Recent Progress in MXene-Based Materials for Metal-Sulfur and Metal-Air Batteries: Potential High-Performance Electrodes

Electrochemical Energy Reviews - Tập 5 Số 1 - Trang 112-144 - 2022
Anmin Liu1, Xin Liang1, Xuefeng Ren2, Weixin Guan1, Tingli Ma3,4
1State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, China
2School of Ocean Science and Technology, Dalian University of Technology, Panjin, China
3Department of Materials Science and Engineering, China Jiliang University, Hangzhou, China
4Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Wakamatsu, Kitakyushu, Japan

Tóm tắt

Từ khóa


Tài liệu tham khảo

Han, J.T., Huang, Y.H., Goodenough, J.B.: New anode framework for rechargeable lithium batteries. Chem. Mater. 23, 2027–2029 (2011). https://doi.org/10.1021/cm200441h

Zhang, C.F., Higgins, T.M., Park, S.H., et al.: Highly flexible and transparent solid-state supercapacitors based on RuO2/PEDOT: PSS conductive ultrathin films. Nano Energy 28, 495–505 (2016). https://doi.org/10.1016/j.nanoen.2016.08.052

Zhang, C.F., Beidaghi, M., Naguib, M., et al.: Synthesis and charge storage properties of hierarchical niobium pentoxide/carbon/niobium carbide (MXene) hybrid materials. Chem. Mater. 28, 3937–3943 (2016). https://doi.org/10.1021/acs.chemmater.6b01244

Xiao, X., Zhang, C.F., Lin, S.Z., et al.: Intercalation of cations into partially reduced molybdenum oxide for high-rate pseudocapacitors. Energy Storage Mater. 1, 1–8 (2015). https://doi.org/10.1016/j.ensm.2015.05.001

Gwon, H., Hong, J., Kim, H., et al.: Recent progress on flexible lithium rechargeable batteries. Energy Environ. Sci. 7, 538–551 (2014). https://doi.org/10.1039/c3ee42927j

Li, J., Yuan, Y.F., Jin, H.L., et al.: One-step nonlinear electrochemical synthesis of TexSy@PANI nanorod materials for Li-TexSy battery. Energy Storage Mater. 16, 31–36 (2019). https://doi.org/10.1016/j.ensm.2018.04.019

Choi, N.S., Chen, Z.H., Freunberger, S.A., et al.: Challenges facing lithium batteries and electrical double-layer capacitors. Angew. Chem. Int. Edit 51, 9994–10024 (2012). https://doi.org/10.1002/anie.201201429

Lee, W., Kim, J., Yun, S., et al.: Multiscale factors in designing alkali-ion (Li, Na, and K) transition metal inorganic compounds for next-generation rechargeable batteries. Energy Environ. Sci. 13, 4406–4449 (2020). https://doi.org/10.1039/d0ee01277g

Goodenough, J.B., Park, K.S.: The Li-ion rechargeable battery: a perspective. J Am. Chem. Soc. 135, 1167–1176 (2013). https://doi.org/10.1021/ja3091438

Cui, Z.M., Zu, C.X., Zhou, W.D., et al.: Mesoporous titanium nitride-enabled highly stable lithium-sulfur batteries. Adv. Mater. 28, 6926–6931 (2016). https://doi.org/10.1002/adma.201601382

Seh, Z.W., Sun, Y.M., Zhang, Q.F., et al.: Designing high-energy lithium-sulfur batteries. Chem. Soc. Rev. 45, 5605–5634 (2016). https://doi.org/10.1039/c5cs00410a

Pang, Q., Liang, X., Kwok, C.Y., et al.: Advances in lithium-sulfur batteries based on multifunctional cathodes and electrolytes. Nat. Energy 1, 16132 (2016). https://doi.org/10.1038/nenergy.2016.132

Pomerantseva, E., Gogotsi, Y.: Two-dimensional heterostructures for energy storage. Nat. Energy 2, 17089 (2017). https://doi.org/10.1038/nenergy.2017.89

Liang, Y.L., Dong, H., Aurbach, D., et al.: Current status and future directions of multivalent metal-ion batteries. Nat. Energy 5, 646–656 (2020). https://doi.org/10.1038/s41560-020-0655-0

Xiao, J., Li, Q.Y., Bi, Y.J., et al.: Understanding and applying coulombic efficiency in lithium metal batteries. Nat. Energy 5, 561–568 (2020). https://doi.org/10.1038/s41560-020-0648-z

Xu, Q., Li, X.F., Kheimeh Sari, H.M., et al.: Surface engineering of LiNi0.8Mn0.1Co0.1O2 towards boosting lithium storage: bimetallic oxides versus monometallic oxides. Nano Energy 77, 105034 (2020). https://doi.org/10.1016/j.nanoen.2020.105034

Wang, X.R., Tan, G.Q., Bai, Y., et al.: Multi-electron reaction materials for high-energy-density secondary batteries: current status and prospective. Electrochem. Energy Rev. 4, 35–66 (2021). https://doi.org/10.1007/s41918-020-00073-4

Gomes, R., Bhattacharyya, A.J.: Carbon nanotube-templated covalent organic framework nanosheets as an efficient sulfur host for room-temperature metal-sulfur batteries. ACS Sustain. Chem. Eng. 8, 5946–5953 (2020). https://doi.org/10.1021/acssuschemeng.0c00239

Yang, H.L., Zhang, B.W., Wang, Y.X., et al.: Alkali-metal sulfide as cathodes toward safe and high-capacity metal (M = Li, Na, K) sulfur batteries. Adv. Energy Mater. 10, 2001764 (2020). https://doi.org/10.1002/aenm.202001764

Chung, S.H., Manthiram, A.: Current status and future prospects of metal-sulfur batteries. Adv. Mater. 31, 1901125 (2019). https://doi.org/10.1002/adma.201901125

Wang, Y.J., Fang, B.Z., Zhang, D., et al.: A review of carbon-composited materials as air-electrode bifunctional electrocatalysts for metal-air batteries. Electrochem. Energy Rev. 1, 1–34 (2018). https://doi.org/10.1007/s41918-018-0002-3

Chen, X.Q., Ali, I., Song, L.J., et al.: A review on recent advancement of nano-structured-fiber-based metal-air batteries and future perspective. Renew. Sustain. Energy Rev. 134, 110085 (2020). https://doi.org/10.1016/j.rser.2020.110085

Zhang, Y.L., Goh, K., Zhao, L., et al.: Advanced non-noble materials in bifunctional catalysts for ORR and OER toward aqueous metal-air batteries. Nanoscale 12, 21534–21559 (2020). https://doi.org/10.1039/d0nr05511e

Maleki KheimehSari, H., Li, X.: Controllable cathode–electrolyte interface of Li [Ni0.8Co0.1Mn0.1]O2 for lithium ion batteries: a review. Adv. Energy Mater. 9, 1901597 (2019). https://doi.org/10.1002/aenm.201901597

Liu, W., Li, X.F., Xiong, D.B., et al.: Significantly improving cycling performance of cathodes in lithium ion batteries: the effect of Al2O3 and LiAlO2 coatings on LiNi0.6Co0.2Mn0.2O2. Nano Energy 44, 111–120 (2018). https://doi.org/10.1016/j.nanoen.2017.11.010

Li, X., Wang, L., You, W.B., et al.: Enhanced polarization from flexible hierarchical MnO2 arrays on cotton cloth with excellent microwave absorption. Nanoscale 11, 13269–13281 (2019). https://doi.org/10.1039/C9NR02667C

Liang, C.Y., Wang, Z.F., Wu, L.N., et al.: Light and strong hierarchical porous SiC foam for efficient electromagnetic interference shielding and thermal insulation at elevated temperatures. ACS Appl. Mater. Interfaces 9, 29950–29957 (2017). https://doi.org/10.1021/acsami.7b07735

