Recent Progress in Shape Memory Polymers for Biomedical Applications

Chinese Journal of Polymer Science - Tập 36 Số 8 - Trang 905-917 - 2018
Hongmei Chen1, Lin Wang2, Shaobing Zhou2
1College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
2Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Zhao, Q.; Qi, H. J.; Xie, T. Recent progress in shape memory polymer: New behavior, enabling materials, and mechanistic understanding. Prog. Polym Sci. 2015, 49, 79–120.

Mather, P. T.; Luo, X.; Rousseau, I. A. Shape memory polymer research. Annu. Rev. Mater. Res. 2009, 39, 445–471.

Hu, J.; Zhu, Y.; Huang, H.; Lu, J. Recent advances in shapememory polymers: structure, mechanism, functionality, modeling and applications. Prog. Polym Sci. 2012, 37(12), 1720–1763.

Hager, M. D.; Bode, S.; Weber, C.; Schubert, U. S. Shape memory polymers: Past, present and future developments. Prog. Polym Sci. 2015, 49–50, 3–33.

Liu, C.; Qin, H.; Mather, P. Review of progress in shapememory polymers. J. Mater. Chem. 2007, 17(16), 1543–1558.

Xie, T.; Xiao, X.; Cheng, Y. T. Revealing triple-shape memory effect by polymer bilayers. Macromol. Rapid Commun. 2009, 30(21), 1823–1827.

Chen, S.; Hu, J.; Zhuo, H.; Zhu, Y. Two-way shape memory effect in polymer laminates. Mater. Lett. 2008, 62(25), 4088–4090.

Herbert, K. M.; Schrettl, S.; Rowan, S. J.; Weder, C. 50th Anniversary perspective: solid-state multistimuli, multiresponsive polymeric materials. Macromolecules 2017, 50(22), 8845–8870.

Lendlein, A.; Langer, R. Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science 2002, 296(5573), 1673–1676.

Lendlein, A.; Schmidt, A. M.; Schroeter, M.; Langer, R. Shapememory polymer networks from oligo (ε-caprolactone) dimethacrylates. J. Polym. Sci., Part A: Polym. Chem. 2005, 43(7), 1369–1381.

Ping, P.; Wang, W.; Chen, X.; Jing, X. Poly (ε-caprolactone) polyurethane and its shape-memory property. Biomacromolecules 2005, 6(2), 587–592.

Zhang, Z. X.; Liao, F.; He, Z. Z.; Yang, J. H.; Huang, T.; Zhang, N.; Wang, Y.; Gao, X. L. Tunable shape memory behaviors of poly(ethylene vinyl acetate) achieved by adding poly(L-lactide). Smart Mater. Struct. 2015, 24(12), 125002.

Liu, Y.; Lv, H.; Lan, X.; Leng, J.; Du, S. Review of electroactive shape-memory polymer composite. Compos. Sci. Technol. 2009, 69(13), 2064–2068.

Wang, W. X.; Liu, D.; Lu, L.; Chen, H.; Gong, T.; Lu, J.; Zhou, S. The improvement of shape memory function of poly(εcaprolactone)/nano-crystalline cellulose nanocomposite via the recrystallization under a high-pressure environment. J. Mater. Chem. A 2016, 4(16), 5984–5992.

Zhang, S.; Yu, Z.; Govender, T.; Luo, H.; Li, B. A novel supramolecular shape memory material based on partial α-CDPEG inclusion complex. Polymer 2008, 49(15), 3205–3210.

Zheng, X.; Zhou, S.; Li, X.; Weng, J. Shape memory properties of poly(D,L-lactide)/hydroxyapatite composites. Biomaterials 2006, 27(24), 4288–4295.

Zheng, X.; Zhou, S.; Yu, X.; Li, X.; Feng, B.; Qu, S.; Weng, J. Effect of In vitro degradation of poly(D, L-lactide)/β-tricalcium composite on its shape-memory properties. J. Biomed. Mater. Res. B 2008, 86(1), 170–180.

