Recent Decrease in the Difference in Tropical Cyclone Occurrence between the Atlantic and the Western North Pacific
Tóm tắt
Climatologically, among all ocean basins, the western North Pacific (WNP) has the largest annual number of tropical cyclones (TCs) of around 26 while the Atlantic has around 13, yielding a difference of 13. However, the difference is −7 in 2020, with 30 TCs in the Atlantic and 23 in the WNP, which is the most negative difference within the last 46 years. In fact, during the last 26 years, the difference in TC number is below 10 in ten years, with four years being negative. Such a decreasing difference in TC number can be attributed to the natural multidecadal variation of the Atlantic Multidecadal Oscillation and Interdecadal Pacific Oscillation, as well as other external forcings such as anthropogenic aerosol forcing and increased greenhouse gases, with the additional impact from the La Niña condition. This result has significant implications on climate model projections of future TC activity in the two ocean basins.
Tài liệu tham khảo
Carton, J. A., G. A. Chepurin, and L. G. Chen, 2018: SODA3: A new ocean climate reanalysis. J. Climate, 31, 6967–6983, https://doi.org/10.1175/JCLI-D-18-0149.1.
Chan, J. C. L., 1985: Tropical cyclone activity in the Northwest Pacific in relation to the El Niño/Southern Oscillation phenomenon. Mon. Wea. Rev., 113, 599–606, https://doi.org/10.1175/1520-0493(1985)113<0599:TCAITN>2.0.CO;2.
Chan, J. C. L., 2000: Tropical cyclone activity over the western North Pacific associated with El Niño and La Niña events. J. Climate, 13, 2960–2972, https://doi.org/10.1175/1520-0442(2000)013<2960:TCAOTW>2.0.CO;2.
Chan, J. C. L., and K. S. Liu, 2004: Global warming and western North Pacific typhoon activity from an observational perspective. J. Climate, 17, 4590–4602, https://doi.org/10.1155/3240.1.
Dunstone, N. J., D. M. Smith, B. B. B. Booth, L. Hermanson, and R. Eade, 2013: Anthropogenic aerosol forcing of Atlantic tropical storms. Nature Geoscience, 6, 534–539, https://doi.org/10.1038/ngeo1854.
Enfield, D. B., A. M. Mestas-Nuñez, and P. J. Trimble, 2001: The Atlantic Multidecadal Oscillation and its relation to rainfall and river flows in the continental U.S. Geophys. Res. Lett., 28, 2077–2080, https://doi.org/10.1299/0000GL012745.
Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meter. Soc., 106(499), 447–462, https://doi.org/10.1002/qj.49710644905.
Goldenberg, S. B., and L. J. Shapiro, 1996: Physical mechanisms for the association of El Niño and West African rainfall with Atlantic major hurricane activity. J. Climate, 9, 1169–1187, https://doi.org/10.1175/1520-0442(1996)009<1169:PMFTAO>2.0.CO;2.
Goldenberg, S. B., C. W. Landsea, A. M. Mestas-Nuñez, and W. M. Gray, 2001: The recent increase in Atlantic hurricane activity: Causes and implications. Science, 293, 474–479, https://doi.org/10.1126/science.1060040.
Gray, W. M., 1979: Hurricanes: Their formation, structure and likely role in the tropical circulation. Meteorology over the Tropical Oceans, D. B. Shaw, Ed., Royal Meteorological Society.
Gray, W. M., 1984: Atlantic seasonal hurricane frequency. Part I: El Niño and 30 mb quasi-biennial oscillation influences. Mon. Wea. Rev., 112, 1649–1668, https://doi.org/10.1175/1520-0493(1984)112<1649:ASHFPI>2.0.CO;2.
Henley, B. J., J. Gergis, D. J. Karoly, S. Power, J. Kennedy, and C. K. Folland, 2015: A tripole index for the Interdecadal Pacific Oscillation. Climate Dyn., 45, 3077–3090, https://doi.org/10.1007/s00382-015-2525-1.
Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803.
Holland, G. J., and P. J. Webster, 2007: Heightened tropical cyclone activity in the North Atlantic: natural variability or climate trend. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 365, 2695–2716, https://doi.org/10.1098/rsta.2007.2083.