Cui, C.H., Yan, D.X., Pang, H., et al.: A high heat-resistance bioplastic foam with efficient electromagnetic interference shielding. Chem. Eng. J. 323, 29–36 (2017). https://doi.org/10.1016/j.cej.2017.04.050

Wang, C., Murugadoss, V., Kong, J., et al.: Overview of carbon nanostructures and nanocomposites for electromagnetic wave shielding. Carbon 140, 696–733 (2018). https://doi.org/10.1016/j.carbon.2018.09.006

Naguib, M., Mashtalir, O., Carle, J., et al.: Two-dimensional transition metal carbides. ACS Nano 6, 1322–1331 (2012). https://doi.org/10.1021/nn204153h

Alhabeb, M., Maleski, K., Anasori, B., et al.: Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mater. 29, 7633–7644 (2017). https://doi.org/10.1021/acs.chemmater.7b02847

Anasori, B., Lukatskaya, M.R., Gogotsi, Y.: 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2, 16098 (2017). https://doi.org/10.1038/natrevmats.2016.98

Gogotsi, Y., Anasori, B.: The rise of MXenes. ACS Nano 13, 8491–8494 (2019). https://doi.org/10.1021/acsnano.9b06394

He, P., Cao, M.S., Cai, Y.Z., et al.: Self-assembling flexible 2D carbide MXene film with tunable integrated electron migration and group relaxation toward energy storage and green EMI shielding. Carbon 157, 80–89 (2020). https://doi.org/10.1016/j.carbon.2019.10.009

Naguib, M., Kurtoglu, M., Presser, V., et al.: Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23, 4248–4253 (2011). https://doi.org/10.1002/adma.201102306

Ghidiu, M., Lukatskaya, M.R., Zhao, M.Q., et al.: Conductive two-dimensional titanium carbide “clay” with high volumetric capacitance. Nature 516, 78–81 (2014). https://doi.org/10.1038/nature13970

Lukatskaya, M.R., Bak, S.M., Yu, X.Q., et al.: Probing the mechanism of high capacitance in 2D titanium carbide using in situ X-ray absorption spectroscopy. Adv. Energy Mater. 5, 1500589 (2015). https://doi.org/10.1002/aenm.201500589

Li, Y., Shao, H., Lin, Z., et al.: A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte. Nat Mater 19, 894–899 (2020). https://doi.org/10.1038/s41563-020-0657-0

Natu, V., Pai, R., Sokol, M., et al.: 2D Ti3C2Tz MXene synthesized by water-free etching of Ti3AlC2 in polar organic solvents. Chem 6, 616–630 (2020). https://doi.org/10.1016/j.chempr.2020.01.019

Pang, S.Y., Wong, Y.T., Yuan, S.G., et al.: Universal strategy for HF-free facile and rapid synthesis of two-dimensional MXenes as multifunctional energy materials. J. Am. Chem. Soc. 141, 9610–9616 (2019). https://doi.org/10.1021/jacs.9b02578

Li, T., Yao, L., Liu, Q., et al.: Fluorine-free synthesis of high-purity Ti3C2Tx (T = OH, O) via alkali treatment. Angew. Chem. Int. Ed. Engl. 57, 6115–6119 (2018). https://doi.org/10.1002/anie.201800887

Dong, Y.F., Shi, H.D., Wu, Z.S.: Recent advances and promise of MXene-based nanostructures for high-performance metal ion batteries. Adv. Funct. Mater. 30, 2000706 (2020). https://doi.org/10.1002/adfm.202000706

Tang, X., Guo, X., Wu, W.J., et al.: 2D metal carbides and nitrides (MXenes) as high-performance electrode materials for lithium-based batteries. Adv. Energy Mater. 8, 1801897 (2018). https://doi.org/10.1002/aenm.201801897

Yang, J., Bao, W.Z., Jaumaux, P., et al.: MXene-based composites: synthesis and applications in rechargeable batteries and supercapacitors. Adv. Mater. Interfaces 6, 1802004 (2019). https://doi.org/10.1002/admi.201802004

Lukatskaya, M.R., Kota, S., Lin, Z.F., et al.: Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nat. Energy 2, 17105 (2017). https://doi.org/10.1038/nenergy.2017.105

Wang, Y.M., Wang, X., Li, X.F., et al.: A high-performance, tailorable, wearable, and foldable solid-state supercapacitor enabled by arranging pseudocapacitive groups and MXene flakes on textile electrode surface. Adv. Funct. Mater. 31, 2008185 (2021). https://doi.org/10.1002/adfm.202008185

Lei, Y.J., Yan, Z.C., Lai, W.H., et al.: Tailoring MXene-based materials for sodium-ion storage: synthesis, mechanisms, and applications. Electrochem. Energy Rev. 3, 766–792 (2020). https://doi.org/10.1007/s41918-020-00079-y

Hui, X.B., Ge, X.L., Zhao, R.Z., et al.: Interface chemistry on MXene-based materials for enhanced energy storage and conversion performance. Adv. Funct. Mater. 30, 2005190 (2020). https://doi.org/10.1002/adfm.202005190

Liu, A.M., Liang, X.Y., Ren, X.F., et al.: Recent progress in MXene-based materials: potential high-performance electrocatalysts. Adv. Funct. Mater. 30, 2003437 (2020). https://doi.org/10.1002/adfm.202003437

Li, Z., Wu, Y.: 2D early transition metal carbides (MXenes) for catalysis. Small 15, 1804736 (2019). https://doi.org/10.1002/smll.201804736

Liang, X., Ren, X., Yang, Q., et al.: A two-dimensional MXene-supported metal-organic framework for highly selective ambient electrocatalytic nitrogen reduction. Nanoscale 13, 2843–2848 (2021). https://doi.org/10.1039/d0nr08744k

George, S.M., Kandasubramanian, B.: Advancements in MXene-polymer composites for various biomedical applications. Ceram. Int. 46, 8522–8535 (2020). https://doi.org/10.1016/j.ceramint.2019.12.257

Lin, H., Chen, Y., Shi, J.L.: Insights into 2D MXenes for versatile biomedical applications: current advances and challenges ahead. Adv. Sci. 5, 1800518 (2018). https://doi.org/10.1002/advs.201800518

Iqbal, A., Sambyal, P., Koo, C.M.: 2D MXenes for electromagnetic shielding: a review. Adv. Funct. Mater. 30, 2000883 (2020). https://doi.org/10.1002/adfm.202000883

Raagulan, K., Kim, B.M., Chai, K.Y.: Recent advancement of electromagnetic interference (EMI) shielding of two dimensional (2D) MXene and graphene aerogel composites. Nanomaterials 10, 702 (2020). https://doi.org/10.3390/nano10040702

Xu, D.X., Li, Z.D., Li, L.S., et al.: Insights into the photothermal conversion of 2D MXene nanomaterials: synthesis, mechanism, and applications. Adv. Funct. Mater. 30, 2000712 (2020). https://doi.org/10.1002/adfm.202000712

Li, N., Xie, Y., Peng, S.T., et al.: Ultra-lightweight Ti3C2Tx MXene modified separator for Li-S batteries: thickness regulation enabled polysulfide inhibition and lithium ion transportation. J. Energy Chem. 42, 116–125 (2020). https://doi.org/10.1016/j.jechem.2019.06.014

Zhao, R.Z., Di, H.X., Hui, X.B., et al.: Self-assembled Ti3C2 MXene and N-rich porous carbon hybrids as superior anodes for high-performance potassium-ion batteries. Energy Environ. Sci. 13, 246–257 (2020). https://doi.org/10.1039/C9EE03250A

Zhang, F., Jia, Z.R., Wang, C., et al.: Sandwich-like silicon/Ti3C2Tx MXene composite by electrostatic self-assembly for high performance lithium ion battery. Energy 195, 117047 (2020). https://doi.org/10.1016/j.energy.2020.117047

Zuo, D.C., Song, S.C., An, C.S., et al.: Synthesis of sandwich-like structured Sn/SnOx@MXene composite through in situ growth for highly reversible lithium storage. Nano Energy 62, 401–409 (2019). https://doi.org/10.1016/j.nanoen.2019.05.062

