Recent Progress in Shape Memory Polymers for Biomedical Applications
Tóm tắt
Từ khóa
Tài liệu tham khảo
Zhao, Q.; Qi, H. J.; Xie, T. Recent progress in shape memory polymer: New behavior, enabling materials, and mechanistic understanding. Prog. Polym Sci. 2015, 49, 79–120.
Mather, P. T.; Luo, X.; Rousseau, I. A. Shape memory polymer research. Annu. Rev. Mater. Res. 2009, 39, 445–471.
Hu, J.; Zhu, Y.; Huang, H.; Lu, J. Recent advances in shapememory polymers: structure, mechanism, functionality, modeling and applications. Prog. Polym Sci. 2012, 37(12), 1720–1763.
Hager, M. D.; Bode, S.; Weber, C.; Schubert, U. S. Shape memory polymers: Past, present and future developments. Prog. Polym Sci. 2015, 49–50, 3–33.
Liu, C.; Qin, H.; Mather, P. Review of progress in shapememory polymers. J. Mater. Chem. 2007, 17(16), 1543–1558.
Xie, T.; Xiao, X.; Cheng, Y. T. Revealing triple-shape memory effect by polymer bilayers. Macromol. Rapid Commun. 2009, 30(21), 1823–1827.
Chen, S.; Hu, J.; Zhuo, H.; Zhu, Y. Two-way shape memory effect in polymer laminates. Mater. Lett. 2008, 62(25), 4088–4090.
Herbert, K. M.; Schrettl, S.; Rowan, S. J.; Weder, C. 50th Anniversary perspective: solid-state multistimuli, multiresponsive polymeric materials. Macromolecules 2017, 50(22), 8845–8870.
Lendlein, A.; Langer, R. Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science 2002, 296(5573), 1673–1676.
Lendlein, A.; Schmidt, A. M.; Schroeter, M.; Langer, R. Shapememory polymer networks from oligo (ε-caprolactone) dimethacrylates. J. Polym. Sci., Part A: Polym. Chem. 2005, 43(7), 1369–1381.
Ping, P.; Wang, W.; Chen, X.; Jing, X. Poly (ε-caprolactone) polyurethane and its shape-memory property. Biomacromolecules 2005, 6(2), 587–592.
Zhang, Z. X.; Liao, F.; He, Z. Z.; Yang, J. H.; Huang, T.; Zhang, N.; Wang, Y.; Gao, X. L. Tunable shape memory behaviors of poly(ethylene vinyl acetate) achieved by adding poly(L-lactide). Smart Mater. Struct. 2015, 24(12), 125002.
Liu, Y.; Lv, H.; Lan, X.; Leng, J.; Du, S. Review of electroactive shape-memory polymer composite. Compos. Sci. Technol. 2009, 69(13), 2064–2068.
Wang, W. X.; Liu, D.; Lu, L.; Chen, H.; Gong, T.; Lu, J.; Zhou, S. The improvement of shape memory function of poly(εcaprolactone)/nano-crystalline cellulose nanocomposite via the recrystallization under a high-pressure environment. J. Mater. Chem. A 2016, 4(16), 5984–5992.
Zhang, S.; Yu, Z.; Govender, T.; Luo, H.; Li, B. A novel supramolecular shape memory material based on partial α-CDPEG inclusion complex. Polymer 2008, 49(15), 3205–3210.
Zheng, X.; Zhou, S.; Li, X.; Weng, J. Shape memory properties of poly(D,L-lactide)/hydroxyapatite composites. Biomaterials 2006, 27(24), 4288–4295.
Zheng, X.; Zhou, S.; Yu, X.; Li, X.; Feng, B.; Qu, S.; Weng, J. Effect of In vitro degradation of poly(D, L-lactide)/β-tricalcium composite on its shape-memory properties. J. Biomed. Mater. Res. B 2008, 86(1), 170–180.
Li, Y.; Chen, H.; Liu, D.; Wang, W.; Liu, Y.; Zhou, S. pHResponsive shape memory poly(ethylene glycol)-poly(εepsiloncaprolactone)-based polyurethane/cellulose nanocrystals nanocomposite. ACS Appl. Mater. Interfaces 2015, 7(23), 12988–12999.
Xiao, Y.; Zhou, S.; Wang, L.; Zheng, X.; Gong, T. Crosslinked poly(ε-caprolactone)/poly(sebacic anhydride) composites combining biodegradation, controlled drug release and shape memory effect. Compos. Part B-Eng. 2010, 41(7), 537–542.
Li, W.; Gong, T.; Chen, H.; Wang, L.; Li, J.; Zhou, S. Tuning surface micropattern features using a shape memory functional polymer. RSC Adv. 2013, 3(25), 9865–9874.
