Những Phát Triển Gần Đây Trong Thép Chịu Được Tia Xạ

Annual Review of Materials Research - Tập 38 Số 1 - Trang 471-503 - 2008
G.R. Odette1, M.J. Alinger2, Brian D. Wirth3
1Department of Mechanical Engineering and Department of Materials, University of California, Santa Barbara, California 93106;
2GE Global Research, Niskayuna, New York 12309
3Department of Nuclear Engineering, University of California, Berkeley, California 94720

Tóm tắt

Năng lượng phân hạch tiên tiến và năng lượng tổng hợp trong tương lai sẽ yêu cầu những hợp kim cấu trúc hiệu suất cao mới với các đặc tính vượt trội được duy trì trong điều kiện phục vụ lâu dài trong môi trường siêu khắc nghiệt, bao gồm tổn thương neutron gây ra tới 200 sự dịch chuyển nguyên tử mỗi nguyên tử và, đối với tổng hợp, 2000 appm He. Sau khi mô tả ngắn gọn về tổn thương do tia xạ và khả năng kháng tổn thương, chúng tôi tập trung vào một lớp hợp kim ferritic nano cấu trúc mới nổi (NFAs) cho thấy triển vọng trong việc đáp ứng những thách thức này. NFAs chứa mật độ cực cao của các đặc điểm gia cố phân tán giàu Y-Ti-O (NFs) mà, cùng với các hạt tinh và mật độ đứt gãy cao, cung cấp độ bền kéo, độ bền chảy và độ bền mỏi cực kỳ cao. Các NFs ổn định dưới ảnh hưởng của tia xạ lên tới 800°C và giữ He trong các bọt quy mô nhỏ, ngăn chặn sự phồng lên của khoảng trống và làm giòn nhanh ở nhiệt độ thấp, cũng như làm giòn do đứt gãy do chảy trong môi trường nhiệt độ cao. Trạng thái hiện tại của sự phát triển và hiểu biết về NFAs được mô tả, cùng với một số thách thức đáng kể còn lại.

Từ khóa

#thép chịu tia xạ #hợp kim ferritic nano #tổn thương neutron #năng lượng phân hạch #năng lượng tổng hợp

Tài liệu tham khảo

1. Glob. Nucl. Energy Partnersh. Tech. Integ. Off. 2007. Global Nuclear Energy Partnership technology development plan. GNEP-TECH-TR-PP-2007-00020, rev. 0, Idaho Natl. Lab., Idaho Falls, ID

2. U.S. DOE Nucl. Energy Res. Advis. Comm./Generation IV Int. Forum GIF. 2002. A Technology Roadmap for Generation IV Nuclear Energy Systems. GIF-002-00. OECD Nucl. Energy Agency, Le Seine Saint-Germain, 12, boulevard Îles, F-92130 Issy-les-Moulineaux, Fr.

3. 2006. Basic research needs for advanced nuclear energy systems.Rep. Basic Energy Sci. Workshop Basic Res. Needs Adv. Nucl. Energy Sys., July 31–Aug. 3, Rockville, MD

10.1023/A:1025038002187

10.1098/rsta.1999.0343

10.1016/S0920-3796(00)00320-3

10.1016/j.jnucmat.2004.04.005

10.1016/j.fusengdes.2005.08.008

10.1063/1.1880013

Corwin WR, 2006, Nucl. Eng. Technol., 38, 1

10.1016/j.jnucmat.2007.02.007

10.1007/s11837-008-0002-6

10.1016/j.jnucmat.2007.03.008

14. Olander DR. 1976. Fundamental aspects of nuclear reactor fuel elements. OSTI ID: 7343826:TID-26711-P1

Was GS, 2007, Fundamentals of Radiation Materials Science: Metals and Alloys

Mansur LK, 1987, Kinetics of Nonhomogenous Processes, 377

Stoller RE, 1982, Proc. Int. Symp. Eff. Irradiat. Mater., 11th, Scottsdale, ASTM Spec. Tech. Publ., 782, 275

10.1520/STP33831S

Odette GR, 1982, J. Nucl. Mater., 103, 1289

10.1016/0022-3115(82)90771-1

10.1016/0022-3115(83)90177-0

10.1088/0029-5515/24/8/009

10.1016/0022-3115(84)90636-6

10.1016/0022-3115(85)90122-9

10.1016/0022-3115(85)90450-7

10.1016/0001-6160(87)90054-X

10.1520/STP33830S

10.1016/0022-3115(88)90442-4

10.1016/S0022-3115(99)00225-1

10.1016/j.jnucmat.2006.05.041

Sniegowski JJ, 1984, In Proc. Top. Conf. Ferritic Alloys Use Nucl. Energy Technol., 579

10.1080/01418619008231945

10.1016/0022-3115(93)90077-C

10.1016/S0022-3115(02)01703-8

10.1016/S0022-3115(02)01211-4

10.1016/j.jnucmat.2007.05.005

10.1016/j.jnucmat.2007.03.001

38. Fisher JJ. 1978. Dispersion strengthened ferritic alloy for use in liquid-metal fast breeder reactors. U.S. Patent No. 4,075,010