Li, Y.; Chen, H.; Liu, D.; Wang, W.; Liu, Y.; Zhou, S. pHResponsive shape memory poly(ethylene glycol)-poly(εepsiloncaprolactone)-based polyurethane/cellulose nanocrystals nanocomposite. ACS Appl. Mater. Interfaces 2015, 7(23), 12988–12999.

Xiao, Y.; Zhou, S.; Wang, L.; Zheng, X.; Gong, T. Crosslinked poly(ε-caprolactone)/poly(sebacic anhydride) composites combining biodegradation, controlled drug release and shape memory effect. Compos. Part B-Eng. 2010, 41(7), 537–542.

Li, W.; Gong, T.; Chen, H.; Wang, L.; Li, J.; Zhou, S. Tuning surface micropattern features using a shape memory functional polymer. RSC Adv. 2013, 3(25), 9865–9874.

Yu, X.; Wang, L.; Huang, M.; Gong, T.; Li, W.; Cao, Y.; Ji, D.; Wang, P.; Wang, J.; Zhou, S. A shape memory stent of poly(εcaprolactone-co-DL-lactide) copolymer for potential treatment of esophageal stenosis. J. Mater. Sci-Mater. M 2012, 23(2), 581–589.

Gong, T.; Zhao, K.; Yang, G.; Li, J.; Chen, H.; Chen, Y.; Zhou, S. The control of mesenchymal stem cell differentiation using dynamically tunable surface microgrooves. Adv. Healthc. Mater. 2014, 3(10), 1608–1619.

Wang, L.; Di, S.; Wang, W.; Chen, H.; Yang, X.; Gong, T.; Zhou, S. Tunable temperature memory effect of photo-crosslinked star PCL-PEG networks. Macromolecules 2014, 47(5), 1828–1836.

Gong, T.; Zhao, K.; Wang, W.; Chen, H.; Wang, L.; Zhou, S. Thermally activated reversible shape switch of polymer particles. J. Mater. Chem. B 2014, 2(39), 6855–6866.

Wang, L.; Yang, X.; Chen, H.; Gong, T.; Li, W.; Yang, G.; Zhou, S. Design of triple-shape memory polyurethane with photo-cross-linking of cinnamon groups. ACS Appl. Mater. Interfaces 2013, 5(21), 10520–105208.

Yang, X.; Wang, L.; Wang, W.; Chen, H.; Yang, G.; Zhou, S. Triple shape memory effect of star-shaped polyurethane. ACS Appl. Mater. Interfaces 2014, 6(9), 6545–54.

Wang, L.; Yang, X.; Chen, H.; Yang, G.; Gong, T.; Li, W.; Zhou, S. Multi-stimuli sensitive shape memory poly(vinyl alcohol)-graft-polyurethane. Polym. Chem. 2013, 4(16), 4461–4468.

Chen, H.; Li, Y.; Liu, Y.; Gong, T.; Wang, L.; Zhou, S. Highly pH-sensitive polyurethane exhibiting shape memory and drug release. Polym. Chem. 2014, 5(17), 5168.

Zhou, S.; Zheng, X.; Yu, X.; Wang, J.; Weng, J.; Li, X.; Feng, B.; Yin, M. Hydrogen bonding interaction of poly(D,Llactide)/hydroxyapatite nanocomposites. Chem. Mater. 2007, 19(2), 247–253.

Chen, H.; Liu, Y.; Gong, T.; Wang, L.; Zhao, K.; Zhou, S. Use of intermolecular hydrogen bonding to synthesize triple-shape memory supermolecular composites. RSC Adv. 2013, 3(19), 7048.

Zimkowski, M. M.; Rentschler, M. E.; Schoen, J.; Rech, B. A.; Mandava, N.; Shandas, R. Integrating a novel shape memory polymer into surgical meshes decreases placement time in laparoscopic surgery: an in vitro and acute in vivo study. J. Biomed. Mater. Res. A 2013, 101(9), 2613–20.