Huang, B. Y., and Coauthors, 2017: Extended reconstructed sea surface temperature, version 5 (ERSSTv5): Upgrades, validations, and intercomparisons. J. Climate, 30, 8179–8205, https://doi.org/10.1175/JCLI-D-16-0836.1.
Huo, L. W., P. W. Guo, S. N. Hameed, and D. C. Jin, 2015: The role of tropical Atlantic SST anomalies in modulating western North Pacific tropical cyclone genesis. Geophys. Res. Lett., 42, 2378–2384, https://doi.org/10.1002/2015GL063184.
Klotzbach, P. J., and W. M. Gray, 2008: Multidecadal variability in North Atlantic tropical cyclone activity. J. Climate, 21, 3929–3935, https://doi.org/10.1175/2008JCLI2162.1.
Knapp, K. R., M. C. Kruk, D. H. Levinson, H. J. Diamond, and C. J. Neumann, 2010: The international best track archive for climate stewardship (IBTrACS). Bull. Amer. Meteor. Soc., 91, 363–376, https://doi.org/10.1175/2009BAMS2755.1.
Knutson, T. R., and Coauthors, 2010: Tropical cyclones and climate change. Nature Geoscience, 3, 157–163, https://doi.org/10.1038/ngeo779.
Knutson, T., and Coauthors, 2020: Tropical cyclones and climate change assessment: Part II: Projected response to anthropogenic warming. Bull. Amer. Meteor. Soc., 101, E303–E322, https://doi.org/10.1175/BAMS-D-18-0194.1.
Kohyama, T., D. L. Hartmann, and D. S. Battisti, 2017: La Niña-like mean-state response to global warming and potential oceanic roles. J. Climate, 30, 4207–4225, https://doi.org/10.1175/JCLI-D-16-0441.1.
Kosaka, Y., and S.-P. Xie, 2013: Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature, 501, 403–407, https://doi.org/10.1038/nature12534.
Kossin, J. P., K. R. Knapp, D. J. Vimont, R. J. Murnane, and B. A. Harper, 2007: A globally consistent reanalysis of hurricane variability and trends. Geophys. Res. Lett., 34, L04815, https://doi.org/10.1029/2006GL028836.
Lander, M. A., 1994: An exploratory analysis of the relationship between tropical storm formation in the western North Pacific and ENSO. Mon. Wea. Rev., 122, 636–651, https://doi.org/10.1175/1520-0493(1994)122<0636:AEAOTR>2.0.CO;2.
Landsea, C., 2007: Counting Atlantic tropical cyclones back to 1900. Eos, Transactions American Geophysical Union, 88, 197–202, https://doi.org/10.1029/2007EO180001.
Leipper, D. F., 1967: Observed ocean conditions and Hurricane Hilda, 1964. J. Atmos. Sci., 24, 182–186, https://doi.org/10.1175/1520-0469(1967)024<0182:OOCAHH>2.0.CO;2.
Li, R. C. Y., and W. Zhou, 2018: Revisiting the intraseasonal, inter-annual and interdecadal variability of tropical cyclones in the western North Pacific. Atmos. Ocean. Sci. Lett., 11, 198–208, https://doi.org/10.1080/16742834.2018.1459460.
Li, W. H., L. F. Li, and Y. Deng, 2015: Impact of the inter-decadal Pacific oscillation on tropical cyclone activity in the North Atlantic and eastern North Pacific. Scientific Reports, 5(1), 12358, https://doi.org/10.1038/srep12358.
Lian, T., D. K. Chen, J. Ying, P. Huang, and Y. M. Tang, 2018: Tropical Pacific trends under global warming: El Niño-like or La Niña-like. National Science Review, 5(6), 810–812, https://doi.org/10.1093/nsr/nwy134.
Liu, K. S., and J. C. L. Chan, 2013: Inactive period of western North Pacific tropical cyclone activity in 1998–2011. J. Climate, 26, 2614–2630, https://doi.org/10.1175/JCLI-D-12-00053.1.
Mann, M. E., and K. A. Emanuel, 2006: Atlantic hurricane trends linked to climate change. Eos, Transactions American Geophysical Union, 87(24), 233–241, https://doi.org/10.1029/2006EO24000.
Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44(1), 25–43, https://doi.org/10.2151/jmsj1965.44.1_25.
