Recent Advances on the Hamiltonian Problem: Survey III
Tóm tắt
Từ khóa
Tài liệu tham khảo
Abderrezzak M.E.K., Flandrin E., Amar D.: Cyclability and pancyclability in bipartite graphs. Discrete Math. 236, 3–11 (2001)
Abueida A., Sritharan R.: Cycle extendability and Hamiltonian cycles in chordal graph classes. SIAM J. Discrete Math. 20, 669–681 (2006)
Abueida, A., Busch, A., Sritharan, R.: Hamiltonian spider intersection graphs are cycle extendable (preprint)
Ainouche A.: Dirac’s type sufficient conditions for Hamiltonicity and pancyclicity. Graphs Combin. 25, 129–137 (2009)
Ainouche A.: Extensions of Bondy’s theorem on cycles in 2-connected graphs. Ars Combin. 85, 385–393 (2007)
Ainouche A., Broersma H.J., Veldman H.J.: Remarks on Hamiltonian properties of claw-free graphs. Ars Combin. 29, 110–121 (1990)
Ainouche A., Lapiquonne S.: Hamiltonian connectedness and partially square graphs. Discrete Math. 306, 1097–1104 (2006)
Ainouche A., Schiermeyer I.: 0-Dual closures for several classes of graphs. Graphs Combin. 19, 297–307 (2003)
Alspach B.: The wonderful Walecki construction. Bull. Inst. Combin. Appl. 52, 7–20 (2008)
Alspach B., Bryant D., Dyer D.: Paley graphs have Hamilton decompositions. Discrete Math. 312, 113–118 (2012)
Bailey R.F., Stevens B.: Hamiltonian decompositions of complete k-uniform hypergraphs. Discrete Math. 310, 3088–3095 (2010)
Babu Ch.S., Diwan A.A.: Subdivisions of graphs: a generalization of paths and cycles. Discrete Math. 308, 4479–4486 (2008)
Bal D., Frieze A.: Packing tight Hamilton cycles in uniform hypergraphs. SIAM J. Discrete Math. 26, 435–451 (2012)
Balogh J., Bollobás B., Krivelevich M., Müller T., Walters M.: Hamilton cycles in random geometric graphs. Ann. Appl. Probab. 21, 1053–1072 (2011)
Balakrishnan R., Bermond J.-C., Paulraja P., Yu M.-L.: On Hamilton cycle decompositions of the tensor product of complete graphs. Discrete Math. 268, 49–58 (2003)
Barnette, D.: Conjecture 5. In: Tutte, W. (ed.) Recent Progress in Combinatorics, p. 343. Academic Press, New York (1969)
Bauer D., Schmeichel E.: Binding number, minimum degree, and cycle structure in graphs. J. Graph Theory 71, 219–228 (2012)
Bedrosian, P.: Forbidden subgraphs and minimum degree conditions for Hamiltonicity. Ph.D. Thesis, Memphis State University (1991)
Ben-Shimon S., Krivelevich M., Sudakov B.: On the resilience of hamiltonicity and optimal packing of Hamiltonian cycles in random graphs. SIAM J. Discrete Math. 25, 1176–1193 (2011)
Bermond J.-C.: Hamiltonian decompositions of graphs, directed graphs and hypergraphs. Advances in Graph Theory (Cambridge Combinatorial Conference, Trinity College, Cambridge, 1977). Ann. Discrete Math. 3, 21–28 (1978)
Bermond J.-C., Germa A., Heydemann M.C., Sotteau D.: Hypergraphes hamiltoniens. Prob. Comb. Théorie Graph Orsay 260, 39–43 (1976)
Bian Q., Horn P., Janiszewski S., La Fleur S., Gould R.J., Wrayno P.: 3-connected {K 1,3, P 9 }-free graphs are Hamiltonian connected. Graphs Combin. 313, 2772–2777 (2013)
Biebighauser D.P., Ellingham M.N.: Prism-Hamiltonicity of triangulations. J. Graph Theory 57, 181–197 (2008)
Bloznelis M., Radavičius I.: A note on Hamiltonicity of uniform random intersection graphs. Lith. Math. J. 51, 155–161 (2011)
Böhme T., Harant J., Tkáč M.: More than one tough chordal planar graphs are Hamiltonian. J. Graph Theory 32, 405–410 (1999)
Böttcher J., Kohayakawa Y., Procacci A.: Properly colored copies and rainbow copies of large graphs with small maximum degree. Random Struct. Algorithms 40, 425–436 (2012)
Broersma H., Kriesell M., Ryjáček Z.: On factors of 4-connected claw-free graphs. J. Graph Theory 37, 125–136 (2001)
Broersma H., Faudree R.J., Huck A., Trommel H., Veldman H.J.: Forbidden subgraphs that imply Hamiltonian connectedness. J. Graph Theory 40, 104–119 (2002)
Broersma H., Ryjacek Z., Vrána P.: How many conjectures can you stand? A survey. Graphs Combin. 28, 57–75 (2012)
