Recent Progress in MXene-Based Materials for Metal-Sulfur and Metal-Air Batteries: Potential High-Performance Electrodes
Tóm tắt
Từ khóa
Tài liệu tham khảo
Han, J.T., Huang, Y.H., Goodenough, J.B.: New anode framework for rechargeable lithium batteries. Chem. Mater. 23, 2027–2029 (2011). https://doi.org/10.1021/cm200441h
Zhang, C.F., Higgins, T.M., Park, S.H., et al.: Highly flexible and transparent solid-state supercapacitors based on RuO2/PEDOT: PSS conductive ultrathin films. Nano Energy 28, 495–505 (2016). https://doi.org/10.1016/j.nanoen.2016.08.052
Zhang, C.F., Beidaghi, M., Naguib, M., et al.: Synthesis and charge storage properties of hierarchical niobium pentoxide/carbon/niobium carbide (MXene) hybrid materials. Chem. Mater. 28, 3937–3943 (2016). https://doi.org/10.1021/acs.chemmater.6b01244
Xiao, X., Zhang, C.F., Lin, S.Z., et al.: Intercalation of cations into partially reduced molybdenum oxide for high-rate pseudocapacitors. Energy Storage Mater. 1, 1–8 (2015). https://doi.org/10.1016/j.ensm.2015.05.001
Gwon, H., Hong, J., Kim, H., et al.: Recent progress on flexible lithium rechargeable batteries. Energy Environ. Sci. 7, 538–551 (2014). https://doi.org/10.1039/c3ee42927j
Li, J., Yuan, Y.F., Jin, H.L., et al.: One-step nonlinear electrochemical synthesis of TexSy@PANI nanorod materials for Li-TexSy battery. Energy Storage Mater. 16, 31–36 (2019). https://doi.org/10.1016/j.ensm.2018.04.019
Choi, N.S., Chen, Z.H., Freunberger, S.A., et al.: Challenges facing lithium batteries and electrical double-layer capacitors. Angew. Chem. Int. Edit 51, 9994–10024 (2012). https://doi.org/10.1002/anie.201201429
Lee, W., Kim, J., Yun, S., et al.: Multiscale factors in designing alkali-ion (Li, Na, and K) transition metal inorganic compounds for next-generation rechargeable batteries. Energy Environ. Sci. 13, 4406–4449 (2020). https://doi.org/10.1039/d0ee01277g
Goodenough, J.B., Park, K.S.: The Li-ion rechargeable battery: a perspective. J Am. Chem. Soc. 135, 1167–1176 (2013). https://doi.org/10.1021/ja3091438
Cui, Z.M., Zu, C.X., Zhou, W.D., et al.: Mesoporous titanium nitride-enabled highly stable lithium-sulfur batteries. Adv. Mater. 28, 6926–6931 (2016). https://doi.org/10.1002/adma.201601382
Seh, Z.W., Sun, Y.M., Zhang, Q.F., et al.: Designing high-energy lithium-sulfur batteries. Chem. Soc. Rev. 45, 5605–5634 (2016). https://doi.org/10.1039/c5cs00410a
Pang, Q., Liang, X., Kwok, C.Y., et al.: Advances in lithium-sulfur batteries based on multifunctional cathodes and electrolytes. Nat. Energy 1, 16132 (2016). https://doi.org/10.1038/nenergy.2016.132
Pomerantseva, E., Gogotsi, Y.: Two-dimensional heterostructures for energy storage. Nat. Energy 2, 17089 (2017). https://doi.org/10.1038/nenergy.2017.89
Liang, Y.L., Dong, H., Aurbach, D., et al.: Current status and future directions of multivalent metal-ion batteries. Nat. Energy 5, 646–656 (2020). https://doi.org/10.1038/s41560-020-0655-0
Xiao, J., Li, Q.Y., Bi, Y.J., et al.: Understanding and applying coulombic efficiency in lithium metal batteries. Nat. Energy 5, 561–568 (2020). https://doi.org/10.1038/s41560-020-0648-z
Xu, Q., Li, X.F., Kheimeh Sari, H.M., et al.: Surface engineering of LiNi0.8Mn0.1Co0.1O2 towards boosting lithium storage: bimetallic oxides versus monometallic oxides. Nano Energy 77, 105034 (2020). https://doi.org/10.1016/j.nanoen.2020.105034
Wang, X.R., Tan, G.Q., Bai, Y., et al.: Multi-electron reaction materials for high-energy-density secondary batteries: current status and prospective. Electrochem. Energy Rev. 4, 35–66 (2021). https://doi.org/10.1007/s41918-020-00073-4
Gomes, R., Bhattacharyya, A.J.: Carbon nanotube-templated covalent organic framework nanosheets as an efficient sulfur host for room-temperature metal-sulfur batteries. ACS Sustain. Chem. Eng. 8, 5946–5953 (2020). https://doi.org/10.1021/acssuschemeng.0c00239
Yang, H.L., Zhang, B.W., Wang, Y.X., et al.: Alkali-metal sulfide as cathodes toward safe and high-capacity metal (M = Li, Na, K) sulfur batteries. Adv. Energy Mater. 10, 2001764 (2020). https://doi.org/10.1002/aenm.202001764
Chung, S.H., Manthiram, A.: Current status and future prospects of metal-sulfur batteries. Adv. Mater. 31, 1901125 (2019). https://doi.org/10.1002/adma.201901125
Wang, Y.J., Fang, B.Z., Zhang, D., et al.: A review of carbon-composited materials as air-electrode bifunctional electrocatalysts for metal-air batteries. Electrochem. Energy Rev. 1, 1–34 (2018). https://doi.org/10.1007/s41918-018-0002-3
Chen, X.Q., Ali, I., Song, L.J., et al.: A review on recent advancement of nano-structured-fiber-based metal-air batteries and future perspective. Renew. Sustain. Energy Rev. 134, 110085 (2020). https://doi.org/10.1016/j.rser.2020.110085
Zhang, Y.L., Goh, K., Zhao, L., et al.: Advanced non-noble materials in bifunctional catalysts for ORR and OER toward aqueous metal-air batteries. Nanoscale 12, 21534–21559 (2020). https://doi.org/10.1039/d0nr05511e
Maleki KheimehSari, H., Li, X.: Controllable cathode–electrolyte interface of Li [Ni0.8Co0.1Mn0.1]O2 for lithium ion batteries: a review. Adv. Energy Mater. 9, 1901597 (2019). https://doi.org/10.1002/aenm.201901597
Liu, W., Li, X.F., Xiong, D.B., et al.: Significantly improving cycling performance of cathodes in lithium ion batteries: the effect of Al2O3 and LiAlO2 coatings on LiNi0.6Co0.2Mn0.2O2. Nano Energy 44, 111–120 (2018). https://doi.org/10.1016/j.nanoen.2017.11.010
Li, X., Wang, L., You, W.B., et al.: Enhanced polarization from flexible hierarchical MnO2 arrays on cotton cloth with excellent microwave absorption. Nanoscale 11, 13269–13281 (2019). https://doi.org/10.1039/C9NR02667C
Liang, C.Y., Wang, Z.F., Wu, L.N., et al.: Light and strong hierarchical porous SiC foam for efficient electromagnetic interference shielding and thermal insulation at elevated temperatures. ACS Appl. Mater. Interfaces 9, 29950–29957 (2017). https://doi.org/10.1021/acsami.7b07735
Cui, C.H., Yan, D.X., Pang, H., et al.: A high heat-resistance bioplastic foam with efficient electromagnetic interference shielding. Chem. Eng. J. 323, 29–36 (2017). https://doi.org/10.1016/j.cej.2017.04.050
Wang, C., Murugadoss, V., Kong, J., et al.: Overview of carbon nanostructures and nanocomposites for electromagnetic wave shielding. Carbon 140, 696–733 (2018). https://doi.org/10.1016/j.carbon.2018.09.006
