Recent Progress on Layered Double Hydroxides and Their Derivatives for Electrocatalytic Water Splitting

Advanced Science - Tập 5 Số 8 - 2018
Yanyong Wang1, Dafeng Yan1, Samir El Hankari1, Yuqin Zou1, Shuangyin Wang1
1State Key Laboratory of Chem/Bio-Sensing and Chemometrics, Provincial Hunan Key Laboratory for Graphene Materials and Devices, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 P. R. China

Tóm tắt

AbstractLayered double hydroxide (LDH)‐based materials have attracted widespread attention in various applications due to their unique layered structure with high specific surface area and unique electron distribution, resulting in a good electrocatalytic performance. Moreover, the existence of multiple metal cations invests a flexible tunability in the host layers; the unique intercalation characteristics lead to flexible ion exchange and exfoliation. Thus, their electrocatalytic performance can be tuned by regulating the morphology, composition, intercalation ion, and exfoliation. However, the poor conductivity limits their electrocatalytic performance, which therefore has motivated researchers to combine them with conductive materials to improve their electrocatalytic performance. Another factor hampering their electrocatalytic activity is their large lateral size and the bulk thickness of LDHs. Introducing defects and tuning electronic structure in LDH‐based materials are considered to be effective strategies to increase the number of active sites and enhance their intrinsic activity. Given the unique advantages of LDH‐based materials, their derivatives have been also used as advanced electrocatalysts for water splitting. Here, recent progress on LDHs and their derivatives as advanced electrocatalysts for water splitting is summarized, current strategies for their designing are proposed, and significant challenges and perspectives of LDHs are discussed.