Musial-Kulik, M.; Kasperczyk, J.; Smola, A.; Dobrzynski, P. Double layer paclitaxel delivery systems based on bioresorbable terpolymer with shape memory properties. Int. J. Pharm. 2014, 465(1-2), 291–298.

Yu, X.; Wang, L.; Huang, M.; Gong, T.; Li, W.; Cao, Y.; Ji, D.; Wang, P.; Wang, J.; Zhou, S. A shape memory stent of poly(εepsilon-caprolactone-co-DL-lactide) copolymer for potential treatment of esophageal stenosis. J. Mater. Sci. Mater. Med. 2012, 23(2), 581–589.

Huang, W. M.; Yang, B.; Zhao, Y.; Ding, Z. Thermo-moisture responsive polyurethane shape-memory polymer and composites: a review. J. Mater. Chem. 2010, 20(17), 3367.

Yang, B.; Huang, W. M.; Li, C.; Li, L. Effects of moisture on the thermomechanical properties of a polyurethane shape memory polymer. Polymer 2006, 47(4), 1348–1356.

Chen, S.; Hu, J.; Yuen, C. W.; Chan, L. Novel moisturesensitive shape memory polyurethanes containing pyridine moieties. Polymer 2009, 50(19), 4424–4428.

Huang, W. M.; Yang, B.; An, L.; Li, C.; Chan, Y. S. Waterdriven programmable polyurethane shape memory polymer: Demonstration and mechanism. Appl. Phys. Lett. 2005, 86(11), 114105.

Chen, H.; Li, Y.; Tao, G.; Wang, L.; Zhou, S. Thermo- and water-induced shape memory poly(vinyl alcohol) supramolecular networks crosslinked by self-complementary quadruple hydrogen bonding. Polym. Chem. 2016, 7(43), 6637–6644.

Du, H.; Zhang, J. Solvent induced shape recovery of shape memory polymer based on chemically cross-linked poly(vinyl alcohol). Soft Matter 2010, 6(14), 3370.

Mendez, J.; Annamalai, P. K.; Eichhorn, S. J.; Rusli, R.; Rowan, S. J.; Foster, E. J.; Weder, C. Bioinspired mechanically adaptive polymer nanocomposites with water-activated shapememory effect. Macromolecules 2011, 44(17), 6827–6835.

Liu, Y.; Li, Y.; Chen, H.; Yang, G.; Zheng, X.; Zhou, S. Waterinduced shape-memory poly(D,L-lactide)/microcrystalline cellulose composites. Carbohydr. Polym. 2014, 104, 101–108.

Fleige, E.; Quadir, M. A.; Haag, R. Stimuli-responsive polymeric nanocarriers for the controlled transport of active compounds: concepts and applications. Adv. Drug Deliver. Rev. 2012, 64(9), 866–884.

Han, X. J.; Dong, Z. Q.; Fan, M. M.; Liu, Y.; li, J. H.; Wang, Y. F.; Yuan, Q. J.; Li, B. J.; Zhang, S. pH-Induced shape-memory polymers. Macromol. Rapid Commun. 2012, 33(12), 1055–1060.

Song, Q.; Chen, H.; Zhou, S.; Zhao, K.; Wang, B.; Hu, P. Thermo- and pH-sensitive shape memory polyurethane containing carboxyl groups. Polym. Chem. 2016, 7(9), 1739–1746.

Guo, W.; Lu, C. H.; Orbach, R.; Wang, F.; Qi, X. J.; Cecconello, A.; Seliktar, D.; Willner, I. pH-Stimulated DNA hydrogels exhibiting shape-memory properties. Adv. Mater. 2015, 27(1), 73–78.

Mohr, R.; Kratz, K.; Weigel, T.; Lucka-Gabor, M.; Moneke, M.; Lendlein, A. Initiation of shape-memory effect by inductive heating of magnetic nanoparticles in thermoplastic polymers. Proc. Natl. Acad. Sci. U. S. A. 2006, 103(10), 3540–3545.