Naguib, M., Mashtalir, O., Carle, J., et al.: Two-dimensional transition metal carbides. ACS Nano 6, 1322–1331 (2012). https://doi.org/10.1021/nn204153h
Alhabeb, M., Maleski, K., Anasori, B., et al.: Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mater. 29, 7633–7644 (2017). https://doi.org/10.1021/acs.chemmater.7b02847
Anasori, B., Lukatskaya, M.R., Gogotsi, Y.: 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2, 16098 (2017). https://doi.org/10.1038/natrevmats.2016.98
Gogotsi, Y., Anasori, B.: The rise of MXenes. ACS Nano 13, 8491–8494 (2019). https://doi.org/10.1021/acsnano.9b06394
He, P., Cao, M.S., Cai, Y.Z., et al.: Self-assembling flexible 2D carbide MXene film with tunable integrated electron migration and group relaxation toward energy storage and green EMI shielding. Carbon 157, 80–89 (2020). https://doi.org/10.1016/j.carbon.2019.10.009
Naguib, M., Kurtoglu, M., Presser, V., et al.: Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23, 4248–4253 (2011). https://doi.org/10.1002/adma.201102306
Ghidiu, M., Lukatskaya, M.R., Zhao, M.Q., et al.: Conductive two-dimensional titanium carbide “clay” with high volumetric capacitance. Nature 516, 78–81 (2014). https://doi.org/10.1038/nature13970
Lukatskaya, M.R., Bak, S.M., Yu, X.Q., et al.: Probing the mechanism of high capacitance in 2D titanium carbide using in situ X-ray absorption spectroscopy. Adv. Energy Mater. 5, 1500589 (2015). https://doi.org/10.1002/aenm.201500589
Li, Y., Shao, H., Lin, Z., et al.: A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte. Nat Mater 19, 894–899 (2020). https://doi.org/10.1038/s41563-020-0657-0
Natu, V., Pai, R., Sokol, M., et al.: 2D Ti3C2Tz MXene synthesized by water-free etching of Ti3AlC2 in polar organic solvents. Chem 6, 616–630 (2020). https://doi.org/10.1016/j.chempr.2020.01.019
Pang, S.Y., Wong, Y.T., Yuan, S.G., et al.: Universal strategy for HF-free facile and rapid synthesis of two-dimensional MXenes as multifunctional energy materials. J. Am. Chem. Soc. 141, 9610–9616 (2019). https://doi.org/10.1021/jacs.9b02578
Li, T., Yao, L., Liu, Q., et al.: Fluorine-free synthesis of high-purity Ti3C2Tx (T = OH, O) via alkali treatment. Angew. Chem. Int. Ed. Engl. 57, 6115–6119 (2018). https://doi.org/10.1002/anie.201800887
Dong, Y.F., Shi, H.D., Wu, Z.S.: Recent advances and promise of MXene-based nanostructures for high-performance metal ion batteries. Adv. Funct. Mater. 30, 2000706 (2020). https://doi.org/10.1002/adfm.202000706
Tang, X., Guo, X., Wu, W.J., et al.: 2D metal carbides and nitrides (MXenes) as high-performance electrode materials for lithium-based batteries. Adv. Energy Mater. 8, 1801897 (2018). https://doi.org/10.1002/aenm.201801897
Yang, J., Bao, W.Z., Jaumaux, P., et al.: MXene-based composites: synthesis and applications in rechargeable batteries and supercapacitors. Adv. Mater. Interfaces 6, 1802004 (2019). https://doi.org/10.1002/admi.201802004
Lukatskaya, M.R., Kota, S., Lin, Z.F., et al.: Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nat. Energy 2, 17105 (2017). https://doi.org/10.1038/nenergy.2017.105
Wang, Y.M., Wang, X., Li, X.F., et al.: A high-performance, tailorable, wearable, and foldable solid-state supercapacitor enabled by arranging pseudocapacitive groups and MXene flakes on textile electrode surface. Adv. Funct. Mater. 31, 2008185 (2021). https://doi.org/10.1002/adfm.202008185
Lei, Y.J., Yan, Z.C., Lai, W.H., et al.: Tailoring MXene-based materials for sodium-ion storage: synthesis, mechanisms, and applications. Electrochem. Energy Rev. 3, 766–792 (2020). https://doi.org/10.1007/s41918-020-00079-y
Hui, X.B., Ge, X.L., Zhao, R.Z., et al.: Interface chemistry on MXene-based materials for enhanced energy storage and conversion performance. Adv. Funct. Mater. 30, 2005190 (2020). https://doi.org/10.1002/adfm.202005190
Liu, A.M., Liang, X.Y., Ren, X.F., et al.: Recent progress in MXene-based materials: potential high-performance electrocatalysts. Adv. Funct. Mater. 30, 2003437 (2020). https://doi.org/10.1002/adfm.202003437
Li, Z., Wu, Y.: 2D early transition metal carbides (MXenes) for catalysis. Small 15, 1804736 (2019). https://doi.org/10.1002/smll.201804736
Liang, X., Ren, X., Yang, Q., et al.: A two-dimensional MXene-supported metal-organic framework for highly selective ambient electrocatalytic nitrogen reduction. Nanoscale 13, 2843–2848 (2021). https://doi.org/10.1039/d0nr08744k
George, S.M., Kandasubramanian, B.: Advancements in MXene-polymer composites for various biomedical applications. Ceram. Int. 46, 8522–8535 (2020). https://doi.org/10.1016/j.ceramint.2019.12.257
Lin, H., Chen, Y., Shi, J.L.: Insights into 2D MXenes for versatile biomedical applications: current advances and challenges ahead. Adv. Sci. 5, 1800518 (2018). https://doi.org/10.1002/advs.201800518
Iqbal, A., Sambyal, P., Koo, C.M.: 2D MXenes for electromagnetic shielding: a review. Adv. Funct. Mater. 30, 2000883 (2020). https://doi.org/10.1002/adfm.202000883
Raagulan, K., Kim, B.M., Chai, K.Y.: Recent advancement of electromagnetic interference (EMI) shielding of two dimensional (2D) MXene and graphene aerogel composites. Nanomaterials 10, 702 (2020). https://doi.org/10.3390/nano10040702
Xu, D.X., Li, Z.D., Li, L.S., et al.: Insights into the photothermal conversion of 2D MXene nanomaterials: synthesis, mechanism, and applications. Adv. Funct. Mater. 30, 2000712 (2020). https://doi.org/10.1002/adfm.202000712
Li, N., Xie, Y., Peng, S.T., et al.: Ultra-lightweight Ti3C2Tx MXene modified separator for Li-S batteries: thickness regulation enabled polysulfide inhibition and lithium ion transportation. J. Energy Chem. 42, 116–125 (2020). https://doi.org/10.1016/j.jechem.2019.06.014
Zhao, R.Z., Di, H.X., Hui, X.B., et al.: Self-assembled Ti3C2 MXene and N-rich porous carbon hybrids as superior anodes for high-performance potassium-ion batteries. Energy Environ. Sci. 13, 246–257 (2020). https://doi.org/10.1039/C9EE03250A
Zhang, F., Jia, Z.R., Wang, C., et al.: Sandwich-like silicon/Ti3C2Tx MXene composite by electrostatic self-assembly for high performance lithium ion battery. Energy 195, 117047 (2020). https://doi.org/10.1016/j.energy.2020.117047
