/j.cej.2014.02.027

Kipçak E, Akgün M (2013) In situ gas fuel production during the treatment of textile wastewater at supercritical conditions. Water Sci Technol 67(5):1058–1067

Campbell PE, McMullan JT, Williams BC, Aumann F (2000) Co-combustion of coal and textiles in a small-scale circulating fluidised bed boiler in Germany. Fuel Process Technol 67(2):115–129

Williams PT, Reed AR (2003) Pre-formed activated carbon matting derived from the pyrolysis of biomass natural fibre textile waste. J Anal Appl Pyrolysis 70(2):563–577

Nahil MA, Williams PT (2012) Surface chemistry and porosity of nitrogen-containing activated carbons produced from acrylic textile waste. Chem Eng J 184:228–237. doi: 10.1016/j.cej.2012.01.047

Miranda R, Sosa_Blanco C, Bustos-Martínez D, Vasile C (2007) Pyrolysis of textile wastes: I. Kinetics and yields. J Anal Appl Pyrolysis 80(2):489–495. doi: 10.1016/j.jaap.2007.03.008

Reed AR, Williams PT (2004) Thermal processing of biomass natural fibre wastes by pyrolysis. Int J Energy Res 28(2):131–145

Nahil MA, Williams PT (2010) Activated carbons from acrylic textile waste. J Anal Appl Pyrolysis 89(1):51–59. doi: 10.1016/j.jaap.2010.05.005

Dong C, Zhang H, Pang Z, Liu Y, Zhang F (2013) Sulfonated modification of cotton linter and its application as adsorbent for high-efficiency removal of lead(II) in effluent. Bioresour Technol 146:512–518. doi: 10.1016/j.biortech.2013.07.108

Sun Y, Yue Q, Gao B, Li Q, Huang L, Yao F, Xu X (2012) Preparation of activated carbon derived from cotton linter fibers by fused NaOH activation and its application for oxytetracycline (OTC) adsorption. J Colloid Interface Sci 368(1):521–527. doi: 10.1016/j.jcis.2011.10.067

Jieying Z, Zhao Q, Ye Z (2014) Preparation and characterization of activated carbon fiber (ACF) from cotton woven waste. Appl Surf Sci 299:86–91. doi: 10.1016/j.apsusc.2014.01.190

Binici H, Eken M, Dolaz M, Aksogan O, Kara M (2014) An environmentally friendly thermal insulation material from sunflower stalk, textile waste and stubble fibres. Constr Build Mater 51:24–33. doi: 10.1016/j.conbuildmat.2013.10.038

Vasconcelos G, Lourenço PB, Camões A, Martins A, Cunha S (2015) Evaluation of the performance of recycled textile fibres in the mechanical behaviour of a gypsum and cork composite material. Cem Concr Compos 58:29–39. doi: 10.1016/j.cemconcomp.2015.01.001

Yasinskaya NN, Karpenya AM, Chukasova-Il’yushkina EV (2010) Experimental study and optimization of the composition of heat-insulating tiles made of textile production wastes. Fibre Chem 42:44–46

Karpenya AM, Kogan AG, Goncharenok YP (2009) Fabrication of organic synthetic fibre plates using short-fibre textile wastes. Fibre Chem 41(5):337–340

Aghaee K, Foroughi M (2013) Mechanical properties of lightweight concrete partition with a core of textile waste. Adv Civ Eng 2013:1–7. doi: 10.1155/2013/482310

Xue T, Wang ZJW (2010) Preparation of porous SiC ceramics from waste cotton linter by reactive liquid Si infiltration technique. Mater Sci Eng A 527(27):7294–7298

Yalcin I, Sadikoglu TG, Berkalp OB, Bakkal M (2013) Utilization of various non-woven waste forms as reinforcement in polymeric composites. Text Res J 83:0040517512474366

Haule LV, Carr CM, Rigout M (2016) Preparation and physical properties of regenerated cellulose fibres from cotton waste garments. J Clean Prod 112:4445–4451. doi: 10.1016/j.jclepro.2015.08.086

Lokhande H, Gotmare V (1999) Utilization of textile loomwaste as a highly absorbent polymer through graft co-polymerization. Bioresour Technol 68(3):283–286

Rahman A, Urabe T, Kishimoto N, Mizuhara S (2015) Effects of waste glass additions on quality of textile sludge-based bricks. Environ Technol 36(19):2443–2450

Monier M, Akl MA, Ali WM (2014) Modification and characterization of cellulose cotton fibers for fast extraction of some precious metal ions. Int J Biol Macromol 66:125–134. doi: 10.1016/j.ijbiomac.2014.01.068

Le Marechal AM, Križanec B, Vajnhandl S, Valh JV (2012) Textile finishing industry as an important source of organic pollutants. In: Organic pollutants 10 years after the Stockholm convention-environmental and analytical update

Gholamzad E, Karimi K, Masoomi M (2014) Effective conversion of waste polyester–cotton textile to ethanol and recovery of polyester by alkaline pretreatment. Chem Eng J 253:40–45. doi: 10.1016/j.cej.2014.04.109

Kuo CH, Lin PJ, Lee CK (2010) Enzymatic saccharification of dissolution pretreated waste cellulosic fabrics for bacterial cellulose production by Gluconacetobacter xylinus. J Chem Technol Biotechnol 85(10):1346–1352. doi: 10.1002/jctb.2439

Adnan C, Xiang G, Shui-Jia T, Sandra W, Leif JJ, Feng H (2013) Production of bacterial cellulose and enzyme from waste fiber sludge. Biotechnol Biofuels 6:25

Guo X, Chen L, Tang J, Jönsson LJ, Hong FF (2016) Production of bacterial nanocellulose and enzyme from [AMIM]Cl-pretreated waste cotton fabrics: effects of dyes on enzymatic saccharification and nanocellulose production. J Chem Technol Biotechnol 91(5):1413–1421. doi: 10.1002/jctb.4738

Jeihanipour A, Aslanzadeh S, Rajendran K, Balasubramanian G, Taherzadeh MJ (2013) High-rate biogas production from waste textiles using a two-stage process. Renewable Energy 52:128–135

Namasivayam C, Yamuna R (1992) Removal of rhodamine-B by biogas waste slurry from aqueous solution. Water Air Soil Pollut 65(1–2):101–109

Kabir MM, Forgács G, Horváth IS (2013) Enhanced methane production from wool textile residues by thermal and enzymatic pretreatment. Process Biochem 48(4):575–580

Scheirs J (1998) Polymer recycling: science, technology and applications. John Wiley & Sons Ltd, Journals, Baffins Lane, Chichester, Sussex PO 19 1 UD, UK, 1998 591

Wang Y (2006) Recycling in textiles. Woodhead publishing, UK

Wang Y (2010) Fiber and textile waste utilization. Waste Biomass Valor 1(1):135–143

McCrum NG, Buckley C, Bucknall CB (1997) Principles of polymer engineering. Oxford University Press, Oxford