Xiao, Y.; Zhou, S.; Wang, L.; Gong, T. Electro-active shape memory properties of poly(ε-caprolactone)/functionalized multiwalled carbon nanotube nanocomposite. ACS Appl. Mater. Interfaces 2010, 2(12), 3506–3514.

Gong, T.; Li, W.; Chen, H.; Wang, L.; Shao, S.; Zhou, S. Remotely actuated shape memory effect of electrospun composite nanofibers. Acta Biomater. 2012, 8(3), 1248–1259.

Zheng, X.; Zhou, S.; Xiao, Y.; Yu, X.; Li, X.; Wu, P. Shape memory effect of poly(D,L-lactide)/Fe3O4 nan°Composites by inductive heating of magnetite particles. Colloid. Surfaces B 2009, 71(1), 67–72.

Jiang, H.; Kelch, S.; Lendlein, A. Polymers move in response to light. Adv. Mater. 2006, 18(11), 1471–1475.

Lendlein, A.; Jiang, H.; Jünger, O.; Langer, R. Light-induced shape-memory polymers. Nature 2005, 434(7035), 879–882.

Ikeda, T.; Nakano, M.; Yu, Y.; Tsutsumi, O.; Kanazawa, A. Anisotropic bending and unbending behavior of azobenzene liquidcrystalline gels by light exposure. Adv. Mater. 2003, 15(3), 201–205.

Irie, M.; Kunwatchakun, D. Photoresponsive polymers. 8. Reversible photostimulated dilation of polyacrylamide gels having triphenylmethane leuco derivatives.. Macromolecules 1986, 19(10), 2476–2480.

Wu, L.; Jin, C.; Sun, X. Synthesis, properties, and light-induced shape memory effect of multiblock polyesterurethanes containing biodegradable segments and pendant cinnamamide groups. Biomacromolecules 2010, 12(1), 235–241.

Behl, M.; Lendlein, A. Triple-shape polymers. J. Mater. Chem. 2010, 20(17), 3335.

Xie, T. Tunable polymer multi-shape memory effect. Nature 2010, 464(7286), 267–270.

Bellin, I.; Kelch, S.; Langer, R.; Lendlein, A. Polymeric tripleshape materials. Proc. Natl. Acad. Sci. U. S. A. 2006, 103(48), 18043–18047.

Zotzmann, J.; Behl, M.; Feng, Y.; Lendlein, A. Copolymer Networks based on poly(ω-pentadecalactone) and poly(εcaprolactone) segments as a versatile triple-shape polymer system. Adv. Funct. Mater. 2010, 20(20), 3583–3594.

Luo, X.; Mather, P. T. Triple-shape polymeric composites (TSPCs). Adv. Funct. Mater. 2010, 20(16), 2649–2656.

Song, S.; Feng, J.; Wu, P. A new strategy to prepare polymerbased shape memory elastomers. Macromol. Rapid Commun. 2011, 32(19), 1569–1575.

Xie, T.; Xiao, X.; Cheng, Y. T. Revealing triple-shape memory effect by polymer bilayers. Macromol. Rapid Commun. 2009, 30(21), 1823–1827.

Ahn, S. K.; Kasi, R. M. Exploiting microphase-separated morphologies of side-chain liquid crystalline polymer networks for triple shape memory properties. Adv. Funct. Mater. 2011, 21(23), 4543–4549.

Li, J.; Xie, T. Significant impact of thermo-mechanical conditions on polymer triple-shape memory effect. Macromolecules 2011, 44(1), 175–180.

Luo, Y.; Guo, Y.; Gao, X.; Li, B. G.; Xie, T. A general approach towards thermoplastic multishape-memory polymers via sequence structure design. Adv. Mater. 2013, 25(5), 743–748.

Behl, M.; Kratz, K.; Zotzmann, J.; Nochel, U.; Lendlein, A. Reversible bidirectional shape-memory polymers. Adv. Mater. 2013, 25(32), 4466–4469.