Zuo, D.C., Song, S.C., An, C.S., et al.: Synthesis of sandwich-like structured Sn/SnOx@MXene composite through in situ growth for highly reversible lithium storage. Nano Energy 62, 401–409 (2019). https://doi.org/10.1016/j.nanoen.2019.05.062
Xu, M., Lei, S.L., Qi, J., et al.: Opening magnesium storage capability of two-dimensional MXene by intercalation of cationic surfactant. ACS Nano 12, 3733–3740 (2018). https://doi.org/10.1021/acsnano.8b00959
Zhang, Y., Mu, Z., Lai, J., et al.: MXene/Si@SiOx@C layer-by-layer superstructure with autoadjustable function for superior stable lithium storage. ACS Nano 13, 2167–2175 (2019). https://doi.org/10.1021/acsnano.8b08821
Pang, Q., Shyamsunder, A., Narayanan, B., et al.: Tuning the electrolyte network structure to invoke quasi-solid state sulfur conversion and suppress lithium dendrite formation in Li-S batteries. Nat. Energy 3, 783–791 (2018). https://doi.org/10.1038/s41560-018-0214-0
Conder, J., Bouchet, R., Trabesinger, S., et al.: Direct observation of lithium polysulfides in lithium-sulfur batteries using operando X-ray diffraction. Nat. Energy 2, 17069 (2017). https://doi.org/10.1038/nenergy.2017.69
Liu, Y.T., Liu, S., Li, G.R., et al.: Strategy of enhancing the volumetric energy density for lithium-sulfur batteries. Adv. Mater. 33, 2003955 (2021). https://doi.org/10.1002/adma.202003955
Evers, S., Nazar, L.F.: New approaches for high energy density lithium-sulfur battery cathodes. Accounts Chem. Res. 46, 1135–1143 (2013). https://doi.org/10.1021/ar3001348
Fang, R.P., Zhao, S.Y., Sun, Z.H., et al.: More reliable lithium-sulfur batteries: status, solutions and prospects. Adv. Mater. 29, 1606823 (2017). https://doi.org/10.1002/adma.201606823
Peng, H.J., Huang, J.Q., Zhang, Q.: A review of flexible lithium-sulfur and analogous alkali metal-chalcogen rechargeable batteries. Chem. Soc. Rev. 46, 5237–5288 (2017). https://doi.org/10.1039/c7cs00139h
Manthiram, A., Chung, S.H., Zu, C.X.: Lithium-sulfur batteries: progress and prospects. Adv. Mater. 27, 1980–2006 (2015). https://doi.org/10.1002/adma.201405115
Li, S.P., Zhang, W., Zeng, Z.Q., et al.: Selenium or tellurium as eutectic accelerators for high-performance lithium/sodium-sulfur batteries. Electrochem. Energy Rev. 3, 613–642 (2020). https://doi.org/10.1007/s41918-020-00072-5
Zhang, G., Peng, H.J., Zhao, C.Z., et al.: The radical pathway based on a lithium-metal-compatible high-dielectric electrolyte for lithium-sulfur batteries. Angew. Chem. Int. Edit 57, 16732–16736 (2018). https://doi.org/10.1002/anie.201810132
Chen, C.Y., Peng, H.J., Hou, T.Z., et al.: A quinonoid-imine-enriched nanostructured polymer mediator for lithium-sulfur batteries. Adv. Mater. 29, 1606802 (2017). https://doi.org/10.1002/adma.201606802
Li, S.L., Zhang, W.F., Zheng, J.F., et al.: Inhibition of polysulfide shuttles in Li-S batteries: modified separators and solid-state electrolytes. Adv. Energy Mater. 11, 2000779 (2021). https://doi.org/10.1002/aenm.202000779
Zuo, J.H., Gong, Y.J.: Applications of transition-metal sulfides in the cathodes of lithium-sulfur batteries. Tungsten 2, 134–146 (2020). https://doi.org/10.1007/s42864-020-00046-6
Tao, X., Wang, J., Liu, C., et al.: Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium-sulfur battery design. Nat Commun 7, 11203 (2016). https://doi.org/10.1038/ncomms11203
Shi, H.F., Lv, W., Zhang, C., et al.: Functional carbons remedy the shuttling of polysulfides in lithium-sulfur batteries: confining, trapping, blocking, and breaking up. Adv. Funct. Mater. 28, 1800508 (2018). https://doi.org/10.1002/adfm.201800508
Hou, T.Z., Xu, W.T., Chen, X., et al.: Lithium bond chemistry in lithium-sulfur batteries. Angew. Chem. Int. Edit 56, 8178–8182 (2017). https://doi.org/10.1002/anie.201704324
Tan, G.Q., Xu, R., Xing, Z.Y., et al.: Burning lithium in CS2 for high-performing compact Li2S-graphene nanocapsules for Li-S batteries. Nat. Energy 2, 17090 (2017). https://doi.org/10.1038/nenergy.2017.90
Xiong, D.B., Li, X.F., Bai, Z.M., et al.: Recent advances in layered Ti3C2Tx MXene for electrochemical energy storage. Small 14, 1703419 (2018). https://doi.org/10.1002/smll.201703419
Liang, X., Garsuch, A., Nazar, L.F.: Sulfur cathodes based on conductive MXene nanosheets for high-performance lithium-sulfur batteries. Angew. Chem. Int. Edit 54, 3907–3911 (2015). https://doi.org/10.1002/anie.201410174
Liu, X.B., Shao, X.F., Li, F., et al.: Anchoring effects of S-terminated Ti2C MXene for lithium-sulfur batteries: a first-principles study. Appl. Surf. Sci. 455, 522–526 (2018). https://doi.org/10.1016/j.apsusc.2018.05.200
Rao, D.W., Zhang, L.Y., Wang, Y.H., et al.: Mechanism on the improved performance of lithium sulfur batteries with MXene-based additives. J. Phys. Chem. C 121, 11047–11054 (2017). https://doi.org/10.1021/acs.jpcc.7b00492
Song, J.J., Su, D.W., Xie, X.Q., et al.: Immobilizing polysulfides with MXene-functionalized separators for stable lithium-sulfur batteries. ACS Appl. Mater. Interfaces 8, 29427–29433 (2016). https://doi.org/10.1021/acsami.6b09027
Sim, E.S., Yi, G.S., Je, M., et al.: Understanding the anchoring behavior of titanium carbide-based MXenes depending on the functional group in Li-S batteries: a density functional theory study. J. Power Sources 342, 64–69 (2017). https://doi.org/10.1016/j.jpowsour.2016.12.042
Sim, E.S., Chung, Y.C.: Non-uniformly functionalized titanium carbide-based MXenes as an anchoring material for Li-S batteries: a first-principles calculation. Appl. Surf. Sci. 435, 210–215 (2018). https://doi.org/10.1016/j.apsusc.2017.11.101
Wang, D.S., Li, F., Lian, R.Q., et al.: A general atomic surface modification strategy for improving anchoring and electrocatalysis behavior of Ti3C2Tx MXene in lithium-sulfur batteries. ACS Nano 13, 11078–11086 (2019). https://doi.org/10.1021/acsnano.9b03412
Lin, H., Yang, D.D., Lou, N., et al.: Functionalized titanium nitride-based MXenes as promising host materials for lithium-sulfur batteries: a first principles study. Ceram. Int. 45, 1588–1594 (2019). https://doi.org/10.1016/j.ceramint.2018.10.033
Fang, M., Liu, X.Y., Ren, J.C., et al.: Revisiting the anchoring behavior in lithium-sulfur batteries: many-body effect on the suppression of shuttle effect. Npj Comput. Mater. 6, 8 (2020). https://doi.org/10.1038/s41524-020-0273-1
