Recent Progress of Bismuth Effect on All‐Inorganic Lead‐Free Metal Halide Derivatives: Crystals Structure, Luminescence Properties, and Applications

Advanced Functional Materials - Tập 33 Số 2 - 2023
Yi Wei1,2,3, Wei Wang2, Zhennan Wang2, Hang Yang2, Xinyu You2, Yunna Zhao2, Peipei Dang3, Hongzhou Lian3, Jianhua Hao1, Guogang Li2,3,4, Jun Lin3
1Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, 999077 P. R. China
2Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, Hubei, 430074 P. R. China
3State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
4Zhejiang Institute, China University of Geosciences, Hangzhou, 311305, P.R. China

Tóm tắt

Abstract

Bismuth (Bi3+)‐included lead‐free metal halide (LFMH) materials attract much attention in lighting, display, photodetectors, X‐ray detectors, and photovoltaic fields, due to the tunable luminescence and optoelectronic performance in response to crystal and electronic structure, morphology, and particle sizes. This review summarizes Bi3+‐included LFMH materials about their preparation approach, crystal and electronic structure properties, luminescence performance, and emerging applications. Notably, Bi3+ ions not only can act as framework cation to construct stable LFMH structure, but can also incorporate into LFMH materials as activators or sensitizers to generate remarkable luminescence tuning and band engineering. The Bi3+ effect on the luminescence and optoelectronic properties of LFMH materials, including, promotion of exciton localization, enhancement of light absorption in near‐ultraviolet region, action as sensitizer ions to transfer energy to rare earth or transition metal ions and emission of highly‐efficient light is systematically summarized. The proposed structure‐luminescence relationship offers guidance for the optimization of current Bi3+‐included LFMH materials and the exploitation of new LFMH derivatives.

Từ khóa


Tài liệu tham khảo

10.1021/ja00348a085

10.1016/0009-2614(78)85626-7

10.1126/science.aaz8541

10.1021/acsnano.0c08903

10.1002/adma.201803792

10.1021/acs.jpclett.0c01451

10.1126/science.abf5291

10.1126/science.aaf9570

10.1021/nl5048779

10.1021/acs.jpcc.8b00602

10.1021/jacs.7b04000

10.1039/D1NR06255G

10.1021/jacs.1c07537

10.3390/ma12091501

10.7567/APEX.9.042602

10.1002/advs.202103724

10.1002/adom.202001866

10.1016/j.apcatb.2019.118399

10.1002/anie.201703970

10.1016/j.cej.2020.125367

10.1039/D0TC03003A

10.1021/acs.jpclett.9b01757

10.1021/jacs.0c04919

10.1021/acs.chemmater.0c00454

10.1002/anie.201702265

10.1002/adfm.202105316

10.1002/adom.202002213

10.1021/acs.chemmater.0c01708

10.1021/acs.chemmater.5b03147

10.1039/C9NR00600A

10.1021/acs.inorgchem.6b01699

10.1002/adfm.201801131

Xia Z., 2020, Angew. Chem., Int. Ed., 60, 11592

10.1039/C7TA04690A

10.1039/D0CS00779J

10.1002/aenm.201902496

10.1002/adsu.202200051

10.1002/cssc.201802930

10.1038/s41586-018-0691-0

10.1021/acsnano.7b05033

10.1021/acs.jpclett.8b03604

10.1021/acs.nanolett.1c02122

10.34133/2021/5198145

10.1021/jacs.1c03064

10.1039/D1SC01238J

10.1021/acs.jpclett.1c02051

10.1038/nature19820

10.1021/acs.jpclett.1c02973

10.1039/C5SC04845A

10.1021/acs.jpclett.2c00361

10.1021/acs.chemmater.0c00613

10.1021/acscentsci.9b00367

10.1126/sciadv.aav0693

10.1021/jacs.7b09379

10.1002/anie.202011569

10.1021/acs.jpclett.0c01382

10.1002/inf2.12074

10.1021/acs.inorgchem.8b03095

10.1021/acs.jpcc.1c05245

10.1021/acs.nanolett.0c00692

10.1063/1.5126473

10.1021/acs.jpclett.0c02625

10.1002/anie.202016185

10.1021/acsnano.0c00997

10.1002/anie.201911551

10.1021/acsphotonics.7b00837

10.1021/acs.jpcc.9b02456

10.1021/acs.chemmater.5b04231

10.1021/acs.chemmater.0c02806

10.1002/adma.202002443

10.1021/acs.inorgchem.1c01054

10.1002/anie.202009101

10.1016/j.matt.2020.05.018

10.1016/j.matt.2021.07.018

10.1021/acs.jpclett.0c02912

10.1021/acs.chemmater.0c04951

10.1021/acs.chemmater.6b03310

10.1016/j.matpr.2020.03.644

10.1002/adfm.201910648

10.1002/adfm.201704446

10.1002/adfm.202102654

10.1021/acs.jpclett.6b01041

10.1002/adfm.202105898

10.1039/C9NR07030C

10.1002/smll.201703762

10.1039/D0TA07145E

10.1002/adma.202001367

10.1021/acs.chemmater.8b05280

10.1039/C8CC01982G

10.1002/adfm.201900234

10.1038/s41467-020-16034-w

10.1002/adma.202004506

10.1021/acs.chemmater.1c00854

10.1002/advs.202000195

10.1021/acs.chemmater.0c02017

10.1039/D1TA00428J

10.1002/adma.201904347

10.1021/jacs.8b07983

10.1002/adma.202007215

10.1002/anie.201800660

10.1002/smll.201903496

10.34133/2021/9797058

10.1021/acsami.9b20640

10.1021/acsenergylett.9b02781

10.1002/advs.201903662

10.1039/C9TC02674F

10.1021/acsenergylett.0c00914

10.1002/adom.201901919

10.1021/acscentsci.0c00056

10.1021/acsami.0c14557

10.1021/acsenergylett.9b01274

10.1002/anie.202002721

10.1002/anie.202004562

10.1021/acs.chemmater.9b02973

10.1021/acs.chemmater.0c02463

10.1002/adom.201801435

10.1002/anie.201811610

10.1002/anie.202003822

10.1021/acs.cgd.0c00171

10.1002/anie.202005966

10.1021/acs.jpclett.9b01757

10.1002/adom.202000779

10.1021/acs.jpclett.0c02852

10.1021/acs.chemmater.9b00410

10.1038/s41566-018-0108-5

10.1038/nmat4843

10.1002/anie.202116085

10.1021/jacs.5b13294

10.1002/anie.201708684

Ning W., 2019, Adv. Funct. Mater., 29

10.1002/anie.202005568

10.1038/s41467-022-31016-w

10.1038/nphoton.2016.139

10.1002/anie.201911281

10.1038/nphoton.2016.41

10.1038/s41467-019-09968-3

10.1038/s41566-017-0012-4

Sun Q., 2021, Research, 2021, 9845067

10.1038/s41560-020-00749-7

10.1126/science.abm5784

10.1002/adma.202106118

10.1039/C7TA06816F

10.1002/adfm.202002342

10.1002/aenm.202103215

10.1021/jacs.0c12786

10.1021/jacs.1c07200

10.1007/s40843-018-9355-0

10.1002/adfm.201902234