Yu, X.; Wang, L.; Huang, M.; Gong, T.; Li, W.; Cao, Y.; Ji, D.; Wang, P.; Wang, J.; Zhou, S. A shape memory stent of poly(εcaprolactone-co-DL-lactide) copolymer for potential treatment of esophageal stenosis. J. Mater. Sci-Mater. M 2012, 23(2), 581–589.
Gong, T.; Zhao, K.; Yang, G.; Li, J.; Chen, H.; Chen, Y.; Zhou, S. The control of mesenchymal stem cell differentiation using dynamically tunable surface microgrooves. Adv. Healthc. Mater. 2014, 3(10), 1608–1619.
Wang, L.; Di, S.; Wang, W.; Chen, H.; Yang, X.; Gong, T.; Zhou, S. Tunable temperature memory effect of photo-crosslinked star PCL-PEG networks. Macromolecules 2014, 47(5), 1828–1836.
Gong, T.; Zhao, K.; Wang, W.; Chen, H.; Wang, L.; Zhou, S. Thermally activated reversible shape switch of polymer particles. J. Mater. Chem. B 2014, 2(39), 6855–6866.
Wang, L.; Yang, X.; Chen, H.; Gong, T.; Li, W.; Yang, G.; Zhou, S. Design of triple-shape memory polyurethane with photo-cross-linking of cinnamon groups. ACS Appl. Mater. Interfaces 2013, 5(21), 10520–105208.
Yang, X.; Wang, L.; Wang, W.; Chen, H.; Yang, G.; Zhou, S. Triple shape memory effect of star-shaped polyurethane. ACS Appl. Mater. Interfaces 2014, 6(9), 6545–54.
Wang, L.; Yang, X.; Chen, H.; Yang, G.; Gong, T.; Li, W.; Zhou, S. Multi-stimuli sensitive shape memory poly(vinyl alcohol)-graft-polyurethane. Polym. Chem. 2013, 4(16), 4461–4468.
Chen, H.; Li, Y.; Liu, Y.; Gong, T.; Wang, L.; Zhou, S. Highly pH-sensitive polyurethane exhibiting shape memory and drug release. Polym. Chem. 2014, 5(17), 5168.
Zhou, S.; Zheng, X.; Yu, X.; Wang, J.; Weng, J.; Li, X.; Feng, B.; Yin, M. Hydrogen bonding interaction of poly(D,Llactide)/hydroxyapatite nanocomposites. Chem. Mater. 2007, 19(2), 247–253.
Chen, H.; Liu, Y.; Gong, T.; Wang, L.; Zhao, K.; Zhou, S. Use of intermolecular hydrogen bonding to synthesize triple-shape memory supermolecular composites. RSC Adv. 2013, 3(19), 7048.
Zimkowski, M. M.; Rentschler, M. E.; Schoen, J.; Rech, B. A.; Mandava, N.; Shandas, R. Integrating a novel shape memory polymer into surgical meshes decreases placement time in laparoscopic surgery: an in vitro and acute in vivo study. J. Biomed. Mater. Res. A 2013, 101(9), 2613–20.
Musial-Kulik, M.; Kasperczyk, J.; Smola, A.; Dobrzynski, P. Double layer paclitaxel delivery systems based on bioresorbable terpolymer with shape memory properties. Int. J. Pharm. 2014, 465(1-2), 291–298.
Yu, X.; Wang, L.; Huang, M.; Gong, T.; Li, W.; Cao, Y.; Ji, D.; Wang, P.; Wang, J.; Zhou, S. A shape memory stent of poly(εepsilon-caprolactone-co-DL-lactide) copolymer for potential treatment of esophageal stenosis. J. Mater. Sci. Mater. Med. 2012, 23(2), 581–589.
Huang, W. M.; Yang, B.; Zhao, Y.; Ding, Z. Thermo-moisture responsive polyurethane shape-memory polymer and composites: a review. J. Mater. Chem. 2010, 20(17), 3367.
Yang, B.; Huang, W. M.; Li, C.; Li, L. Effects of moisture on the thermomechanical properties of a polyurethane shape memory polymer. Polymer 2006, 47(4), 1348–1356.
Chen, S.; Hu, J.; Yuen, C. W.; Chan, L. Novel moisturesensitive shape memory polyurethanes containing pyridine moieties. Polymer 2009, 50(19), 4424–4428.
Huang, W. M.; Yang, B.; An, L.; Li, C.; Chan, Y. S. Waterdriven programmable polyurethane shape memory polymer: Demonstration and mechanism. Appl. Phys. Lett. 2005, 86(11), 114105.