Zhao, Y.M., Zhao, J.X.: Functional group-dependent anchoring effect of titanium carbide-based MXenes for lithium-sulfur batteries: a computational study. Appl. Surf. Sci. 412, 591–598 (2017). https://doi.org/10.1016/j.apsusc.2017.04.013
Wang, Y.T., Shen, J.L., Xu, L.C., et al.: Sulfur-functionalized vanadium carbide MXene (V2CS2) as a promising anchoring material for lithium-sulfur batteries. Phys. Chem. Chem. Phys. 21, 18559–18568 (2019). https://doi.org/10.1039/c9cp03419f
Zhao, X.Q., Liu, M., Chen, Y., et al.: Fabrication of layered Ti3C2 with an accordion-like structure as a potential cathode material for high performance lithium-sulfur batteries. J. Mater. Chem. A 3, 7870–7876 (2015). https://doi.org/10.1039/c4ta07101h
Liang, X., Garsuch, A., Nazar, L.F.: Sulfur cathodes based on conductive MXene nanosheets for high-performance lithium-sulfur batteries. Angew. Chem. 127, 3979–3983 (2015). https://doi.org/10.1002/ange.201410174
Pan, H., Huang, X.X., Zhang, R., et al.: Titanium oxide-Ti3C2 hybrids as sulfur hosts in lithium-sulfur battery: fast oxidation treatment and enhanced polysulfide adsorption ability. Chem. Eng. J. 358, 1253–1261 (2019). https://doi.org/10.1016/j.cej.2018.10.026
Zhang, F., Zhou, Y.L., Zhang, Y., et al.: Facile synthesis of sulfur@titanium carbide MXene as high performance cathode for lithium-sulfur batteries. Nanophotonics 9, 2025–2032 (2020). https://doi.org/10.1515/nanoph-2019-0568
Tang, H., Li, W.L., Pan, L.M., et al.: In situ formed protective barrier enabled by Sulfur@Titanium carbide (MXene) ink for achieving high-capacity, long lifetime Li-S batteries. Adv. Sci. 5, 1800502 (2018). https://doi.org/10.1002/advs.201800502
Tang, H., Li, W.L., Pan, L.M., et al.: A robust, freestanding MXene-sulfur conductive paper for long-lifetime Li-S batteries. Adv. Funct. Mater. 29, 1901907 (2019). https://doi.org/10.1002/adfm.201901907
Zhang, S.Z., Zhong, N., Zhou, X., et al.: Comprehensive design of the high-sulfur-loading Li-S battery based on MXene nanosheets. Nano-Micro Lett. 12, 1–13 (2020). https://doi.org/10.1007/s40820-020-00449-7
Dong, Y.F., Zheng, S.H., Qin, J.Q., et al.: All-MXene-based integrated electrode constructed by Ti3C2 nanoribbon framework host and nanosheet interlayer for high-energy-density Li-S batteries. ACS Nano 12, 2381–2388 (2018). https://doi.org/10.1021/acsnano.7b07672
Yao, Y., Feng, W.L., Chen, M.L., et al.: Boosting the electrochemical performance of Li-S batteries with a dual polysulfides confinement strategy. Small 14, 1802516 (2018). https://doi.org/10.1002/smll.201802516
Wang, X.W., Yang, C.H., Xiong, X.H., et al.: A robust sulfur host with dual lithium polysulfide immobilization mechanism for long cycle life and high capacity Li-S batteries. Energy Storage Mater. 16, 344–353 (2019). https://doi.org/10.1016/j.ensm.2018.06.015
Huang, X., Tang, J.Y., Luo, B., et al.: Sandwich-like ultrathin TiS2 nanosheets confined within N, S codoped porous carbon as an effective polysulfide promoter in lithium-sulfur batteries. Adv. Energy Mater. 9, 1901872 (2019). https://doi.org/10.1002/aenm.201901872
Bao, W.Z., Liu, L., Wang, C.Y., et al.: Facile synthesis of crumpled nitrogen-doped MXene nanosheets as a new sulfur host for lithium-sulfur batteries. Adv. Energy Mater. 8, 1702485 (2018). https://doi.org/10.1002/aenm.201702485
Ji, X.L., Lee, K.T., Nazar, L.F.: A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat. Mater. 8, 500–506 (2009). https://doi.org/10.1038/nmat2460
Li, W., Liu, J., Zhao, D.Y.: Mesoporous materials for energy conversion and storage devices. Nat. Rev. Mater. 1, 16023 (2016). https://doi.org/10.1038/natrevmats.2016.23
Zhou, G.M., Pei, S.F., Li, L., et al.: A graphene-pure-sulfur sandwich structure for ultrafast, long-life lithium-sulfur batteries. Adv. Mater. 26, 625–631 (2014). https://doi.org/10.1002/adma.201302877
Zhang, Y.Q., Tang, W.W., Zhan, R.M., et al.: An N-doped porous carbon/MXene composite as a sulfur host for lithium-sulfur batteries. Inorg. Chem. Front. 6, 2894–2899 (2019). https://doi.org/10.1039/c9qi00723g
Jiang, G.Y., Zheng, N., Chen, X., et al.: In-situ decoration of MOF-derived carbon on nitrogen-doped ultrathin MXene nanosheets to multifunctionalize separators for stable Li-S batteries. Chem. Eng. J. 373, 1309–1318 (2019). https://doi.org/10.1016/j.cej.2019.05.119
Wang, J.T., Zhao, T.K., Yang, Z.H., et al.: MXene-based Co, N-codoped porous carbon nanosheets regulating polysulfides for high-performance lithium-sulfur batteries. ACS Appl. Mater. Interfaces 11, 38654–38662 (2019). https://doi.org/10.1021/acsami.9b11988
Song, Y.Z., Sun, Z.T., Fan, Z.D., et al.: Rational design of porous nitrogen-doped Ti3C2 MXene as a multifunctional electrocatalyst for Li-S chemistry. Nano Energy 70, 104555 (2020). https://doi.org/10.1016/j.nanoen.2020.104555
Wang, J.L., Zhang, Z., Yan, X.F., et al.: Rational design of porous N-Ti3C2 MXene@CNT microspheres for high cycling stability in Li-S battery. Nano- Micro Lett. 12, 1–14 (2019). https://doi.org/10.1007/s40820-019-0341-6
Fang, R.P., Chen, K., Yin, L.C., et al.: The regulating role of carbon nanotubes and graphene in lithium-ion and lithium-sulfur batteries. Adv. Mater. 31, 1800863 (2019). https://doi.org/10.1002/adma.201800863
Wang, Y.K., Zhang, R.F., Chen, J., et al.: Enhancing catalytic activity of titanium oxide in lithium-sulfur batteries by band engineering. Adv. Energy Mater. 9, 1900953 (2019). https://doi.org/10.1002/aenm.201900953
Lv, L.P., Guo, C.F., Sun, W.W., et al.: Strong surface-bound sulfur in carbon nanotube bridged hierarchical Mo2C-based MXene nanosheets for lithium-sulfur batteries. Small 15, 1804338 (2019). https://doi.org/10.1002/smll.201804338
Li, N., Cao, W.Y., Liu, Y.W., et al.: Impeding polysulfide shuttling with a three-dimensional conductive carbon nanotubes/MXene framework modified separator for highly efficient lithium-sulfur batteries. Coll. Surf. APhysicochem. Eng. Asp. 573, 128–136 (2019). https://doi.org/10.1016/j.colsurfa.2019.04.054
Guo, D., Ming, F.W., Su, H., et al.: MXene based self-assembled cathode and antifouling separator for high-rate and dendrite-inhibited Li-S battery. Nano Energy 61, 478–485 (2019). https://doi.org/10.1016/j.nanoen.2019.05.011
Chen, Z., Yang, X.B., Qiao, X., et al.: Lithium-ion-engineered interlayers of V2C MXene as advanced host for flexible sulfur cathode with enhanced rate performance. J. Phys. Chem. Lett. 11, 885–890 (2020). https://doi.org/10.1021/acs.jpclett.9b03827