10.1016/j.jnucmat.2007.03.141

10.2172/965199

10.1179/174892407X210357

Okuda T, 1990, Proc. Symp. Solid State Powder Processing, 195

10.1016/0022-3115(91)90080-Q

10.1016/0022-3115(93)90200-I

10.1016/0022-3115(93)90201-9

10.1007/BF00455428

10.1080/18811248.1996.9732035

10.1080/18811248.1997.9733658

10.1080/18811248.1999.9726259

10.1016/S0022-3115(00)00114-8

10.1080/18811248.2002.9715271

10.1016/S0022-3115(02)01043-7

10.1080/09500830412331303609

10.1520/JAI12371

Lee JS, 2007, J. Nucl. Mater., 367, 229– 33

10.1016/S0022-3115(98)00241-4

10.1080/18811248.1998.9733859

10.1016/S0022-3115(02)01044-9

10.1080/18811248.2002.9715260

10.1016/j.jnucmat.2004.04.082

10.1016/j.jnucmat.2004.04.172

10.1016/j.jpcs.2004.06.033

10.1016/j.fusengdes.2005.09.045

10.1016/j.jnucmat.2007.03.221

10.1016/j.jnucmat.2007.03.004

10.1016/j.jnucmat.2007.03.020

10.1016/j.jnucmat.2007.03.148

10.1016/0022-3115(95)00016-X

10.1016/S0022-3115(98)00140-8

10.1016/S0022-3115(98)00192-5

10.1016/S0022-3115(00)00111-2

10.1016/j.jnucmat.2004.04.133

10.1016/S0022-3115(02)01077-2

10.1016/j.jnucmat.2004.04.041

10.1016/j.jnucmat.2004.04.084

10.1520/STP11242S

10.2320/matertrans.46.493

10.1016/j.fusengdes.2005.09.049

10.1016/j.jnucmat.2007.03.149

10.1016/j.jnucmat.2007.03.140

10.1016/j.jnucmat.2007.03.145

10.1016/j.jnucmat.2007.03.016

10.1080/18811248.2007.9711289

10.13182/NT02-A3291

10.1080/18811248.2005.9726370

10.1007/BF02656499

10.1002/1527-2648(200109)3:9<647::AID-ADEM647>3.0.CO;2-4

10.1007/s11661-002-0393-x

10.1016/j.jnucmat.2004.05.004

10.1016/j.msea.2004.07.047

10.1016/j.jnucmat.2007.03.166

10.1016/S0022-3115(02)01045-0

10.1016/S0022-3115(02)01193-5

10.1016/S0920-3796(02)00098-4

10.1016/S0022-0248(02)02134-6

10.1016/j.jnucmat.2004.06.010

10.1016/j.jnucmat.2004.05.018

10.1016/j.jnucmat.2004.04.083

10.1016/j.fusengdes.2005.06.186

10.1016/j.micron.2004.08.001

10.1016/j.fusengdes.2005.06.311

10.1520/JAI12381

10.1016/j.jnucmat.2007.03.150

10.1016/j.jnucmat.2007.08.004

10.1016/S0022-3115(00)00137-9

10.1016/S1359-6462(00)00593-5

10.1016/S0022-3115(02)01046-2

10.1016/S0022-3115(02)01220-5

10.1016/S0921-5093(02)00680-9

10.2355/isijinternational.43.1640

10.1016/j.jnucmat.2004.04.042

10.1016/j.jnucmat.2004.04.085

Alinger MJ, 2004, On the formation and stability of nanometer scale precipitates in ferritic alloys during processing and high temperature service, 341

10.1016/j.jnucmat.2004.04.044

Alinger MJ, 2005, Fusion Mater. Semiannu. Prog. Rep. DOE-ER-03 13/37 61–69

Alinger MJ, 2008, Fusion Mater. Semiannu. Prog. Rep. DOE-ER-0313/43

10.1016/j.jnucmat.2005.01.017

10.1016/j.intermet.2004.07.036

10.1016/j.jnucmat.2006.02.004

10.1016/j.jnucmat.2007.03.143

10.1016/j.jnucmat.2007.03.144

10.1016/j.jnucmat.2008.02.042

10.1016/j.jnucmat.2007.03.203

10.1016/j.jnucmat.2007.03.151

10.1016/j.jnucmat.2007.03.232

10.1016/S0022-3115(96)00222-X

10.1016/S0022-3115(98)00165-2

10.1016/S0022-3115(00)00066-0

10.1016/j.jnucmat.2004.04.296

10.13182/NSE05-A2549

10.1016/j.jnucmat.2007.03.047

132. Deleted in proof

Rieth M, 2003, Forsch. Karlsruhe

134. Salston MC, Odette GR. 2008. A database and constitutive model for the static and creep strength of MA957 from room temperature to 1000°C. Trans. ANS98:in press

Martin JW, 1980, Micromechanisms in Particle-Hardened Alloys

10.1016/0001-6160(86)90247-6

10.1016/0956-7151(90)90223-4

10.1016/0001-6160(84)90011-7

Monkman FC, 1956, Proc. ASTM, 56, 593

10.1016/0001-6160(79)90173-1

10.1016/0001-6160(72)90015-6

Miao P, 2008, Trans. ANS, 98

10.1520/MONO3-EB

Kaito T, 2007, In-pile creep rupture properties of ODS ferritic steel claddings

10.1016/j.jnucmat.2007.03.121

Odette GR, 2008, Trans. ANS, 98, in press

147. Henry J, Avery X, Dia Y, Pizzanelli JP, Espinas JJ. 2008. Tensile properties of an ODS 14 Cr alloy irradiated in a spallation environment. Presented at Int. Conf. Fusion React. Mater., 13th, Nice.J. Nucl. Mater.In press

Yamamoto T, 2008, Trans. ANS, 98