Chen, H.; Li, Y.; Tao, G.; Wang, L.; Zhou, S. Thermo- and water-induced shape memory poly(vinyl alcohol) supramolecular networks crosslinked by self-complementary quadruple hydrogen bonding. Polym. Chem. 2016, 7(43), 6637–6644.
Du, H.; Zhang, J. Solvent induced shape recovery of shape memory polymer based on chemically cross-linked poly(vinyl alcohol). Soft Matter 2010, 6(14), 3370.
Mendez, J.; Annamalai, P. K.; Eichhorn, S. J.; Rusli, R.; Rowan, S. J.; Foster, E. J.; Weder, C. Bioinspired mechanically adaptive polymer nanocomposites with water-activated shapememory effect. Macromolecules 2011, 44(17), 6827–6835.
Liu, Y.; Li, Y.; Chen, H.; Yang, G.; Zheng, X.; Zhou, S. Waterinduced shape-memory poly(D,L-lactide)/microcrystalline cellulose composites. Carbohydr. Polym. 2014, 104, 101–108.
Fleige, E.; Quadir, M. A.; Haag, R. Stimuli-responsive polymeric nanocarriers for the controlled transport of active compounds: concepts and applications. Adv. Drug Deliver. Rev. 2012, 64(9), 866–884.
Han, X. J.; Dong, Z. Q.; Fan, M. M.; Liu, Y.; li, J. H.; Wang, Y. F.; Yuan, Q. J.; Li, B. J.; Zhang, S. pH-Induced shape-memory polymers. Macromol. Rapid Commun. 2012, 33(12), 1055–1060.
Song, Q.; Chen, H.; Zhou, S.; Zhao, K.; Wang, B.; Hu, P. Thermo- and pH-sensitive shape memory polyurethane containing carboxyl groups. Polym. Chem. 2016, 7(9), 1739–1746.
Guo, W.; Lu, C. H.; Orbach, R.; Wang, F.; Qi, X. J.; Cecconello, A.; Seliktar, D.; Willner, I. pH-Stimulated DNA hydrogels exhibiting shape-memory properties. Adv. Mater. 2015, 27(1), 73–78.
Mohr, R.; Kratz, K.; Weigel, T.; Lucka-Gabor, M.; Moneke, M.; Lendlein, A. Initiation of shape-memory effect by inductive heating of magnetic nanoparticles in thermoplastic polymers. Proc. Natl. Acad. Sci. U. S. A. 2006, 103(10), 3540–3545.
Xiao, Y.; Zhou, S.; Wang, L.; Gong, T. Electro-active shape memory properties of poly(ε-caprolactone)/functionalized multiwalled carbon nanotube nanocomposite. ACS Appl. Mater. Interfaces 2010, 2(12), 3506–3514.
Gong, T.; Li, W.; Chen, H.; Wang, L.; Shao, S.; Zhou, S. Remotely actuated shape memory effect of electrospun composite nanofibers. Acta Biomater. 2012, 8(3), 1248–1259.
Zheng, X.; Zhou, S.; Xiao, Y.; Yu, X.; Li, X.; Wu, P. Shape memory effect of poly(D,L-lactide)/Fe3O4 nan°Composites by inductive heating of magnetite particles. Colloid. Surfaces B 2009, 71(1), 67–72.
Jiang, H.; Kelch, S.; Lendlein, A. Polymers move in response to light. Adv. Mater. 2006, 18(11), 1471–1475.
Lendlein, A.; Jiang, H.; Jünger, O.; Langer, R. Light-induced shape-memory polymers. Nature 2005, 434(7035), 879–882.
Ikeda, T.; Nakano, M.; Yu, Y.; Tsutsumi, O.; Kanazawa, A. Anisotropic bending and unbending behavior of azobenzene liquidcrystalline gels by light exposure. Adv. Mater. 2003, 15(3), 201–205.
Irie, M.; Kunwatchakun, D. Photoresponsive polymers. 8. Reversible photostimulated dilation of polyacrylamide gels having triphenylmethane leuco derivatives.. Macromolecules 1986, 19(10), 2476–2480.
Wu, L.; Jin, C.; Sun, X. Synthesis, properties, and light-induced shape memory effect of multiblock polyesterurethanes containing biodegradable segments and pendant cinnamamide groups. Biomacromolecules 2010, 12(1), 235–241.
Bellin, I.; Kelch, S.; Langer, R.; Lendlein, A. Polymeric tripleshape materials. Proc. Natl. Acad. Sci. U. S. A. 2006, 103(48), 18043–18047.