Song, J.J., Guo, X., Zhang, J.Q., et al.: Rational design of free-standing 3D porous MXene/rGO hybrid aerogels as polysulfide reservoirs for high-energy lithium-sulfur batteries. J. Mater. Chem. A 7, 6507–6513 (2019). https://doi.org/10.1039/c9ta00212j
Cong, L.N., Xie, H.M., Li, J.H.: Hierarchical structures based on two-dimensional nanomaterials for rechargeable lithium batteries. Adv. Energy Mater. 7, 1601906 (2017). https://doi.org/10.1002/aenm.201601906
Lv, X., Lei, T., Wang, B.J., et al.: An efficient separator with low Li-ion diffusion energy barrier resolving feeble conductivity for practical lithium-sulfur batteries. Adv. Energy Mater. 9, 1901800 (2019). https://doi.org/10.1002/aenm.201901800
Liu, X.J., Hao, Y.C., Shu, J., et al.: Nitrogen/sulfur dual-doping of reduced graphene oxide harvesting hollow ZnSnS3 nano-microcubes with superior sodium storage. Nano Energy 57, 414–423 (2019). https://doi.org/10.1016/j.nanoen.2018.12.024
Wang, B., Ruan, T.T., Chen, Y., et al.: Graphene-based composites for electrochemical energy storage. Energy Storage Mater. 24, 22–51 (2020). https://doi.org/10.1016/j.ensm.2019.08.004
Han, J.W., Wei, W., Zhang, C., et al.: Engineering graphenes from the nano-to the macroscale for electrochemical energy storage. Electrochem. Energy Rev. 1, 139–168 (2018). https://doi.org/10.1007/s41918-018-0006-z
Bao, W.Z., Xie, X.Q., Xu, J., et al.: Confined sulfur in 3D MXene/reduced graphene oxide hybrid nanosheets for lithium-sulfur battery. Chem. A Eur. J. 23, 12613–12619 (2017). https://doi.org/10.1002/chem.201702387
Li, W.T., Zhang, Y.F., Li, H., et al.: Layered MXene protected lithium metal anode as an efficient polysulfide blocker for lithium-sulfur batteries. Batter. Supercaps 3, 892–899 (2020). https://doi.org/10.1002/batt.202000062
Wang, Z.Y., Zhang, N., Yu, M.L., et al.: Boosting redox activity on MXene-induced multifunctional collaborative interface in high Li2S loading cathode for high-energy Li-S and metallic Li-free rechargeable batteries. J. Energy Chem. 37, 183–191 (2019). https://doi.org/10.1016/j.jechem.2019.03.012
Liu, P., Qu, L., Tian, X.L., et al.: Ti3C2Tx/graphene oxide free-standing membranes as modified separators for lithium-sulfur batteries with enhanced rate performance. ACS Appl. Energy Mater. 3, 2708–2718 (2020). https://doi.org/10.1021/acsaem.9b02385
Liang, P., Zhang, L., Wang, D., et al.: First-principles explorations of Li2S@V2CTx hybrid structure as cathode material for lithium-sulfur battery. Appl. Surf. Sci. 489, 677–683 (2019). https://doi.org/10.1016/j.apsusc.2019.06.033
Pourali, Z., Yaftian, M.R., Sovizi, M.R.: Li2S/transition metal carbide composite as cathode material for high performance lithium-sulfur batteries. Mater. Chem. Phys. 217, 117–124 (2018). https://doi.org/10.1016/j.matchemphys.2018.06.074
Seh, Z.W., Li, W.Y., Cha, J.J., et al.: Sulphur-TiO2 yolk-shell nanoarchitecture with internal void space for long-cycle lithium-sulphur batteries. Nat. Commun. 4, 1331 (2013). https://doi.org/10.1038/ncomms2327
Chen, Y., Choi, S., Su, D.W., et al.: Self-standing sulfur cathodes enabled by 3D hierarchically porous titanium monoxide-graphene composite film for high-performance lithium-sulfur batteries. Nano Energy 47, 331–339 (2018). https://doi.org/10.1016/j.nanoen.2018.03.008
Sun, Q., Xi, B.J., Li, J.Y., et al.: Nitrogen-doped graphene-supported mixed transition-metal oxide porous particles to confine polysulfides for lithium-sulfur batteries. Adv. Energy Mater. 8, 1800595 (2018). https://doi.org/10.1002/aenm.201800595
Ye, C., Zhang, L., Guo, C.X., et al.: A 3D hybrid of chemically coupled nickel sulfide and hollow carbon spheres for high performance lithium-sulfur batteries. Adv. Funct. Mater. 27, 1702524 (2017). https://doi.org/10.1002/adfm.201702524
Qin, J., Sari, H.M.K., Wang, X.J., et al.: Controlled design of metal oxide-based (Mn2+/Nb5+) anodes for superior sodium-ion hybrid supercapacitors: synergistic mechanisms of hybrid ion storage. Nano Energy 71, 104594 (2020). https://doi.org/10.1016/j.nanoen.2020.104594
Gao, X.T., Xie, Y., Zhu, X.D., et al.: Ultrathin MXene nanosheets decorated with TiO2 quantum dots as an efficient sulfur host toward fast and stable Li-S batteries. Small 14, 1802443 (2018). https://doi.org/10.1002/smll.201802443
Du, C., Wu, J., Yang, P., et al.: Embedding S@TiO2 nanospheres into MXene layers as high rate cyclability cathodes for lithium-sulfur batteries. Electrochim. Acta 295, 1067–1074 (2019). https://doi.org/10.1016/j.electacta.2018.11.143
Jiao, L., Zhang, C., Geng, C.N., et al.: Capture and catalytic conversion of polysulfides by in situ built TiO2-MXene heterostructures for lithium-sulfur batteries. Adv. Energy Mater. 9, 1900219 (2019). https://doi.org/10.1002/aenm.201900219
Wang, Z.G., Yu, K., Feng, Y., et al.: VO2(p)-V2C(MXene) grid structure as a lithium polysulfide catalytic host for high-performance Li-S battery. ACS Appl. Mater. Interfaces 11, 44282–44292 (2019). https://doi.org/10.1021/acsami.9b15586
Qiu, S.Y., Wang, C., Jiang, Z.X., et al.: Rational design of MXene@TiO2 nanoarray enabling dual lithium polysulfide chemisorption towards high-performance lithium–sulfur batteries. Nanoscale 12, 16678–16684 (2020). https://doi.org/10.1039/d0nr03528a
Zhang, H., Qi, Q., Zhang, P.G., et al.: Self-assembled 3D MnO2 nanosheets@delaminated-Ti3C2 aerogel as sulfur host for lithium-sulfur battery cathodes. ACS Appl. Energy Mater. 2, 705–714 (2019). https://doi.org/10.1021/acsaem.8b01765
Zhang, D., Wang, S., Hu, R.M., et al.: Catalytic conversion of polysulfides on single atom zinc implanted MXene toward high-rate lithium-sulfur batteries. Adv. Funct. Mater. 30, 2002471 (2020). https://doi.org/10.1002/adfm.202002471
Fang, X.P., Guo, X.W., Mao, Y., et al.: Mechanism of lithium storage in MoS2 and the feasibility of using Li2S/Mo nanocomposites as cathode materials for lithium-sulfur batteries. Chem. Asian J. 7, 1013–1017 (2012). https://doi.org/10.1002/asia.201100796
Xue, W.J., Shi, Z., Suo, L.M., et al.: Intercalation-conversion hybrid cathodes enabling Li-S full-cell architectures with jointly superior gravimetric and volumetric energy densities. Nat. Energy 4, 374–382 (2019). https://doi.org/10.1038/s41560-019-0351-0