Pandini, S.; Passera, S.; Messori, M.; Paderni, K.; Toselli, M.; Gianoncelli, A.; Bontempi, E.; Riccö, T. Two-way reversible shape memory behaviour of crosslinked poly(ε-caprolactone). Polymer 2012, 53(9), 1915–1924.

Zhou, J.; Turner, S. A.; Brosnan, S. M.; Li, Q.; Carrillo, J.M. Y.; Nykypanchuk, D.; Gang, O.; Ashby, V. S.; Dobrynin, A. V.; Sheiko, S. S. Shapeshifting: reversible shape memory in semicrystalline elastomers. Macromolecules 2014, 47(5), 1768–1776.

Kumpfer, J. R.; Rowan, S. J. Thermo-, photo-, and chemoresponsive shape-memory properties from photo-cross-linked metallo-supramolecular polymers. J. Am. Chem. Soc. 2011, 133(32), 12866–12874.

Zhang, Y.; Jiang, X.; Wu, R.; Wang, W. Multi-stimuli responsive shape memory polymers synthesized by using reaction-induced phase separation. J. Appl. Polym. Sci. 2016, 133, 43534.

Choi, N. Y.; Kelch, S.; Lendlein, A. Synthesis, Shape-memory functionality and hydrolytical degradation studies on polymer networks from poly(rac-lactide)-b-poly(propylene oxide)-b-poly(rac-lactide) dimethacrylates. Adv. Eng. Mater. 2006, 8(5), 439–445.

Kelch, S.; Steuer, S.; Schmidt, A. M.; Lendlein, A. Shapememory polymer networks from oligo [(ε-hydroxycaproate)-coglycolate] dimethacrylates and butyl acrylate with adjustable hydrolytic degradation rate. Biomacromolecules 2007, 8(3), 1018–1027.

Lu, H.; Huang, W. M. Synergistic effect of self-assembled carboxylic acid-functionalized carbon nanotubes and carbon fiber for improved electro-activated polymeric shape-memory nanocomposite. Appl. Phys. Lett. 2013, 102(23), 231910.

Lu, H.; Gou, J. Study on 3-D high conductive graphene buckypaper for electrical actuation of shape memory polymer. Nanosci. Nanotech. Lett. 2012, 4(12), 1155–1159.

Lu, H.; Bai, P.; Yin, W.; Liang, F.; Gou, J. Magnetically aligned carbon nanotubes in nanopaper for electro-activated shape-memory nanocomposites. Nanosci. Nanotech. Lett. 2013, 5(7), 732–736.

Heuwers, B.; Beckel, A.; Krieger, A.; Katzenberg, F.; Tiller, J. C. Shape-memory natural rubber: an exceptional material for strain and energy storage. Macromol. Chem. Phys. 2013, 214(8), 912–923.

Anthamatten, M.; Roddecha, S.; Li, J. Energy storage capacity of shape-memory polymers. Macromolecules 2013, 46(10), 4230–4234.

Liu, L.; Shen, B.; Jiang, D.; Guo, R.; Kong, L.; Yan, X. Watchband-like supercapacitors with body temperature inducible shape memory Ability. Adv. Energy Mater. 2016, 6, 1600763.

Habault, D.; Zhang, H.; Zhao, Y. Light-triggered self-healing and shape-memory polymers. Chem. Soc. Rev. 2013, 42(17), 7244–7256.

Wang, L.; Wang, W.; Di, S.; Yang, X.; Chen, H.; Gong, T.; Zhou, S. Silver-coordination polymer network combining antibacterial action and shape memory capabilities. RSC Adv. 2014, 4(61), 32276–32282.

Xiao, X.; Xie, T.; Cheng, Y. T. Self-healable graphene polymer composites. J. Mater. Chem. 2010, 20(17), 3508–3514.

Rodriguez, E. D.; Luo, X.; Mather, P. T. Linear/network poly(ε-caprolactone) blends exhibiting shape memory assisted self-healing (SMASH). ACS Appl. Mater. Interfaces 2011, 3(2), 152–161.