Xu, M., Lei, S.L., Qi, J., et al.: Opening magnesium storage capability of two-dimensional MXene by intercalation of cationic surfactant. ACS Nano 12, 3733–3740 (2018). https://doi.org/10.1021/acsnano.8b00959

Zhang, Y., Mu, Z., Lai, J., et al.: MXene/Si@SiOx@C layer-by-layer superstructure with autoadjustable function for superior stable lithium storage. ACS Nano 13, 2167–2175 (2019). https://doi.org/10.1021/acsnano.8b08821

Pang, Q., Shyamsunder, A., Narayanan, B., et al.: Tuning the electrolyte network structure to invoke quasi-solid state sulfur conversion and suppress lithium dendrite formation in Li-S batteries. Nat. Energy 3, 783–791 (2018). https://doi.org/10.1038/s41560-018-0214-0

Conder, J., Bouchet, R., Trabesinger, S., et al.: Direct observation of lithium polysulfides in lithium-sulfur batteries using operando X-ray diffraction. Nat. Energy 2, 17069 (2017). https://doi.org/10.1038/nenergy.2017.69

Liu, Y.T., Liu, S., Li, G.R., et al.: Strategy of enhancing the volumetric energy density for lithium-sulfur batteries. Adv. Mater. 33, 2003955 (2021). https://doi.org/10.1002/adma.202003955

Evers, S., Nazar, L.F.: New approaches for high energy density lithium-sulfur battery cathodes. Accounts Chem. Res. 46, 1135–1143 (2013). https://doi.org/10.1021/ar3001348

Fang, R.P., Zhao, S.Y., Sun, Z.H., et al.: More reliable lithium-sulfur batteries: status, solutions and prospects. Adv. Mater. 29, 1606823 (2017). https://doi.org/10.1002/adma.201606823

Peng, H.J., Huang, J.Q., Zhang, Q.: A review of flexible lithium-sulfur and analogous alkali metal-chalcogen rechargeable batteries. Chem. Soc. Rev. 46, 5237–5288 (2017). https://doi.org/10.1039/c7cs00139h

Manthiram, A., Chung, S.H., Zu, C.X.: Lithium-sulfur batteries: progress and prospects. Adv. Mater. 27, 1980–2006 (2015). https://doi.org/10.1002/adma.201405115

Li, S.P., Zhang, W., Zeng, Z.Q., et al.: Selenium or tellurium as eutectic accelerators for high-performance lithium/sodium-sulfur batteries. Electrochem. Energy Rev. 3, 613–642 (2020). https://doi.org/10.1007/s41918-020-00072-5

Zhang, G., Peng, H.J., Zhao, C.Z., et al.: The radical pathway based on a lithium-metal-compatible high-dielectric electrolyte for lithium-sulfur batteries. Angew. Chem. Int. Edit 57, 16732–16736 (2018). https://doi.org/10.1002/anie.201810132

Chen, C.Y., Peng, H.J., Hou, T.Z., et al.: A quinonoid-imine-enriched nanostructured polymer mediator for lithium-sulfur batteries. Adv. Mater. 29, 1606802 (2017). https://doi.org/10.1002/adma.201606802

Li, S.L., Zhang, W.F., Zheng, J.F., et al.: Inhibition of polysulfide shuttles in Li-S batteries: modified separators and solid-state electrolytes. Adv. Energy Mater. 11, 2000779 (2021). https://doi.org/10.1002/aenm.202000779

Zuo, J.H., Gong, Y.J.: Applications of transition-metal sulfides in the cathodes of lithium-sulfur batteries. Tungsten 2, 134–146 (2020). https://doi.org/10.1007/s42864-020-00046-6

Tao, X., Wang, J., Liu, C., et al.: Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium-sulfur battery design. Nat Commun 7, 11203 (2016). https://doi.org/10.1038/ncomms11203

Shi, H.F., Lv, W., Zhang, C., et al.: Functional carbons remedy the shuttling of polysulfides in lithium-sulfur batteries: confining, trapping, blocking, and breaking up. Adv. Funct. Mater. 28, 1800508 (2018). https://doi.org/10.1002/adfm.201800508

Hou, T.Z., Xu, W.T., Chen, X., et al.: Lithium bond chemistry in lithium-sulfur batteries. Angew. Chem. Int. Edit 56, 8178–8182 (2017). https://doi.org/10.1002/anie.201704324

Tan, G.Q., Xu, R., Xing, Z.Y., et al.: Burning lithium in CS2 for high-performing compact Li2S-graphene nanocapsules for Li-S batteries. Nat. Energy 2, 17090 (2017). https://doi.org/10.1038/nenergy.2017.90

Xiong, D.B., Li, X.F., Bai, Z.M., et al.: Recent advances in layered Ti3C2Tx MXene for electrochemical energy storage. Small 14, 1703419 (2018). https://doi.org/10.1002/smll.201703419

Liang, X., Garsuch, A., Nazar, L.F.: Sulfur cathodes based on conductive MXene nanosheets for high-performance lithium-sulfur batteries. Angew. Chem. Int. Edit 54, 3907–3911 (2015). https://doi.org/10.1002/anie.201410174

Liu, X.B., Shao, X.F., Li, F., et al.: Anchoring effects of S-terminated Ti2C MXene for lithium-sulfur batteries: a first-principles study. Appl. Surf. Sci. 455, 522–526 (2018). https://doi.org/10.1016/j.apsusc.2018.05.200

Rao, D.W., Zhang, L.Y., Wang, Y.H., et al.: Mechanism on the improved performance of lithium sulfur batteries with MXene-based additives. J. Phys. Chem. C 121, 11047–11054 (2017). https://doi.org/10.1021/acs.jpcc.7b00492

Song, J.J., Su, D.W., Xie, X.Q., et al.: Immobilizing polysulfides with MXene-functionalized separators for stable lithium-sulfur batteries. ACS Appl. Mater. Interfaces 8, 29427–29433 (2016). https://doi.org/10.1021/acsami.6b09027

Sim, E.S., Yi, G.S., Je, M., et al.: Understanding the anchoring behavior of titanium carbide-based MXenes depending on the functional group in Li-S batteries: a density functional theory study. J. Power Sources 342, 64–69 (2017). https://doi.org/10.1016/j.jpowsour.2016.12.042

Sim, E.S., Chung, Y.C.: Non-uniformly functionalized titanium carbide-based MXenes as an anchoring material for Li-S batteries: a first-principles calculation. Appl. Surf. Sci. 435, 210–215 (2018). https://doi.org/10.1016/j.apsusc.2017.11.101

Wang, D.S., Li, F., Lian, R.Q., et al.: A general atomic surface modification strategy for improving anchoring and electrocatalysis behavior of Ti3C2Tx MXene in lithium-sulfur batteries. ACS Nano 13, 11078–11086 (2019). https://doi.org/10.1021/acsnano.9b03412

Lin, H., Yang, D.D., Lou, N., et al.: Functionalized titanium nitride-based MXenes as promising host materials for lithium-sulfur batteries: a first principles study. Ceram. Int. 45, 1588–1594 (2019). https://doi.org/10.1016/j.ceramint.2018.10.033

Fang, M., Liu, X.Y., Ren, J.C., et al.: Revisiting the anchoring behavior in lithium-sulfur batteries: many-body effect on the suppression of shuttle effect. Npj Comput. Mater. 6, 8 (2020). https://doi.org/10.1038/s41524-020-0273-1

Zhao, Y.M., Zhao, J.X.: Functional group-dependent anchoring effect of titanium carbide-based MXenes for lithium-sulfur batteries: a computational study. Appl. Surf. Sci. 412, 591–598 (2017). https://doi.org/10.1016/j.apsusc.2017.04.013