Zhang, Y.L., Mu, Z.J., Yang, C., et al.: Rational design of MXene/1T-2H MoS2-C nanohybrids for high-performance lithium-sulfur batteries. Adv. Funct. Mater. 28, 1707578 (2018). https://doi.org/10.1002/adfm.201707578
Zhou, H.Y., Sui, Z.Y., Amin, K., et al.: Investigating the electrocatalysis of a Ti3C2/carbon hybrid in polysulfide conversion of lithium-sulfur batteries. ACS Appl. Mater. Interfaces 12, 13904–13913 (2020). https://doi.org/10.1021/acsami.9b23006
Qi, Q., Zhang, H., Zhang, P.G., et al.: Self-assembled sandwich hollow porous carbon sphere @ MXene composites as superior LiS battery cathode hosts. 2D Mater. 7, 025049 (2020). https://doi.org/10.1088/2053-1583/ab79c1
Gan, R.Y., Yang, N., Dong, Q., et al.: Enveloping ultrathin Ti3C2 nanosheets on carbon fibers: a high-density sulfur loaded lithium-sulfur battery cathode with remarkable cycling stability. J. Mater. Chem. A 8, 7253–7260 (2020). https://doi.org/10.1039/d0ta02374d
Fang, Q., Fang, M., Liu, X.Y., et al.: An asymmetric Ti2CO/WS2 heterostructure as a promising anchoring material for lithium-sulfur batteries. J. Mater. Chem. A 8, 13770–13775 (2020). https://doi.org/10.1039/d0ta04187d
Xiao, Z.B., Yang, Z., Li, Z.L., et al.: Synchronous gains of areal and volumetric capacities in lithium-sulfur batteries promised by flower-like porous Ti3C2Tx matrix. ACS Nano 13, 3404–3412 (2019). https://doi.org/10.1021/acsnano.8b09296
Lee, D.K., Chae, Y., Yun, H., et al.: CO2-oxidized Ti3C2Tx-MXenes components for lithium-sulfur batteries: suppressing the shuttle phenomenon through physical and chemical adsorption. ACS Nano 14, 9744–9754 (2020). https://doi.org/10.1021/acsnano.0c01452
Xiao, Z.B., Li, Z.L., Li, P.Y., et al.: Ultrafine Ti3C2 MXene nanodots-interspersed nanosheet for high-energy-density lithium-sulfur batteries. ACS Nano 13, 3608–3617 (2019). https://doi.org/10.1021/acsnano.9b00177
Yin, L.X., Xu, G.Y., Nie, P., et al.: MXene debris modified eggshell membrane as separator for high-performance lithium-sulfur batteries. Chem. Eng. J. 352, 695–703 (2018). https://doi.org/10.1016/j.cej.2018.07.063
Zhao, Q., Zhu, Q.Z., Miao, J.W., et al.: 2D MXene nanosheets enable small-sulfur electrodes to be flexible for lithium-sulfur batteries. Nanoscale 11, 8442–8448 (2019). https://doi.org/10.1039/c8nr09653h
Wang, J.T., Zhai, P.F., Zhao, T.K., et al.: Laminar MXene-Nafion-modified separator with highly inhibited shuttle effect for long-life lithium-sulfur batteries. Electrochim. Acta 320, 134558 (2019). https://doi.org/10.1016/j.electacta.2019.134558
Ellis, B.L., Nazar, L.F.: Sodium and sodium-ion energy storage batteries. Curr. Opin. Sol. State Mater. Sci. 16, 168–177 (2012). https://doi.org/10.1016/j.cossms.2012.04.002
Xin, S., Yin, Y.X., Guo, Y.G., et al.: A high-energy room-temperature sodium-sulfur battery. Adv. Mater. 26, 1261–1265 (2014). https://doi.org/10.1002/adma.201304126
Kim, I., Park, J.Y., Kim, C.H., et al.: A room temperature Na/S battery using a β″ alumina solid electrolyte separator, tetraethylene glycol dimethyl ether electrolyte, and a S/C composite cathode. J. Power Sourc. 301, 332–337 (2016). https://doi.org/10.1016/j.jpowsour.2015.09.120
Xu, X., Zhou, D., Qin, X., et al.: A room-temperature sodium-sulfur battery with high capacity and stable cycling performance. Nat. Commun 9, 3870 (2018). https://doi.org/10.1038/s41467-018-06443-3
Chen, S.Q., Bao, P.T., Wang, G.X.: Synthesis of Fe2O3-CNT-graphene hybrid materials with an open three-dimensional nanostructure for high capacity lithium storage. Nano Energy 2, 425–434 (2013). https://doi.org/10.1016/j.nanoen.2012.11.012
Wang, C.L., Wang, H., Hu, X.F., et al.: Frogspawn-coral-like hollow sodium sulfide nanostructured cathode for high-rate performance sodium-sulfur batteries. Adv. Energy Mater. 9, 1803843 (2019). https://doi.org/10.1002/aenm.201803843
Wang, Y.X., Zhang, B.W., Lai, W.H., et al.: Room-temperature sodium-sulfur batteries: a comprehensive review on research progress and cell chemistry. Adv. Energy Mater. 7, 1602829 (2017). https://doi.org/10.1002/aenm.201602829
Huo, X.G., Liu, Y.Y., Li, R.R., et al.: Two-dimensional Ti3C2Tx@S as cathode for room temperature sodium-sulfur batteries. Ionics 25, 5373–5382 (2019). https://doi.org/10.1007/s11581-019-03074-6
Bao, W.Z., Shuck, C.E., Zhang, W.X., et al.: Boosting performance of Na-S batteries using sulfur-doped Ti3C2Tx MXene nanosheets with a strong affinity to sodium polysulfides. ACS Nano 13, 11500–11509 (2019). https://doi.org/10.1021/acsnano.9b04977
Yang, Q.J., Yang, T.T., Gao, W., et al.: An MXene-based aerogel with cobalt nanoparticles as an efficient sulfur host for room-temperature Na-S batteries. Inorg. Chem. Front. 7, 4396–4403 (2020). https://doi.org/10.1039/d0qi00939c
Cao, J., Chen, C., Zhao, Q., et al.: A flexible nanostructured paper of a reduced graphene oxide-sulfur composite for high-performance lithium-sulfur batteries with unconventional configurations. Adv. Mater. 28, 9629–9636 (2016). https://doi.org/10.1002/adma.201602262
Jia, Z.Y., Zhang, H.Z., Yu, Y., et al.: Trithiocyanuric acid derived g-C3N4 for anchoring the polysulfide in Li-S batteries application. J. Energy Chem. 43, 71–77 (2020). https://doi.org/10.1016/j.jechem.2019.06.005
Mammoottil Abraham, A., Kammampata, S.P., Ponnurangam, S., et al.: Efficient synthesis and characterization of robust MoS2 and S cathode for advanced Li-S battery: combined experimental and theoretical studies. ACS Appl. Mater. Interfaces 11, 35729–35737 (2019). https://doi.org/10.1021/acsami.9b11967
Xu, S., Zhang, L., Zhang, X.P., et al.: A self-stabilized suspension catholyte to enable long-term stable Li-S flow batteries. J. Mater. Chem. A 5, 12904–12913 (2017). https://doi.org/10.1039/c7ta02110k
Wang, Y., Yang, L.W., Chen, Y.X., et al.: Novel bifunctional separator with a self-assembled FeOOH/coated g-C3N4/KB bilayer in lithium-sulfur batteries. ACS Appl. Mater. Interfaces 12, 57859–57869 (2020). https://doi.org/10.1021/acsami.0c16631
Han, J.M., Xi, B.J., Feng, Z.Y., et al.: Sulfur-hydrazine hydrate-based chemical synthesis of sulfur@graphene composite for lithium-sulfur batteries. Inorg. Chem. Front. 5, 785–792 (2018). https://doi.org/10.1039/c7qi00726d
Ma, J.S., Yu, M.P., Ye, H.Y., et al.: A 2D/2D graphitic carbon nitride/N-doped graphene hybrid as an effective polysulfide mediator in lithium-sulfur batteries. Mater. Chem. Front. 3, 1807–1815 (2019). https://doi.org/10.1039/c9qm00228f