Zotzmann, J.; Behl, M.; Feng, Y.; Lendlein, A. Copolymer Networks based on poly(ω-pentadecalactone) and poly(εcaprolactone) segments as a versatile triple-shape polymer system. Adv. Funct. Mater. 2010, 20(20), 3583–3594.
Luo, X.; Mather, P. T. Triple-shape polymeric composites (TSPCs). Adv. Funct. Mater. 2010, 20(16), 2649–2656.
Song, S.; Feng, J.; Wu, P. A new strategy to prepare polymerbased shape memory elastomers. Macromol. Rapid Commun. 2011, 32(19), 1569–1575.
Xie, T.; Xiao, X.; Cheng, Y. T. Revealing triple-shape memory effect by polymer bilayers. Macromol. Rapid Commun. 2009, 30(21), 1823–1827.
Ahn, S. K.; Kasi, R. M. Exploiting microphase-separated morphologies of side-chain liquid crystalline polymer networks for triple shape memory properties. Adv. Funct. Mater. 2011, 21(23), 4543–4549.
Li, J.; Xie, T. Significant impact of thermo-mechanical conditions on polymer triple-shape memory effect. Macromolecules 2011, 44(1), 175–180.
Luo, Y.; Guo, Y.; Gao, X.; Li, B. G.; Xie, T. A general approach towards thermoplastic multishape-memory polymers via sequence structure design. Adv. Mater. 2013, 25(5), 743–748.
Behl, M.; Kratz, K.; Zotzmann, J.; Nochel, U.; Lendlein, A. Reversible bidirectional shape-memory polymers. Adv. Mater. 2013, 25(32), 4466–4469.
Pandini, S.; Passera, S.; Messori, M.; Paderni, K.; Toselli, M.; Gianoncelli, A.; Bontempi, E.; Riccö, T. Two-way reversible shape memory behaviour of crosslinked poly(ε-caprolactone). Polymer 2012, 53(9), 1915–1924.
Zhou, J.; Turner, S. A.; Brosnan, S. M.; Li, Q.; Carrillo, J.M. Y.; Nykypanchuk, D.; Gang, O.; Ashby, V. S.; Dobrynin, A. V.; Sheiko, S. S. Shapeshifting: reversible shape memory in semicrystalline elastomers. Macromolecules 2014, 47(5), 1768–1776.
Kumpfer, J. R.; Rowan, S. J. Thermo-, photo-, and chemoresponsive shape-memory properties from photo-cross-linked metallo-supramolecular polymers. J. Am. Chem. Soc. 2011, 133(32), 12866–12874.
Zhang, Y.; Jiang, X.; Wu, R.; Wang, W. Multi-stimuli responsive shape memory polymers synthesized by using reaction-induced phase separation. J. Appl. Polym. Sci. 2016, 133, 43534.
Choi, N. Y.; Kelch, S.; Lendlein, A. Synthesis, Shape-memory functionality and hydrolytical degradation studies on polymer networks from poly(rac-lactide)-b-poly(propylene oxide)-b-poly(rac-lactide) dimethacrylates. Adv. Eng. Mater. 2006, 8(5), 439–445.
Kelch, S.; Steuer, S.; Schmidt, A. M.; Lendlein, A. Shapememory polymer networks from oligo [(ε-hydroxycaproate)-coglycolate] dimethacrylates and butyl acrylate with adjustable hydrolytic degradation rate. Biomacromolecules 2007, 8(3), 1018–1027.
Lu, H.; Huang, W. M. Synergistic effect of self-assembled carboxylic acid-functionalized carbon nanotubes and carbon fiber for improved electro-activated polymeric shape-memory nanocomposite. Appl. Phys. Lett. 2013, 102(23), 231910.
Lu, H.; Gou, J. Study on 3-D high conductive graphene buckypaper for electrical actuation of shape memory polymer. Nanosci. Nanotech. Lett. 2012, 4(12), 1155–1159.
Lu, H.; Bai, P.; Yin, W.; Liang, F.; Gou, J. Magnetically aligned carbon nanotubes in nanopaper for electro-activated shape-memory nanocomposites. Nanosci. Nanotech. Lett. 2013, 5(7), 732–736.
Heuwers, B.; Beckel, A.; Krieger, A.; Katzenberg, F.; Tiller, J. C. Shape-memory natural rubber: an exceptional material for strain and energy storage. Macromol. Chem. Phys. 2013, 214(8), 912–923.
Anthamatten, M.; Roddecha, S.; Li, J. Energy storage capacity of shape-memory polymers. Macromolecules 2013, 46(10), 4230–4234.