Wang, Y.T., Shen, J.L., Xu, L.C., et al.: Sulfur-functionalized vanadium carbide MXene (V2CS2) as a promising anchoring material for lithium-sulfur batteries. Phys. Chem. Chem. Phys. 21, 18559–18568 (2019). https://doi.org/10.1039/c9cp03419f

Zhao, X.Q., Liu, M., Chen, Y., et al.: Fabrication of layered Ti3C2 with an accordion-like structure as a potential cathode material for high performance lithium-sulfur batteries. J. Mater. Chem. A 3, 7870–7876 (2015). https://doi.org/10.1039/c4ta07101h

Liang, X., Garsuch, A., Nazar, L.F.: Sulfur cathodes based on conductive MXene nanosheets for high-performance lithium-sulfur batteries. Angew. Chem. 127, 3979–3983 (2015). https://doi.org/10.1002/ange.201410174

Pan, H., Huang, X.X., Zhang, R., et al.: Titanium oxide-Ti3C2 hybrids as sulfur hosts in lithium-sulfur battery: fast oxidation treatment and enhanced polysulfide adsorption ability. Chem. Eng. J. 358, 1253–1261 (2019). https://doi.org/10.1016/j.cej.2018.10.026

Zhang, F., Zhou, Y.L., Zhang, Y., et al.: Facile synthesis of sulfur@titanium carbide MXene as high performance cathode for lithium-sulfur batteries. Nanophotonics 9, 2025–2032 (2020). https://doi.org/10.1515/nanoph-2019-0568

Tang, H., Li, W.L., Pan, L.M., et al.: In situ formed protective barrier enabled by Sulfur@Titanium carbide (MXene) ink for achieving high-capacity, long lifetime Li-S batteries. Adv. Sci. 5, 1800502 (2018). https://doi.org/10.1002/advs.201800502

Tang, H., Li, W.L., Pan, L.M., et al.: A robust, freestanding MXene-sulfur conductive paper for long-lifetime Li-S batteries. Adv. Funct. Mater. 29, 1901907 (2019). https://doi.org/10.1002/adfm.201901907

Zhang, S.Z., Zhong, N., Zhou, X., et al.: Comprehensive design of the high-sulfur-loading Li-S battery based on MXene nanosheets. Nano-Micro Lett. 12, 1–13 (2020). https://doi.org/10.1007/s40820-020-00449-7

Dong, Y.F., Zheng, S.H., Qin, J.Q., et al.: All-MXene-based integrated electrode constructed by Ti3C2 nanoribbon framework host and nanosheet interlayer for high-energy-density Li-S batteries. ACS Nano 12, 2381–2388 (2018). https://doi.org/10.1021/acsnano.7b07672

Yao, Y., Feng, W.L., Chen, M.L., et al.: Boosting the electrochemical performance of Li-S batteries with a dual polysulfides confinement strategy. Small 14, 1802516 (2018). https://doi.org/10.1002/smll.201802516

Wang, X.W., Yang, C.H., Xiong, X.H., et al.: A robust sulfur host with dual lithium polysulfide immobilization mechanism for long cycle life and high capacity Li-S batteries. Energy Storage Mater. 16, 344–353 (2019). https://doi.org/10.1016/j.ensm.2018.06.015

Huang, X., Tang, J.Y., Luo, B., et al.: Sandwich-like ultrathin TiS2 nanosheets confined within N, S codoped porous carbon as an effective polysulfide promoter in lithium-sulfur batteries. Adv. Energy Mater. 9, 1901872 (2019). https://doi.org/10.1002/aenm.201901872

Bao, W.Z., Liu, L., Wang, C.Y., et al.: Facile synthesis of crumpled nitrogen-doped MXene nanosheets as a new sulfur host for lithium-sulfur batteries. Adv. Energy Mater. 8, 1702485 (2018). https://doi.org/10.1002/aenm.201702485

Ji, X.L., Lee, K.T., Nazar, L.F.: A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat. Mater. 8, 500–506 (2009). https://doi.org/10.1038/nmat2460

Li, W., Liu, J., Zhao, D.Y.: Mesoporous materials for energy conversion and storage devices. Nat. Rev. Mater. 1, 16023 (2016). https://doi.org/10.1038/natrevmats.2016.23

Zhou, G.M., Pei, S.F., Li, L., et al.: A graphene-pure-sulfur sandwich structure for ultrafast, long-life lithium-sulfur batteries. Adv. Mater. 26, 625–631 (2014). https://doi.org/10.1002/adma.201302877

Zhang, Y.Q., Tang, W.W., Zhan, R.M., et al.: An N-doped porous carbon/MXene composite as a sulfur host for lithium-sulfur batteries. Inorg. Chem. Front. 6, 2894–2899 (2019). https://doi.org/10.1039/c9qi00723g

Jiang, G.Y., Zheng, N., Chen, X., et al.: In-situ decoration of MOF-derived carbon on nitrogen-doped ultrathin MXene nanosheets to multifunctionalize separators for stable Li-S batteries. Chem. Eng. J. 373, 1309–1318 (2019). https://doi.org/10.1016/j.cej.2019.05.119

Wang, J.T., Zhao, T.K., Yang, Z.H., et al.: MXene-based Co, N-codoped porous carbon nanosheets regulating polysulfides for high-performance lithium-sulfur batteries. ACS Appl. Mater. Interfaces 11, 38654–38662 (2019). https://doi.org/10.1021/acsami.9b11988

Song, Y.Z., Sun, Z.T., Fan, Z.D., et al.: Rational design of porous nitrogen-doped Ti3C2 MXene as a multifunctional electrocatalyst for Li-S chemistry. Nano Energy 70, 104555 (2020). https://doi.org/10.1016/j.nanoen.2020.104555

Wang, J.L., Zhang, Z., Yan, X.F., et al.: Rational design of porous N-Ti3C2 MXene@CNT microspheres for high cycling stability in Li-S battery. Nano- Micro Lett. 12, 1–14 (2019). https://doi.org/10.1007/s40820-019-0341-6

Fang, R.P., Chen, K., Yin, L.C., et al.: The regulating role of carbon nanotubes and graphene in lithium-ion and lithium-sulfur batteries. Adv. Mater. 31, 1800863 (2019). https://doi.org/10.1002/adma.201800863

Wang, Y.K., Zhang, R.F., Chen, J., et al.: Enhancing catalytic activity of titanium oxide in lithium-sulfur batteries by band engineering. Adv. Energy Mater. 9, 1900953 (2019). https://doi.org/10.1002/aenm.201900953

Lv, L.P., Guo, C.F., Sun, W.W., et al.: Strong surface-bound sulfur in carbon nanotube bridged hierarchical Mo2C-based MXene nanosheets for lithium-sulfur batteries. Small 15, 1804338 (2019). https://doi.org/10.1002/smll.201804338

Li, N., Cao, W.Y., Liu, Y.W., et al.: Impeding polysulfide shuttling with a three-dimensional conductive carbon nanotubes/MXene framework modified separator for highly efficient lithium-sulfur batteries. Coll. Surf. APhysicochem. Eng. Asp. 573, 128–136 (2019). https://doi.org/10.1016/j.colsurfa.2019.04.054

Guo, D., Ming, F.W., Su, H., et al.: MXene based self-assembled cathode and antifouling separator for high-rate and dendrite-inhibited Li-S battery. Nano Energy 61, 478–485 (2019). https://doi.org/10.1016/j.nanoen.2019.05.011

Chen, Z., Yang, X.B., Qiao, X., et al.: Lithium-ion-engineered interlayers of V2C MXene as advanced host for flexible sulfur cathode with enhanced rate performance. J. Phys. Chem. Lett. 11, 885–890 (2020). https://doi.org/10.1021/acs.jpclett.9b03827

Song, J.J., Guo, X., Zhang, J.Q., et al.: Rational design of free-standing 3D porous MXene/rGO hybrid aerogels as polysulfide reservoirs for high-energy lithium-sulfur batteries. J. Mater. Chem. A 7, 6507–6513 (2019). https://doi.org/10.1039/c9ta00212j