Luo, X.; Mather, P. T. Shape memory assisted self-healing coating. ACS Macro. Lett. 2013, 2(2), 152–156.

Birjandi Nejad, H.; Garrison, K. L.; Mather, P. T. Comparative analysis of shape memory-based self-healing coatings. J. Polym. Sci., Part B: Polym. Phys. 2016, 54(14), 1415–1426.

Wang, L.; Di, S.; Wang, W.; Zhou, S. Self-healing and shape memory capabilities of copper-coordination polymer network. RSC Adv. 2015, 5(37), 28896–28900.

Neffe, A. T.; Hanh, B. D.; Steuer, S.; Lendlein, A. Polymer networks combining controlled drug release, biodegradation, and shape memory capability. Adv. Mater. 2009, 21(32-33), 3394–3398.

Müller, A.; Zink, M.; Hessler, N.; Wesarg, F.; Müller, F. A.; Kralisch, D.; Fischer, D. Bacterial nanocellulose with a shapememory effect as potential drug delivery system. RSC Adv. 2014, 4(100), 57173–57184.

Xue, L.; Dai, S.; Li, Z. Biodegradable shape-memory block copolymers for fast self-expandable stents. Biomaterials 2010, 31(32), 8132–8140.

Huang, W. M.; Song, C. L.; Fu, Y. Q.; Wang, C. C.; Zhao, Y.; Purnawali, H.; Lu, H. B.; Tang, C.; Ding, Z.; Zhang, J. L. Shaping tissue with shape memory materials. Adv. Drug Deliver. Rev. 2013, 65(4), 515–535.

Sun, L.; Huang, W. M. Thermo/moisture responsive shapememory polymer for possible surgery/operation inside living cells in future. Mater. Design 2010, 31(5), 2684–2689.

Bilici, C.; Can, V.; Nochel, U.; Behl, M.; Lendlein, A.; Okay, O. Melt-processable shape-memory hydrogels with self-healing ability of high mechanical strength. Macromolecules 2016, 49(19), 7442–7449.

Migneco, F.; Huang, Y. C.; Birla, R. K.; Hollister, S. J. Poly(glycerol-dodecanoate), a biodegradable polyester for medical devices and tissue engineering scaffolds. Biomaterials 2009, 30(33), 6479.

Yang, X.; Cui, C.; Tong, Z.; Sabanayagam, C. R.; Jia, X. Poly(ε-caprolactone)-based copolymers bearing pendant cyclic ketals and reactive acrylates for the fabrication of photocrosslinked elastomers. Acta Biomater. 2013, 9(9), 8232–8244.

Hiebl, B.; Mrowietz, C.; Goers, J.; Bahramsoltani, M.; Plendl, J.; Kratz, K.; Lendlein, A.; Jung, F. In vivo evaluation of the angiogenic effects of the multiblock copolymer PDC using the hen’s egg chorioallantoic membrane test. Clin. Hemorheol. Microcirc. 2010, 46(2-3), 233–238.

Liu, X.; Zhao, K.; Gong, T.; Song, J.; Bao, C.; Luo, E.; Weng, J.; Zhou, S. Delivery of growth factors using a smart porous nanocomposite scaffold to repair a mandibular bone defect. Biomacromolecules 2014, 15(3), 1019–1030.

Gong, T.; Zhao, K.; Liu, X.; Lu, L.; Liu, D.; Zhou, S. A dynamically tunable, bioinspired micropatterned surface regulates vascular endothelial and smooth muscle cells growth at vascularization. Small 2016, 12(41), 5769–5778.

Liu, D.; Xiang, T.; Gong, T.; Tian, T.; Liu, X.; Zhou, S. Bioinspired 3D multilayered shape memory scaffold with a hierarchically changeable micropatterned surface for efficient vascularization. ACS Appl. Mater. Interfaces 2017, 9(23), 19725–19735.