Zhen, M.M., Guo, S.Q., Shen, B.X.: Constructing defect-rich MoS2/N-doped carbon nanosheets for catalytic polysulfide conversion in lithium-sulfur batteries. ACS Sustain. Chem. Eng. 8, 13318–13327 (2020). https://doi.org/10.1021/acssuschemeng.0c03887
Wang, R.R., Chen, Z.L., Sun, Y.Q., et al.: Three-dimensional graphene network-supported Co, N-codoped porous carbon nanocages as free-standing polysulfides mediator for lithium-sulfur batteries. Chem. Eng. J. 399, 125686 (2020). https://doi.org/10.1016/j.cej.2020.125686
Hong, X.H., Jin, J., Wu, T., et al.: A rGO-CNT aerogel covalently bonded with a nitrogen-rich polymer as a polysulfide adsorptive cathode for high sulfur loading lithium sulfur batteries. J. Mater. Chem. A 5, 14775–14782 (2017). https://doi.org/10.1039/c7ta03552g
Wang, X.L., Li, G.R., Li, M.J., et al.: Reinforced polysulfide barrier by g-C3N4/CNT composite towards superior lithium-sulfur batteries. J. Energy Chem. 53, 234–240 (2021). https://doi.org/10.1016/j.jechem.2020.05.036
Walle, M.D., Zeng, K., Zhang, M.Y., et al.: Flower-like molybdenum disulfide/carbon nanotubes composites for high sulfur utilization and high-performance lithium-sulfur battery cathodes. Appl. Surf. Sci. 473, 540–547 (2019). https://doi.org/10.1016/j.apsusc.2018.12.169
Zensich, M., Jaumann, T., Morales, G.M., et al.: A top-down approach to build Li2S@rGO cathode composites for high-loading lithium-sulfur batteries in carbonate-based electrolyte. Electrochim. Acta 296, 243–250 (2019). https://doi.org/10.1016/j.electacta.2018.10.184
Song, J.H., Zheng, J.M., Feng, S., et al.: Tubular titanium oxide/reduced graphene oxide-sulfur composite for improved performance of lithium sulfur batteries. Carbon 128, 63–69 (2018). https://doi.org/10.1016/j.carbon.2017.11.042
Yao, S.S., Wang, Y.Q., He, Y.P., et al.: Synergistic effect of titanium-oxide integrated with graphitic nitride hybrid for enhanced electrochemical performance in lithium-sulfur batteries. Int. J. Energy Res. 44, 10937–10945 (2020). https://doi.org/10.1002/er.5671
Xu, J., Li, T.X., Zhang, W.X., et al.: Propelling the polysulfide phase transformation of lithium-sulfur battery by VO2-rGO. J. Alloy. Compd. 804, 549–553 (2019). https://doi.org/10.1016/j.jallcom.2019.06.232
Zhang, J., Li, J.Y., Wang, W.P., et al.: Microemulsion assisted assembly of 3D porous S/graphene@g-C3N4 hybrid sponge as free-standing cathodes for high energy density Li-S batteries. Adv. Energy Mater. 8, 1702839 (2018). https://doi.org/10.1002/aenm.201702839
Wei, Y.J., Kong, Z.K., Pan, Y.K., et al.: Sulfur film sandwiched between few-layered MoS2 electrocatalysts and conductive reduced graphene oxide as a robust cathode for advanced lithium-sulfur batteries. J. Mater. Chem. A 6, 5899–5909 (2018). https://doi.org/10.1039/c8ta00222c
Pan, H., Cheng, Z.B., Zhang, X., et al.: Manganese dioxide nanosheet functionalized reduced graphene oxide as a compacted cathode matrix for lithium-sulphur batteries with a low electrolyte/sulphur ratio. J. Mater. Chem. A 8, 21824–21832 (2020). https://doi.org/10.1039/d0ta05021k
You, Y., Ye, Y.W., Wei, M.L., et al.: Three-dimensional MoS2/rGO foams as efficient sulfur hosts for high-performance lithium-sulfur batteries. Chem. Eng. J. 355, 671–678 (2019). https://doi.org/10.1016/j.cej.2018.08.176
Majumder, S., Shao, M.H., Deng, Y.F., et al.: Ultrathin sheets of MoS2/g-C3N4 composite as a good hosting material of sulfur for lithium-sulfur batteries. J. Power Sources 431, 93–104 (2019). https://doi.org/10.1016/j.jpowsour.2019.05.045
Wang, N.N., Wang, J., Zhao, J.J., et al.: Synthesis of porous-carbon@reduced graphene oxide with superior electrochemical behaviors for lithium-sulfur batteries. J. Alloy. Compd. 851, 156832 (2021). https://doi.org/10.1016/j.jallcom.2020.156832
Li, H.H., Chen, H.Q., Xue, Y., et al.: Catalytic and dual-conductive matrix regulating the kinetic behaviors of polysulfides in flexible Li-S batteries. Adv. Energy Mater. 10, 2001683 (2020). https://doi.org/10.1002/aenm.202001683
Wang, H.E., Li, X.C., Qin, N., et al.: Sulfur-deficient MoS2 grown inside hollow mesoporous carbon as a functional polysulfide mediator. J. Mater. Chem. A 7, 12068–12074 (2019). https://doi.org/10.1039/c9ta01722d
Han, S.C., Pu, X., Li, X.L., et al.: High areal capacity of Li-S batteries enabled by freestanding CNF/rGO electrode with high loading of lithium polysulfide. Electrochim. Acta 241, 406–413 (2017). https://doi.org/10.1016/j.electacta.2017.05.005
Bian, Z.H., Yuan, T., Xu, Y., et al.: Boosting Li-S battery by rational design of freestanding cathode with enriched anchoring and catalytic N-sites carbonaceous host. Carbon 150, 216–223 (2019). https://doi.org/10.1016/j.carbon.2019.05.022
Tian, C.X., Li, B., Hu, X., et al.: Melamine foam derived 2H/1T MoS2 as flexible interlayer with efficient polysulfides trapping and fast Li+ diffusion to stabilize Li-S batteries. ACS Appl. Mater. Interfaces 13, 6229–6240 (2021). https://doi.org/10.1021/acsami.0c19725
Shao, Y.Y., Ding, F., Xiao, J., et al.: Making Li-air batteries rechargeable: material challenges. Adv. Funct. Mater. 23, 987–1004 (2013). https://doi.org/10.1002/adfm.201200688
Girishkumar, G., McCloskey, B., Luntz, A.C., et al.: Lithium-air battery: promise and challenges. J. Phys. Chem. Lett. 1, 2193–2203 (2010). https://doi.org/10.1021/jz1005384
Cheng, F.Y., Chen, J.: Metal-air batteries: from oxygen reduction electrochemistry to cathode catalysts. Chem. Soc. Rev. 41, 2172 (2012). https://doi.org/10.1039/c1cs15228a
Peng, Z.Q., Freunberger, S.A., Chen, Y.H., et al.: A reversible and higher-rate Li-O2 battery. Science 337, 563–566 (2012). https://doi.org/10.1126/science.1223985
Gao, X.W., Chen, Y.H., Johnson, L.R., et al.: A rechargeable lithium-oxygen battery with dual mediators stabilizing the carbon cathode. Nat. Energy 2, 17118 (2017). https://doi.org/10.1038/nenergy.2017.118
Ogasawara, T., Debart, A., Holzapfel, M., et al.: Rechargeable Li2O2 electrode for lithium batteries. J. Am. Chem. Soc. 128(4), 1390–1393 (2006). https://doi.org/10.1021/ja056811q
Zhang, G.Q., Zheng, J.P., Liang, R., et al.: Lithium-air batteries using SWNT/CNF buckypapers as air electrodes. J. Electrochem. Soc. 157, A953 (2010). https://doi.org/10.1149/1.3446852