Cong, L.N., Xie, H.M., Li, J.H.: Hierarchical structures based on two-dimensional nanomaterials for rechargeable lithium batteries. Adv. Energy Mater. 7, 1601906 (2017). https://doi.org/10.1002/aenm.201601906

Lv, X., Lei, T., Wang, B.J., et al.: An efficient separator with low Li-ion diffusion energy barrier resolving feeble conductivity for practical lithium-sulfur batteries. Adv. Energy Mater. 9, 1901800 (2019). https://doi.org/10.1002/aenm.201901800

Liu, X.J., Hao, Y.C., Shu, J., et al.: Nitrogen/sulfur dual-doping of reduced graphene oxide harvesting hollow ZnSnS3 nano-microcubes with superior sodium storage. Nano Energy 57, 414–423 (2019). https://doi.org/10.1016/j.nanoen.2018.12.024

Wang, B., Ruan, T.T., Chen, Y., et al.: Graphene-based composites for electrochemical energy storage. Energy Storage Mater. 24, 22–51 (2020). https://doi.org/10.1016/j.ensm.2019.08.004

Han, J.W., Wei, W., Zhang, C., et al.: Engineering graphenes from the nano-to the macroscale for electrochemical energy storage. Electrochem. Energy Rev. 1, 139–168 (2018). https://doi.org/10.1007/s41918-018-0006-z

Bao, W.Z., Xie, X.Q., Xu, J., et al.: Confined sulfur in 3D MXene/reduced graphene oxide hybrid nanosheets for lithium-sulfur battery. Chem. A Eur. J. 23, 12613–12619 (2017). https://doi.org/10.1002/chem.201702387

Li, W.T., Zhang, Y.F., Li, H., et al.: Layered MXene protected lithium metal anode as an efficient polysulfide blocker for lithium-sulfur batteries. Batter. Supercaps 3, 892–899 (2020). https://doi.org/10.1002/batt.202000062

Wang, Z.Y., Zhang, N., Yu, M.L., et al.: Boosting redox activity on MXene-induced multifunctional collaborative interface in high Li2S loading cathode for high-energy Li-S and metallic Li-free rechargeable batteries. J. Energy Chem. 37, 183–191 (2019). https://doi.org/10.1016/j.jechem.2019.03.012

Liu, P., Qu, L., Tian, X.L., et al.: Ti3C2Tx/graphene oxide free-standing membranes as modified separators for lithium-sulfur batteries with enhanced rate performance. ACS Appl. Energy Mater. 3, 2708–2718 (2020). https://doi.org/10.1021/acsaem.9b02385

Liang, P., Zhang, L., Wang, D., et al.: First-principles explorations of Li2S@V2CTx hybrid structure as cathode material for lithium-sulfur battery. Appl. Surf. Sci. 489, 677–683 (2019). https://doi.org/10.1016/j.apsusc.2019.06.033

Pourali, Z., Yaftian, M.R., Sovizi, M.R.: Li2S/transition metal carbide composite as cathode material for high performance lithium-sulfur batteries. Mater. Chem. Phys. 217, 117–124 (2018). https://doi.org/10.1016/j.matchemphys.2018.06.074

Seh, Z.W., Li, W.Y., Cha, J.J., et al.: Sulphur-TiO2 yolk-shell nanoarchitecture with internal void space for long-cycle lithium-sulphur batteries. Nat. Commun. 4, 1331 (2013). https://doi.org/10.1038/ncomms2327

Chen, Y., Choi, S., Su, D.W., et al.: Self-standing sulfur cathodes enabled by 3D hierarchically porous titanium monoxide-graphene composite film for high-performance lithium-sulfur batteries. Nano Energy 47, 331–339 (2018). https://doi.org/10.1016/j.nanoen.2018.03.008

Sun, Q., Xi, B.J., Li, J.Y., et al.: Nitrogen-doped graphene-supported mixed transition-metal oxide porous particles to confine polysulfides for lithium-sulfur batteries. Adv. Energy Mater. 8, 1800595 (2018). https://doi.org/10.1002/aenm.201800595

Ye, C., Zhang, L., Guo, C.X., et al.: A 3D hybrid of chemically coupled nickel sulfide and hollow carbon spheres for high performance lithium-sulfur batteries. Adv. Funct. Mater. 27, 1702524 (2017). https://doi.org/10.1002/adfm.201702524

Qin, J., Sari, H.M.K., Wang, X.J., et al.: Controlled design of metal oxide-based (Mn2+/Nb5+) anodes for superior sodium-ion hybrid supercapacitors: synergistic mechanisms of hybrid ion storage. Nano Energy 71, 104594 (2020). https://doi.org/10.1016/j.nanoen.2020.104594

Gao, X.T., Xie, Y., Zhu, X.D., et al.: Ultrathin MXene nanosheets decorated with TiO2 quantum dots as an efficient sulfur host toward fast and stable Li-S batteries. Small 14, 1802443 (2018). https://doi.org/10.1002/smll.201802443

Du, C., Wu, J., Yang, P., et al.: Embedding S@TiO2 nanospheres into MXene layers as high rate cyclability cathodes for lithium-sulfur batteries. Electrochim. Acta 295, 1067–1074 (2019). https://doi.org/10.1016/j.electacta.2018.11.143

Jiao, L., Zhang, C., Geng, C.N., et al.: Capture and catalytic conversion of polysulfides by in situ built TiO2-MXene heterostructures for lithium-sulfur batteries. Adv. Energy Mater. 9, 1900219 (2019). https://doi.org/10.1002/aenm.201900219

Wang, Z.G., Yu, K., Feng, Y., et al.: VO2(p)-V2C(MXene) grid structure as a lithium polysulfide catalytic host for high-performance Li-S battery. ACS Appl. Mater. Interfaces 11, 44282–44292 (2019). https://doi.org/10.1021/acsami.9b15586

Qiu, S.Y., Wang, C., Jiang, Z.X., et al.: Rational design of MXene@TiO2 nanoarray enabling dual lithium polysulfide chemisorption towards high-performance lithium–sulfur batteries. Nanoscale 12, 16678–16684 (2020). https://doi.org/10.1039/d0nr03528a

Zhang, H., Qi, Q., Zhang, P.G., et al.: Self-assembled 3D MnO2 nanosheets@delaminated-Ti3C2 aerogel as sulfur host for lithium-sulfur battery cathodes. ACS Appl. Energy Mater. 2, 705–714 (2019). https://doi.org/10.1021/acsaem.8b01765

Zhang, D., Wang, S., Hu, R.M., et al.: Catalytic conversion of polysulfides on single atom zinc implanted MXene toward high-rate lithium-sulfur batteries. Adv. Funct. Mater. 30, 2002471 (2020). https://doi.org/10.1002/adfm.202002471

Fang, X.P., Guo, X.W., Mao, Y., et al.: Mechanism of lithium storage in MoS2 and the feasibility of using Li2S/Mo nanocomposites as cathode materials for lithium-sulfur batteries. Chem. Asian J. 7, 1013–1017 (2012). https://doi.org/10.1002/asia.201100796

Xue, W.J., Shi, Z., Suo, L.M., et al.: Intercalation-conversion hybrid cathodes enabling Li-S full-cell architectures with jointly superior gravimetric and volumetric energy densities. Nat. Energy 4, 374–382 (2019). https://doi.org/10.1038/s41560-019-0351-0

Zhang, Y.L., Mu, Z.J., Yang, C., et al.: Rational design of MXene/1T-2H MoS2-C nanohybrids for high-performance lithium-sulfur batteries. Adv. Funct. Mater. 28, 1707578 (2018). https://doi.org/10.1002/adfm.201707578

Zhou, H.Y., Sui, Z.Y., Amin, K., et al.: Investigating the electrocatalysis of a Ti3C2/carbon hybrid in polysulfide conversion of lithium-sulfur batteries. ACS Appl. Mater. Interfaces 12, 13904–13913 (2020). https://doi.org/10.1021/acsami.9b23006