Từ khóa


Tài liệu tham khảo

10.1126/science.1103197

Seh Z. W., 2017, Science, 345, 1593

10.1038/nature11475

10.1039/C4CS00470A

10.1073/pnas.0603395103

Colton W. M., 2011, The Outlook for Energy view to 2030, Exxon Mobil Corporation

10.1039/C3CS60438A

10.1038/451778a

10.1126/science.aaf1525

10.1038/ncomms3390

10.1039/C5EE02509E

10.1002/adma.201602270

10.1038/nchem.931

10.1039/c3cc42891e

10.1002/ange.201301066

10.1039/C7TA01907F

10.1002/advs.201600371

10.1002/adma.201502696

10.1021/ja510442p

10.1021/jz2016507

10.1021/acs.jpcc.5b11868

10.1021/acsami.6b12984

10.1002/adfm.201702324

10.1021/jacs.6b09184

10.1016/j.nanoen.2017.05.044

10.1002/adma.201506314

10.1016/j.nanoen.2017.03.032

10.1002/ange.201600687

10.1002/anie.201610413

10.1002/anie.201408998

10.1039/C6TA05088C

10.1021/acsami.6b14479

10.1002/adfm.201603904

10.1021/ja502128j

10.1021/jacs.6b05190

10.1002/aenm.201602355

10.1002/adfm.201505626

10.1002/adfm.201603727

10.1002/aenm.201601555

10.1021/jacs.7b01530

10.1021/jacs.6b08491

10.1021/acscatal.7b01954

10.1002/adfm.201602236

10.1002/anie.201408876

10.1038/nmat4465

10.1021/acs.nanolett.6b05346

10.1038/nmat4660

10.1039/C6EE00054A

10.1002/advs.201500426

10.1021/jacs.6b12529

10.1002/adfm.201701008

10.1002/ange.201602802

10.1021/acs.nanolett.6b03467

10.1002/smll.201701487

10.1002/anie.201604372

10.1002/smll.201700099

10.1002/aenm.201601390

10.1021/acscatal.6b03132

10.1002/ange.201506480

10.1016/j.nanoen.2017.06.029

10.1002/anie.201610119

10.1021/ja5119495

10.1038/ncomms11981

10.1021/ja5096733

10.1002/adma.201701584

10.1039/C4CC08856E

10.1016/j.nanoen.2017.04.011

10.1021/acsenergylett.6b00219

10.1007/s12274-017-1437-2

10.1039/C6EE00377J

10.1038/ncomms5477

10.1002/adma.201701546

10.1002/anie.201701477

10.1039/C6TA02537D

10.1021/ja4027715

10.1002/ange.201402822

10.1002/adma.201601019

10.1002/adma.201501901

10.1002/cctc.201601106

10.1002/anie.201306166

10.1039/C7EE01571B

10.1002/chem.201702745

10.1002/smll.201700806

10.1021/nl504872s

10.1021/acsami.6b12100

10.1021/acs.chemmater.5b02177

10.1039/C5CC08150E

10.1021/ja506087h

10.1021/jacs.6b01606

10.1039/C6CC06608A

10.1021/acsami.6b05811

10.1002/aenm.201602148

10.1002/adma.201604765

10.1021/acs.nanolett.6b03803

10.1021/jacs.5b07728

10.1038/ncomms12324

10.1021/acsami.6b03392

10.1021/acs.chemmater.6b02610

10.1039/C7NR00740J

10.1002/smll.201700334

10.1002/ppsc.201600004

10.1021/acs.chemrev.6b00558

10.1021/acs.chemrev.6b00398

10.1039/C7CS00318H

10.1016/j.cattod.2014.05.032

10.1016/j.mattod.2015.10.006

10.1126/science.1258307

10.1039/C6CS00328A

10.1021/ja407115p

10.1016/j.nanoen.2017.05.022

Bard A. J., 1980, Electrochemical Methods: Fundamentals and Applications

Bockris J. O. M., 2000, Fundamental Aspects of Electrocrystallization

10.1021/ja511559d

10.1016/j.joule.2018.01.008

10.1021/cs500923c

10.1002/anie.201509758

10.1002/adfm.201601315

10.1038/nnano.2015.340

10.1002/aenm.201700559

10.1021/acs.nanolett.6b03332

10.1002/adfm.201400118

10.1021/acsenergylett.7b00206

10.1016/j.electacta.2010.11.062

Smith R. D., 2013, Science, 1233638

10.1021/ja509348t

10.1021/acsami.6b13075

10.1021/acsami.7b00019

10.1021/acsami.6b13360

10.1021/acscatal.6b03497

10.1039/C5EE03440J

10.1039/C5CC08845C

10.1002/adma.201602441

10.1021/acscatal.5b01761

10.1039/C5TA03394B

10.1016/j.jpowsour.2017.02.062

10.1038/ncomms2066

10.1021/acscatal.7b00007

10.1002/aenm.201300611

10.1039/C4CS00236A

Hu C., 2017, Adv. Mater., 29, 1701802

10.1002/aenm.201602089

10.1038/ncomms9625

10.1021/acsami.6b12803

10.1021/jacs.6b12250

10.1002/smll.201700355

10.1038/ncomms7616

10.1021/nl0731872

10.1126/science.1157996

10.1021/ar5002846

10.1038/ncomms10922

10.1002/adma.201501692

10.1021/ar500302q

10.1021/nn102598m

10.1038/nmat4421

10.1021/ja508965w

10.1002/adma.201602912

10.1039/C6CC03687B

10.1002/adma.201700017

10.1021/ja062677d

10.1039/c2jm34690g

10.1021/am501256x

10.1002/aenm.201500985

10.1021/ja503372r

10.1002/ange.201610776

10.1002/adma.201302637

10.1002/ange.201404161

10.1016/j.nanoen.2017.06.032

10.1002/adma.201606459

10.1002/aenm.201502585

10.1021/ja201269b

10.1126/science.1141483

10.1002/adma.201302685

10.1038/ncomms10771

10.1002/adma.201504866

10.1002/ange.201503407

10.1021/acsenergylett.7b00679