Liu, L.; Shen, B.; Jiang, D.; Guo, R.; Kong, L.; Yan, X. Watchband-like supercapacitors with body temperature inducible shape memory Ability. Adv. Energy Mater. 2016, 6, 1600763.
Habault, D.; Zhang, H.; Zhao, Y. Light-triggered self-healing and shape-memory polymers. Chem. Soc. Rev. 2013, 42(17), 7244–7256.
Wang, L.; Wang, W.; Di, S.; Yang, X.; Chen, H.; Gong, T.; Zhou, S. Silver-coordination polymer network combining antibacterial action and shape memory capabilities. RSC Adv. 2014, 4(61), 32276–32282.
Xiao, X.; Xie, T.; Cheng, Y. T. Self-healable graphene polymer composites. J. Mater. Chem. 2010, 20(17), 3508–3514.
Rodriguez, E. D.; Luo, X.; Mather, P. T. Linear/network poly(ε-caprolactone) blends exhibiting shape memory assisted self-healing (SMASH). ACS Appl. Mater. Interfaces 2011, 3(2), 152–161.
Luo, X.; Mather, P. T. Shape memory assisted self-healing coating. ACS Macro. Lett. 2013, 2(2), 152–156.
Birjandi Nejad, H.; Garrison, K. L.; Mather, P. T. Comparative analysis of shape memory-based self-healing coatings. J. Polym. Sci., Part B: Polym. Phys. 2016, 54(14), 1415–1426.
Wang, L.; Di, S.; Wang, W.; Zhou, S. Self-healing and shape memory capabilities of copper-coordination polymer network. RSC Adv. 2015, 5(37), 28896–28900.
Neffe, A. T.; Hanh, B. D.; Steuer, S.; Lendlein, A. Polymer networks combining controlled drug release, biodegradation, and shape memory capability. Adv. Mater. 2009, 21(32-33), 3394–3398.
Müller, A.; Zink, M.; Hessler, N.; Wesarg, F.; Müller, F. A.; Kralisch, D.; Fischer, D. Bacterial nanocellulose with a shapememory effect as potential drug delivery system. RSC Adv. 2014, 4(100), 57173–57184.
Xue, L.; Dai, S.; Li, Z. Biodegradable shape-memory block copolymers for fast self-expandable stents. Biomaterials 2010, 31(32), 8132–8140.
Huang, W. M.; Song, C. L.; Fu, Y. Q.; Wang, C. C.; Zhao, Y.; Purnawali, H.; Lu, H. B.; Tang, C.; Ding, Z.; Zhang, J. L. Shaping tissue with shape memory materials. Adv. Drug Deliver. Rev. 2013, 65(4), 515–535.
Sun, L.; Huang, W. M. Thermo/moisture responsive shapememory polymer for possible surgery/operation inside living cells in future. Mater. Design 2010, 31(5), 2684–2689.
Bilici, C.; Can, V.; Nochel, U.; Behl, M.; Lendlein, A.; Okay, O. Melt-processable shape-memory hydrogels with self-healing ability of high mechanical strength. Macromolecules 2016, 49(19), 7442–7449.
Migneco, F.; Huang, Y. C.; Birla, R. K.; Hollister, S. J. Poly(glycerol-dodecanoate), a biodegradable polyester for medical devices and tissue engineering scaffolds. Biomaterials 2009, 30(33), 6479.
Yang, X.; Cui, C.; Tong, Z.; Sabanayagam, C. R.; Jia, X. Poly(ε-caprolactone)-based copolymers bearing pendant cyclic ketals and reactive acrylates for the fabrication of photocrosslinked elastomers. Acta Biomater. 2013, 9(9), 8232–8244.
Hiebl, B.; Mrowietz, C.; Goers, J.; Bahramsoltani, M.; Plendl, J.; Kratz, K.; Lendlein, A.; Jung, F. In vivo evaluation of the angiogenic effects of the multiblock copolymer PDC using the hen’s egg chorioallantoic membrane test. Clin. Hemorheol. Microcirc. 2010, 46(2-3), 233–238.
Liu, X.; Zhao, K.; Gong, T.; Song, J.; Bao, C.; Luo, E.; Weng, J.; Zhou, S. Delivery of growth factors using a smart porous nanocomposite scaffold to repair a mandibular bone defect. Biomacromolecules 2014, 15(3), 1019–1030.
Gong, T.; Zhao, K.; Liu, X.; Lu, L.; Liu, D.; Zhou, S. A dynamically tunable, bioinspired micropatterned surface regulates vascular endothelial and smooth muscle cells growth at vascularization. Small 2016, 12(41), 5769–5778.