Qi, Q., Zhang, H., Zhang, P.G., et al.: Self-assembled sandwich hollow porous carbon sphere @ MXene composites as superior LiS battery cathode hosts. 2D Mater. 7, 025049 (2020). https://doi.org/10.1088/2053-1583/ab79c1

Gan, R.Y., Yang, N., Dong, Q., et al.: Enveloping ultrathin Ti3C2 nanosheets on carbon fibers: a high-density sulfur loaded lithium-sulfur battery cathode with remarkable cycling stability. J. Mater. Chem. A 8, 7253–7260 (2020). https://doi.org/10.1039/d0ta02374d

Fang, Q., Fang, M., Liu, X.Y., et al.: An asymmetric Ti2CO/WS2 heterostructure as a promising anchoring material for lithium-sulfur batteries. J. Mater. Chem. A 8, 13770–13775 (2020). https://doi.org/10.1039/d0ta04187d

Xiao, Z.B., Yang, Z., Li, Z.L., et al.: Synchronous gains of areal and volumetric capacities in lithium-sulfur batteries promised by flower-like porous Ti3C2Tx matrix. ACS Nano 13, 3404–3412 (2019). https://doi.org/10.1021/acsnano.8b09296

Lee, D.K., Chae, Y., Yun, H., et al.: CO2-oxidized Ti3C2Tx-MXenes components for lithium-sulfur batteries: suppressing the shuttle phenomenon through physical and chemical adsorption. ACS Nano 14, 9744–9754 (2020). https://doi.org/10.1021/acsnano.0c01452

Xiao, Z.B., Li, Z.L., Li, P.Y., et al.: Ultrafine Ti3C2 MXene nanodots-interspersed nanosheet for high-energy-density lithium-sulfur batteries. ACS Nano 13, 3608–3617 (2019). https://doi.org/10.1021/acsnano.9b00177

Yin, L.X., Xu, G.Y., Nie, P., et al.: MXene debris modified eggshell membrane as separator for high-performance lithium-sulfur batteries. Chem. Eng. J. 352, 695–703 (2018). https://doi.org/10.1016/j.cej.2018.07.063

Zhao, Q., Zhu, Q.Z., Miao, J.W., et al.: 2D MXene nanosheets enable small-sulfur electrodes to be flexible for lithium-sulfur batteries. Nanoscale 11, 8442–8448 (2019). https://doi.org/10.1039/c8nr09653h

Wang, J.T., Zhai, P.F., Zhao, T.K., et al.: Laminar MXene-Nafion-modified separator with highly inhibited shuttle effect for long-life lithium-sulfur batteries. Electrochim. Acta 320, 134558 (2019). https://doi.org/10.1016/j.electacta.2019.134558

Manthiram, A., Yu, X.: Ambient temperature sodium-sulfur batteries. Small 11, 2108–2114 (2015)

Ellis, B.L., Nazar, L.F.: Sodium and sodium-ion energy storage batteries. Curr. Opin. Sol. State Mater. Sci. 16, 168–177 (2012). https://doi.org/10.1016/j.cossms.2012.04.002

Xin, S., Yin, Y.X., Guo, Y.G., et al.: A high-energy room-temperature sodium-sulfur battery. Adv. Mater. 26, 1261–1265 (2014). https://doi.org/10.1002/adma.201304126

Kim, I., Park, J.Y., Kim, C.H., et al.: A room temperature Na/S battery using a β″ alumina solid electrolyte separator, tetraethylene glycol dimethyl ether electrolyte, and a S/C composite cathode. J. Power Sourc. 301, 332–337 (2016). https://doi.org/10.1016/j.jpowsour.2015.09.120

Xu, X., Zhou, D., Qin, X., et al.: A room-temperature sodium-sulfur battery with high capacity and stable cycling performance. Nat. Commun 9, 3870 (2018). https://doi.org/10.1038/s41467-018-06443-3

Chen, S.Q., Bao, P.T., Wang, G.X.: Synthesis of Fe2O3-CNT-graphene hybrid materials with an open three-dimensional nanostructure for high capacity lithium storage. Nano Energy 2, 425–434 (2013). https://doi.org/10.1016/j.nanoen.2012.11.012

Wang, C.L., Wang, H., Hu, X.F., et al.: Frogspawn-coral-like hollow sodium sulfide nanostructured cathode for high-rate performance sodium-sulfur batteries. Adv. Energy Mater. 9, 1803843 (2019). https://doi.org/10.1002/aenm.201803843

Wang, Y.X., Zhang, B.W., Lai, W.H., et al.: Room-temperature sodium-sulfur batteries: a comprehensive review on research progress and cell chemistry. Adv. Energy Mater. 7, 1602829 (2017). https://doi.org/10.1002/aenm.201602829

Huo, X.G., Liu, Y.Y., Li, R.R., et al.: Two-dimensional Ti3C2Tx@S as cathode for room temperature sodium-sulfur batteries. Ionics 25, 5373–5382 (2019). https://doi.org/10.1007/s11581-019-03074-6

Bao, W.Z., Shuck, C.E., Zhang, W.X., et al.: Boosting performance of Na-S batteries using sulfur-doped Ti3C2Tx MXene nanosheets with a strong affinity to sodium polysulfides. ACS Nano 13, 11500–11509 (2019). https://doi.org/10.1021/acsnano.9b04977

Yang, Q.J., Yang, T.T., Gao, W., et al.: An MXene-based aerogel with cobalt nanoparticles as an efficient sulfur host for room-temperature Na-S batteries. Inorg. Chem. Front. 7, 4396–4403 (2020). https://doi.org/10.1039/d0qi00939c

Cao, J., Chen, C., Zhao, Q., et al.: A flexible nanostructured paper of a reduced graphene oxide-sulfur composite for high-performance lithium-sulfur batteries with unconventional configurations. Adv. Mater. 28, 9629–9636 (2016). https://doi.org/10.1002/adma.201602262

Jia, Z.Y., Zhang, H.Z., Yu, Y., et al.: Trithiocyanuric acid derived g-C3N4 for anchoring the polysulfide in Li-S batteries application. J. Energy Chem. 43, 71–77 (2020). https://doi.org/10.1016/j.jechem.2019.06.005

Mammoottil Abraham, A., Kammampata, S.P., Ponnurangam, S., et al.: Efficient synthesis and characterization of robust MoS2 and S cathode for advanced Li-S battery: combined experimental and theoretical studies. ACS Appl. Mater. Interfaces 11, 35729–35737 (2019). https://doi.org/10.1021/acsami.9b11967

Xu, S., Zhang, L., Zhang, X.P., et al.: A self-stabilized suspension catholyte to enable long-term stable Li-S flow batteries. J. Mater. Chem. A 5, 12904–12913 (2017). https://doi.org/10.1039/c7ta02110k

Wang, Y., Yang, L.W., Chen, Y.X., et al.: Novel bifunctional separator with a self-assembled FeOOH/coated g-C3N4/KB bilayer in lithium-sulfur batteries. ACS Appl. Mater. Interfaces 12, 57859–57869 (2020). https://doi.org/10.1021/acsami.0c16631

Han, J.M., Xi, B.J., Feng, Z.Y., et al.: Sulfur-hydrazine hydrate-based chemical synthesis of sulfur@graphene composite for lithium-sulfur batteries. Inorg. Chem. Front. 5, 785–792 (2018). https://doi.org/10.1039/c7qi00726d

Ma, J.S., Yu, M.P., Ye, H.Y., et al.: A 2D/2D graphitic carbon nitride/N-doped graphene hybrid as an effective polysulfide mediator in lithium-sulfur batteries. Mater. Chem. Front. 3, 1807–1815 (2019). https://doi.org/10.1039/c9qm00228f

Zhen, M.M., Guo, S.Q., Shen, B.X.: Constructing defect-rich MoS2/N-doped carbon nanosheets for catalytic polysulfide conversion in lithium-sulfur batteries. ACS Sustain. Chem. Eng. 8, 13318–13327 (2020). https://doi.org/10.1021/acssuschemeng.0c03887