Luntz, A.C., McCloskey, B.D.: Nonaqueous Li-air batteries: a status report. Chem. Rev. 114, 11721–11750 (2014). https://doi.org/10.1021/cr500054y
Wang, Z.Y., Chen, X., Shen, F., et al.: TiC MXene high energy density cathode for lithium-air battery. Adv. Theory Simulations 1, 1800059 (2018). https://doi.org/10.1002/adts.201800059
Ostadhossein, A., Guo, J., Simeski, F., et al.: Functionalization of 2D materials for enhancing OER/ORR catalytic activity in Li-oxygen batteries. Commun. Chem. 2, 95 (2019). https://doi.org/10.1038/s42004-019-0196-2
Sun, Z.M., Yuan, M.W., Lin, L., et al.: Perovskite La0.5Sr0.5CoO3–δ grown on Ti3C2Tx MXene nanosheets as bifunctional efficient hybrid catalysts for Li-oxygen batteries. ACS Appl. Energy Mater. 2, 4144–4150 (2019). https://doi.org/10.1021/acsaem.9b00328
Zheng, R.X., Shu, C.Z., Hou, Z.Q., et al.: In situ fabricating oxygen vacancy-rich TiO2 nanoparticles via utilizing thermodynamically metastable Ti atoms on Ti3C2Tx MXene nanosheet surface to boost electrocatalytic activity for high-performance Li-O2 batteries. ACS Appl. Mater. Interfaces 11, 46696–46704 (2019). https://doi.org/10.1021/acsami.9b14783
Wang, H., Wang, H.J., Huang, J.S., et al.: Hierarchical mesoporous/macroporous Co-doped NiO nanosheet arrays as free-standing electrode materials for rechargeable Li-O2 batteries. ACS Appl. Mater. Interfaces 11, 44556–44565 (2019). https://doi.org/10.1021/acsami.9b13329
de Wu, S., Liu, J.M., Cui, B.B., et al.: Fluorine-doped nickel cobalt oxide spinel as efficiently bifunctional catalyst for overall water splitting. Electrochim. Acta 299, 231–244 (2019). https://doi.org/10.1016/j.electacta.2019.01.012
Tian, J.Y., Shao, Q., Dong, X.J., et al.: Bio-template synthesized NiO/C hollow microspheres with enhanced Li-ion battery electrochemical performance. Electrochim. Acta 261, 236–245 (2018). https://doi.org/10.1016/j.electacta.2017.12.094
Wen, C.Y., Zhu, T.J., Li, X.Y., et al.: Nanostructured Ni/ Ti3C2Tx MXene hybrid as cathode for lithium-oxygen battery. Chin. Chem. Lett. 31, 1000–1003 (2020). https://doi.org/10.1016/j.cclet.2019.09.028
Li, X.Y., Wen, C.Y., Yuan, M.W., et al.: Nickel oxide nanoparticles decorated highly conductive Ti3C2 MXene as cathode catalyst for rechargeable Li-O2 battery. J. Alloy. Compd. 824, 153803 (2020). https://doi.org/10.1016/j.jallcom.2020.153803
Lee, A., Krishnamurthy, D., Viswanathan, V.: Exploring MXenes as cathodes for non-aqueous lithium-oxygen batteries: design rules for selectively nucleating Li2O2. Chemsuschem 11, 1911–1918 (2018). https://doi.org/10.1002/cssc.201801224
Li, Y.B., Fu, J., Zhong, C., et al.: Recent advances in flexible zinc-based rechargeable batteries. Adv. Energy Mater. 9, 1802605 (2019). https://doi.org/10.1002/aenm.201802605
Zhang, M.D., Dai, Q.B., Zheng, H.G., et al.: Novel MOF-derived Co@N-C bifunctional catalysts for highly efficient Zn-air batteries and water splitting. Adv. Mater. 30, 1705431 (2018). https://doi.org/10.1002/adma.201705431
Ma, L., Schroeder, M.A., Borodin, O., et al.: Realizing high zinc reversibility in rechargeable batteries. Nat. Energy 5, 743–749 (2020). https://doi.org/10.1038/s41560-020-0674-x
Zhu, X.F., Hu, C.G., Amal, R., et al.: Heteroatom-doped carbon catalysts for zinc-air batteries: progress, mechanism, and opportunities. Energy Environ. Sci. 13, 4536–4563 (2020). https://doi.org/10.1039/d0ee02800b
Meng, F.L., Liu, K.H., Zhang, Y., et al.: Recent advances toward the rational design of efficient bifunctional air electrodes for rechargeable Zn-air batteries. Small 14, 1703843 (2018). https://doi.org/10.1002/smll.201703843
Meng, F., Zhong, H., Bao, D., et al.: In situ coupling of strung Co4N and intertwined N-C fibers toward free-standing bifunctional cathode for robust, efficient, and flexible Zn-air batteries. J Am Chem Soc 138, 10226–10231 (2016). https://doi.org/10.1021/jacs.6b05046
Wu, M.J., Zhang, G.X., Du, L., et al.: Defect electrocatalysts and alkaline electrolyte membranes in solid-state zinc-air batteries: recent advances, challenges, and future perspectives. Small Methods 5, 2000868 (2021). https://doi.org/10.1002/smtd.202000868
Luo, M.H., Sun, W.P., Xu, B.B., et al.: Interface engineering of air electrocatalysts for rechargeable zinc-air batteries. Adv. Energy Mater. 11, 2002762 (2021). https://doi.org/10.1002/aenm.202002762
Xue, Q., Pei, Z.X., Huang, Y., et al.: Mn3O4 nanoparticles on layer-structured Ti3C2 MXene towards the oxygen reduction reaction and zinc-air batteries. J. Mater. Chem. A 5, 20818–20823 (2017). https://doi.org/10.1039/c7ta04532h
Wu, Z.H., Wang, H., Xiong, P., et al.: Molecularly thin nitride sheets stabilized by titanium carbide as efficient bifunctional electrocatalysts for fiber-shaped rechargeable zinc-air batteries. Nano Lett. 20, 2892–2898 (2020). https://doi.org/10.1021/acs.nanolett.0c00717
Zeng, Z.P., Fu, G.T., Yang, H.B., et al.: Bifunctional N-CoSe2/3D-MXene as highly efficient and durable cathode for rechargeable Zn-air battery. ACS Mater. Lett. 1, 432–439 (2019). https://doi.org/10.1021/acsmaterialslett.9b00337
He, L.H., Liu, J.M., Liu, Y.K., et al.: Titanium dioxide encapsulated carbon-nitride nanosheets derived from MXene and melamine-cyanuric acid composite as a multifunctional electrocatalyst for hydrogen and oxygen evolution reaction and oxygen reduction reaction. Appl. Catal. B Environ. 248, 366–379 (2019). https://doi.org/10.1016/j.apcatb.2019.02.033
Ma, T.Y., Cao, J.L., Jaroniec, M., et al.: Interacting carbon nitride and titanium carbide nanosheets for high-performance oxygen evolution. Angew. Chem. Int. Edit 128, 1150–1154 (2016). https://doi.org/10.1002/ange.201509758
Lu, X.F., Gu, L.F., Wang, J.W., et al.: Bimetal-organic framework derived CoFe2O4/C porous hybrid nanorod arrays as high-performance electrocatalysts for oxygen evolution reaction. Adv. Mater. 29, 1604437 (2017). https://doi.org/10.1002/adma.201604437
Wang, S.B., Wang, X.C.: Multifunctional metal-organic frameworks for photocatalysis. Small 11, 3097–3112 (2015). https://doi.org/10.1002/smll.201500084
Zhao, L., Dong, B., Li, S., et al.: Interdiffusion reaction-assisted hybridization of two-dimensional metal-organic frameworks and Ti3C2Tx nanosheets for electrocatalytic oxygen evolution. ACS Nano 11, 5800–5807 (2017). https://doi.org/10.1021/acsnano.7b01409