Murakami, H., T. L. Delworth, W. F. Cooke, M. Zhao, B. Q. Xiang, and P. C. Hsu, 2020: Detected climatic change in global distribution of tropical cyclones. Proceedings of the National Academy of Sciences of the United States of America, 117(20), 10 706–10 714, https://doi.org/10.1073/pnas.1922500117.
Qin, M. H., A. G. Dai, and W. J. Hua, 2020: Aerosol-forced multidecadal variations across all ocean basins in models and observations since 1920. Science Advances, 6, eabb0425, https://doi.org/10.1126/sciadv.abb0425.
Rodionov, S. N., 2004: A sequential algorithm for testing climate regime shifts. Geophys. Res. Lett., 31, L09204, https://doi.org/10.1029/2004GL019448.
Santer, B. D., and Coauthors, 2006: Forced and unforced ocean temperature changes in Atlantic and Pacific tropical cyclogenesis regions. Proceedings of the National Academy of Sciences of the United States of America, 103, 13 905–13 910, https://doi.org/10.1073/pnas.0602861103.
Saunders, M. A., and A. S. Lea, 2008: Large contribution of sea surface warming to recent increase in Atlantic hurricane activity. Nature, 451, 557–560, https://doi.org/10.1038/nature06422.
Takahashi, C., M. Watanabe, and M. Mori, 2017: Significant aerosol influence on the recent decadal decrease in tropical cyclone activity over the western North Pacific. Geophys. Res. Lett., 44, 9496–9504, https://doi.org/10.1002/2017GL075369.
Trenberth, K. E., and D. J. Shea, 2006: Atlantic hurricanes and natural variability in 2005. Geophys. Res. Lett., 33, L12704, https://doi.org/10.1029/2006GL026894.
Vecchi, G. A., and T. R. Knutson, 2008: On estimates of historical North Atlantic tropical cyclone activity. J. Climate, 21, 3580–3600, https://doi.org/10.1175/2008JCLI2178.1.
Wada, A., and N. Usui, 2007: Importance of tropical cyclone heat potential for tropical cyclone intensity and intensification in the western North Pacific. Journal of Oceanography, 63, 427–447, https://doi.org/10.1007/s10872-007-0039-0.
Wada, A., and J. C. L. Chan, 2008: Relationship between typhoon activity and upper ocean heat content. Geophys. Res. Lett., 35, L17603, https://doi.org/10.1029/2008GL035129.
Wang, B., and J. C. L. Chan, 2002: How strong ENSO events affect tropical storm activity over the western North Pacific. J. Climate, 15, 1643–1658, https://doi.org/10.1175/1520-0442(2002)015<1643:HSEEAT>2.0.CO;2.
Wilks, D. S., 1995: Statistical Methods in the Atmospheric Sciences. Academic Press, 464 pp.
Zhang, W., G. A. Vecchi, H. Murakami, G. Villarini, T. L. Delworth, X. S. Yang, and L. W. Jia, 2018: Dominant role of Atlantic Multidecadal Oscillation in the recent decadal changes in western North Pacific tropical cyclone activity. Geophys. Res. Lett., 45, 354–362, https://doi.org/10.1002/2017GL076397.
Zhao, H. K., and C. Z. Wang, 2019: On the relationship between ENSO and tropical cyclones in the western North Pacific during the boreal summer. Climate Dyn., 52, 275–288, https://doi.org/10.1007/s00382-018-4136-0.
Zhao, J. W., R. F. Zhan, and Y. Q. Wang, 2018a: Global warming hiatus contributed to the increased occurrence of intense tropical cyclones in the coastal regions along East Asia. Scientific Reports, 8(1), 6023, https://doi.org/10.1038/s41598-018-24402-2.
Zhao, J. W., R. F. Zhan, Y. Q. Wang, and H. M. Xu, 2018b: Contribution of the Interdecadal Pacific oscillation to the recent abrupt decrease in tropical cyclone genesis frequency over the western North Pacific since 1998. J. Climate, 31(20), 8211–8224, https://doi.org/10.1175/JCLI-D-18-0202.1.
Zhao, J. W., R. F. Zhan, Y. Q. Wang, S.-P. Xie, and Q. Wu, 2020: Untangling impacts of global warming and inter-decadal Pacific Oscillation on long-term variability of North Pacific tropical cyclone track density. Science Advances, 6, eaba6813, https://doi.org/10.1126/sciadv.aba6813.