Wang, R.R., Chen, Z.L., Sun, Y.Q., et al.: Three-dimensional graphene network-supported Co, N-codoped porous carbon nanocages as free-standing polysulfides mediator for lithium-sulfur batteries. Chem. Eng. J. 399, 125686 (2020). https://doi.org/10.1016/j.cej.2020.125686

Hong, X.H., Jin, J., Wu, T., et al.: A rGO-CNT aerogel covalently bonded with a nitrogen-rich polymer as a polysulfide adsorptive cathode for high sulfur loading lithium sulfur batteries. J. Mater. Chem. A 5, 14775–14782 (2017). https://doi.org/10.1039/c7ta03552g

Wang, X.L., Li, G.R., Li, M.J., et al.: Reinforced polysulfide barrier by g-C3N4/CNT composite towards superior lithium-sulfur batteries. J. Energy Chem. 53, 234–240 (2021). https://doi.org/10.1016/j.jechem.2020.05.036

Walle, M.D., Zeng, K., Zhang, M.Y., et al.: Flower-like molybdenum disulfide/carbon nanotubes composites for high sulfur utilization and high-performance lithium-sulfur battery cathodes. Appl. Surf. Sci. 473, 540–547 (2019). https://doi.org/10.1016/j.apsusc.2018.12.169

Zensich, M., Jaumann, T., Morales, G.M., et al.: A top-down approach to build Li2S@rGO cathode composites for high-loading lithium-sulfur batteries in carbonate-based electrolyte. Electrochim. Acta 296, 243–250 (2019). https://doi.org/10.1016/j.electacta.2018.10.184

Song, J.H., Zheng, J.M., Feng, S., et al.: Tubular titanium oxide/reduced graphene oxide-sulfur composite for improved performance of lithium sulfur batteries. Carbon 128, 63–69 (2018). https://doi.org/10.1016/j.carbon.2017.11.042

Yao, S.S., Wang, Y.Q., He, Y.P., et al.: Synergistic effect of titanium-oxide integrated with graphitic nitride hybrid for enhanced electrochemical performance in lithium-sulfur batteries. Int. J. Energy Res. 44, 10937–10945 (2020). https://doi.org/10.1002/er.5671

Xu, J., Li, T.X., Zhang, W.X., et al.: Propelling the polysulfide phase transformation of lithium-sulfur battery by VO2-rGO. J. Alloy. Compd. 804, 549–553 (2019). https://doi.org/10.1016/j.jallcom.2019.06.232

Zhang, J., Li, J.Y., Wang, W.P., et al.: Microemulsion assisted assembly of 3D porous S/graphene@g-C3N4 hybrid sponge as free-standing cathodes for high energy density Li-S batteries. Adv. Energy Mater. 8, 1702839 (2018). https://doi.org/10.1002/aenm.201702839

Wei, Y.J., Kong, Z.K., Pan, Y.K., et al.: Sulfur film sandwiched between few-layered MoS2 electrocatalysts and conductive reduced graphene oxide as a robust cathode for advanced lithium-sulfur batteries. J. Mater. Chem. A 6, 5899–5909 (2018). https://doi.org/10.1039/c8ta00222c

Pan, H., Cheng, Z.B., Zhang, X., et al.: Manganese dioxide nanosheet functionalized reduced graphene oxide as a compacted cathode matrix for lithium-sulphur batteries with a low electrolyte/sulphur ratio. J. Mater. Chem. A 8, 21824–21832 (2020). https://doi.org/10.1039/d0ta05021k

You, Y., Ye, Y.W., Wei, M.L., et al.: Three-dimensional MoS2/rGO foams as efficient sulfur hosts for high-performance lithium-sulfur batteries. Chem. Eng. J. 355, 671–678 (2019). https://doi.org/10.1016/j.cej.2018.08.176

Majumder, S., Shao, M.H., Deng, Y.F., et al.: Ultrathin sheets of MoS2/g-C3N4 composite as a good hosting material of sulfur for lithium-sulfur batteries. J. Power Sources 431, 93–104 (2019). https://doi.org/10.1016/j.jpowsour.2019.05.045

Wang, N.N., Wang, J., Zhao, J.J., et al.: Synthesis of porous-carbon@reduced graphene oxide with superior electrochemical behaviors for lithium-sulfur batteries. J. Alloy. Compd. 851, 156832 (2021). https://doi.org/10.1016/j.jallcom.2020.156832

Li, H.H., Chen, H.Q., Xue, Y., et al.: Catalytic and dual-conductive matrix regulating the kinetic behaviors of polysulfides in flexible Li-S batteries. Adv. Energy Mater. 10, 2001683 (2020). https://doi.org/10.1002/aenm.202001683

Wang, H.E., Li, X.C., Qin, N., et al.: Sulfur-deficient MoS2 grown inside hollow mesoporous carbon as a functional polysulfide mediator. J. Mater. Chem. A 7, 12068–12074 (2019). https://doi.org/10.1039/c9ta01722d

Han, S.C., Pu, X., Li, X.L., et al.: High areal capacity of Li-S batteries enabled by freestanding CNF/rGO electrode with high loading of lithium polysulfide. Electrochim. Acta 241, 406–413 (2017). https://doi.org/10.1016/j.electacta.2017.05.005

Bian, Z.H., Yuan, T., Xu, Y., et al.: Boosting Li-S battery by rational design of freestanding cathode with enriched anchoring and catalytic N-sites carbonaceous host. Carbon 150, 216–223 (2019). https://doi.org/10.1016/j.carbon.2019.05.022

Tian, C.X., Li, B., Hu, X., et al.: Melamine foam derived 2H/1T MoS2 as flexible interlayer with efficient polysulfides trapping and fast Li+ diffusion to stabilize Li-S batteries. ACS Appl. Mater. Interfaces 13, 6229–6240 (2021). https://doi.org/10.1021/acsami.0c19725

Shao, Y.Y., Ding, F., Xiao, J., et al.: Making Li-air batteries rechargeable: material challenges. Adv. Funct. Mater. 23, 987–1004 (2013). https://doi.org/10.1002/adfm.201200688

Girishkumar, G., McCloskey, B., Luntz, A.C., et al.: Lithium-air battery: promise and challenges. J. Phys. Chem. Lett. 1, 2193–2203 (2010). https://doi.org/10.1021/jz1005384

Cheng, F.Y., Chen, J.: Metal-air batteries: from oxygen reduction electrochemistry to cathode catalysts. Chem. Soc. Rev. 41, 2172 (2012). https://doi.org/10.1039/c1cs15228a

Peng, Z.Q., Freunberger, S.A., Chen, Y.H., et al.: A reversible and higher-rate Li-O2 battery. Science 337, 563–566 (2012). https://doi.org/10.1126/science.1223985

Gao, X.W., Chen, Y.H., Johnson, L.R., et al.: A rechargeable lithium-oxygen battery with dual mediators stabilizing the carbon cathode. Nat. Energy 2, 17118 (2017). https://doi.org/10.1038/nenergy.2017.118

Ogasawara, T., Debart, A., Holzapfel, M., et al.: Rechargeable Li2O2 electrode for lithium batteries. J. Am. Chem. Soc. 128(4), 1390–1393 (2006). https://doi.org/10.1021/ja056811q

Zhang, G.Q., Zheng, J.P., Liang, R., et al.: Lithium-air batteries using SWNT/CNF buckypapers as air electrodes. J. Electrochem. Soc. 157, A953 (2010). https://doi.org/10.1149/1.3446852

Luntz, A.C., McCloskey, B.D.: Nonaqueous Li-air batteries: a status report. Chem. Rev. 114, 11721–11750 (2014). https://doi.org/10.1021/cr500054y

Wang, Z.Y., Chen, X., Shen, F., et al.: TiC MXene high energy density cathode for lithium-air battery. Adv. Theory Simulations 1, 1800059 (2018). https://doi.org/10.1002/adts.201800059

Ostadhossein, A., Guo, J., Simeski, F., et al.: Functionalization of 2D materials for enhancing OER/ORR catalytic activity in Li-oxygen batteries. Commun. Chem. 2, 95 (2019). https://doi.org/10.1038/s42004-019-0196-2

Sun, Z.M., Yuan, M.W., Lin, L., et al.: Perovskite La0.5Sr0.5CoO3–δ grown on Ti3C2Tx MXene nanosheets as bifunctional efficient hybrid catalysts for Li-oxygen batteries. ACS Appl. Energy Mater. 2, 4144–4150 (2019). https://doi.org/10.1021/acsaem.9b00328

Zheng, R.X., Shu, C.Z., Hou, Z.Q., et al.: In situ fabricating oxygen vacancy-rich TiO2 nanoparticles via utilizing thermodynamically metastable Ti atoms on Ti3C2Tx MXene nanosheet surface to boost electrocatalytic activity for high-performance Li-O2 batteries. ACS Appl. Mater. Interfaces 11, 46696–46704 (2019). https://doi.org/10.1021/acsami.9b14783

Wang, H., Wang, H.J., Huang, J.S., et al.: Hierarchical mesoporous/macroporous Co-doped NiO nanosheet arrays as free-standing electrode materials for rechargeable Li-O2 batteries. ACS Appl. Mater. Interfaces 11, 44556–44565 (2019). https://doi.org/10.1021/acsami.9b13329

de Wu, S., Liu, J.M., Cui, B.B., et al.: Fluorine-doped nickel cobalt oxide spinel as efficiently bifunctional catalyst for overall water splitting. Electrochim. Acta 299, 231–244 (2019). https://doi.org/10.1016/j.electacta.2019.01.012

Tian, J.Y., Shao, Q., Dong, X.J., et al.: Bio-template synthesized NiO/C hollow microspheres with enhanced Li-ion battery electrochemical performance. Electrochim. Acta 261, 236–245 (2018). https://doi.org/10.1016/j.electacta.2017.12.094

Wen, C.Y., Zhu, T.J., Li, X.Y., et al.: Nanostructured Ni/ Ti3C2Tx MXene hybrid as cathode for lithium-oxygen battery. Chin. Chem. Lett. 31, 1000–1003 (2020). https://doi.org/10.1016/j.cclet.2019.09.028

Li, X.Y., Wen, C.Y., Yuan, M.W., et al.: Nickel oxide nanoparticles decorated highly conductive Ti3C2 MXene as cathode catalyst for rechargeable Li-O2 battery. J. Alloy. Compd. 824, 153803 (2020). https://doi.org/10.1016/j.jallcom.2020.153803

Lee, A., Krishnamurthy, D., Viswanathan, V.: Exploring MXenes as cathodes for non-aqueous lithium-oxygen batteries: design rules for selectively nucleating Li2O2. Chemsuschem 11, 1911–1918 (2018). https://doi.org/10.1002/cssc.201801224

Li, Y.B., Fu, J., Zhong, C., et al.: Recent advances in flexible zinc-based rechargeable batteries. Adv. Energy Mater. 9, 1802605 (2019). https://doi.org/10.1002/aenm.201802605

Zhang, M.D., Dai, Q.B., Zheng, H.G., et al.: Novel MOF-derived Co@N-C bifunctional catalysts for highly efficient Zn-air batteries and water splitting. Adv. Mater. 30, 1705431 (2018). https://doi.org/10.1002/adma.201705431

Ma, L., Schroeder, M.A., Borodin, O., et al.: Realizing high zinc reversibility in rechargeable batteries. Nat. Energy 5, 743–749 (2020). https://doi.org/10.1038/s41560-020-0674-x

Zhu, X.F., Hu, C.G., Amal, R., et al.: Heteroatom-doped carbon catalysts for zinc-air batteries: progress, mechanism, and opportunities. Energy Environ. Sci. 13, 4536–4563 (2020). https://doi.org/10.1039/d0ee02800b

Meng, F.L., Liu, K.H., Zhang, Y., et al.: Recent advances toward the rational design of efficient bifunctional air electrodes for rechargeable Zn-air batteries. Small 14, 1703843 (2018). https://doi.org/10.1002/smll.201703843

Meng, F., Zhong, H., Bao, D., et al.: In situ coupling of strung Co4N and intertwined N-C fibers toward free-standing bifunctional cathode for robust, efficient, and flexible Zn-air batteries. J Am Chem Soc 138, 10226–10231 (2016). https://doi.org/10.1021/jacs.6b05046

Wu, M.J., Zhang, G.X., Du, L., et al.: Defect electrocatalysts and alkaline electrolyte membranes in solid-state zinc-air batteries: recent advances, challenges, and future perspectives. Small Methods 5, 2000868 (2021). https://doi.org/10.1002/smtd.202000868

Luo, M.H., Sun, W.P., Xu, B.B., et al.: Interface engineering of air electrocatalysts for rechargeable zinc-air batteries. Adv. Energy Mater. 11, 2002762 (2021). https://doi.org/10.1002/aenm.202002762

Xue, Q., Pei, Z.X., Huang, Y., et al.: Mn3O4 nanoparticles on layer-structured Ti3C2 MXene towards the oxygen reduction reaction and zinc-air batteries. J. Mater. Chem. A 5, 20818–20823 (2017). https://doi.org/10.1039/c7ta04532h

Wu, Z.H., Wang, H., Xiong, P., et al.: Molecularly thin nitride sheets stabilized by titanium carbide as efficient bifunctional electrocatalysts for fiber-shaped rechargeable zinc-air batteries. Nano Lett. 20, 2892–2898 (2020). https://doi.org/10.1021/acs.nanolett.0c00717

Zeng, Z.P., Fu, G.T., Yang, H.B., et al.: Bifunctional N-CoSe2/3D-MXene as highly efficient and durable cathode for rechargeable Zn-air battery. ACS Mater. Lett. 1, 432–439 (2019). https://doi.org/10.1021/acsmaterialslett.9b00337

He, L.H., Liu, J.M., Liu, Y.K., et al.: Titanium dioxide encapsulated carbon-nitride nanosheets derived from MXene and melamine-cyanuric acid composite as a multifunctional electrocatalyst for hydrogen and oxygen evolution reaction and oxygen reduction reaction. Appl. Catal. B Environ. 248, 366–379 (2019). https://doi.org/10.1016/j.apcatb.2019.02.033

Ma, T.Y., Cao, J.L., Jaroniec, M., et al.: Interacting carbon nitride and titanium carbide nanosheets for high-performance oxygen evolution. Angew. Chem. Int. Edit 128, 1150–1154 (2016). https://doi.org/10.1002/ange.201509758

Lu, X.F., Gu, L.F., Wang, J.W., et al.: Bimetal-organic framework derived CoFe2O4/C porous hybrid nanorod arrays as high-performance electrocatalysts for oxygen evolution reaction. Adv. Mater. 29, 1604437 (2017). https://doi.org/10.1002/adma.201604437

Wang, S.B., Wang, X.C.: Multifunctional metal-organic frameworks for photocatalysis. Small 11, 3097–3112 (2015). https://doi.org/10.1002/smll.201500084

Zhao, L., Dong, B., Li, S., et al.: Interdiffusion reaction-assisted hybridization of two-dimensional metal-organic frameworks and Ti3C2Tx nanosheets for electrocatalytic oxygen evolution. ACS Nano 11, 5800–5807 (2017). https://doi.org/10.1021/acsnano.7b01409

Zou, H., He, B., Kuang, P., et al.: Metal-organic framework-derived nickel-cobalt sulfide on ultrathin mxene nanosheets for electrocatalytic oxygen evolution. ACS Appl. Mater. Interfaces 10, 22311–22319 (2018). https://doi.org/10.1021/acsami.8b06272