Broersma H., Xiong L., Yoshimoto K.: Toughness and Hamiltonicity in k-trees. Discrete Math. 307, 832–838 (2007)
Brunet, R., Nakamoto, A., Negami, S.: Every 5-connected triangulation of the Klein bottle is Hamiltonian. In: Proceedings of the 10th Workshop on Topological Graph Theory (Yokohama, 1998) Yokohama Mathematical Journal, vol. 47, pp. 239–244 (1999)
Bryant D., Leach C.D., Rodger C.: Hamilton decompositions of complete bipartite graphs with 3-factor leaves. Australas. J. Combin. 31, 331–336 (2005)
Butler S., Chung F.: Small spectral gap in the combinatorial Laplacian implies Hamiltonian. Ann. Comb. 13, 403–412 (2010)
Čada R., Flandrin E., Li H., Ryjáček Z.: Cycles through given vertices and closures. Discrete Math. 276, 65–80 (2004)
Chen C.: Any maximal planar graph with only one separating triangle is Hamiltonian. J. Comb. Optim. 7, 79–86 (2003)
Chen B., Zhang S., Qiao Q.: Hamilton cycles in claw-heavy graphs. Discrete Math. 309, 2015–2019 (2009)
Chen G., Faudree R.J., Gould R.J., Jacobson M.S.: Cycle extendability of Hamiltonian interval graphs. SIAM J. Discrete Math. 20, 682–689 (2006)
Chen G., Faudree R.J., Gould R.J., Jacobson M.S., Lesniak L., Pfender F.: Linear forests and ordered cycles. Discussiones Mathematicae Graph Theory 24, 359–372 (2004)
Chen G., Gould R.J.: Hamiltonian connected graphs involving forbidden subgraphs. Bull. Inst. Combin. Appl. 29, 25–32 (2000)
Chen G., Gould R.J., Pfender F.: New conditions for k-ordered Hamiltonian graphs. Ars Combin. 70, 245–255 (2004)
Christofides D., Kühn D., Osthus D.: Edge-disjoint Hamiltonian cycles in graphs. J. Combin. Theory Ser. B 102, 1035–1060 (2012)
Cooper C., Frieze A., Krivelevich M.: Hamilton graphs in random graphs with a fixed degree sequence. SIAM J. Discrete Math. 24, 558–569 (2010)
Cui Q., Hu Y., Wang J.: Long cycles in 4-connected planar graphs. Discrete Math. 309, 1051–1059 (2009)
Diaz J., Mitsche D., Pérez X.: Sharp threshold for Hamiltonicity of random geometric graphs. SIAM J. Discrete Math. 21, 57–65 (2007)
Dudek, A., Ferrara, M.: Extensions of results on rainbow Hamilton cycles in uniform hypergraphs (preprint)
Dudek, A., Frieze, A.: Loose Hamiltonian cycles in random uniform hypergraphs. Electron. J. Combin. 18 (2011), Paper 48
Dudek A., Frieze A.: Tight Hamilton cycles in random uniform hypergraphs. Random Struct. Algorithms 42, 374–385 (2012)
Dudek, A., Frieze, A., Loh, P.-S., Speiss, S.: Optimal divisibility conditions for loose Hamilton cycles in random hypergraphs. Electron. J. Combin. 19 (2012), Paper 44
Dudek, A., Frieze, A., Rucinski, A.: Rainbow Hamilton cycles in uniform hypergraphs. Electron. J. Combin. 19 (2012), Paper 46
Duffus, D., Gould, R.J., Jacobson, M.S.: Forbidden subgraphs and the Hamiltonian theme. In: Chartrand, Alavi, Goldsmith, Lesniak, Lick (eds.) The Theory and Applications of Graphs, (Kalmazoo, Mich., 1980), pp. 297–316. Wiley, New York (1981)
Egawa Y., Glas R., Locke S.: Cycles and paths through specified vertices in k-connected graphs. J. Combin. Theory Ser. B 52, 20–29 (1991)
Efthymiou, C., Spitakas, P.G.: On the existence of Hamiltonian cycles in random intersection graphs. Lecture Notes in Computer Science, pp. 690–701. Springer, Berlin (2005)
Efthymiou C., Spirakas P.G.: Sharp thresholds for hamiltonicity in random intersection graphs. Theor. Comput. Sci. 411, 3714–3730 (2010)
Enomoto, H.: Personal communication
Faudree J.R., Faudree R.J.: Hamiltonian cycles containing ordered linear forests. Bull. Inst. Combin. Appl. 5, 78–104 (2009)
Faudree J.R., Faudree R.J., Gould R.J., Jacobson M.S., Lesniak L.: On k-ordered graphs. J. Graph Theory 35, 69–82 (2000)
Faudree J.R., Faudree R.J., Ryjáčk Z., Vrána P.: On forbidden pairs implying Hamilton-connectedness. J. Graph Theory 72, 327–345 (2013)
Faudree R.J., Gould R.J.: Characterizing forbidden pairs for Hamiltonian properties. Discrete Math. 173, 45–60 (1997)
Faudree R.J., Gould R.J., Jacobson M.J., Lesniak L.: Characterizing forbidden clawless triples implying Hamiltonian graphs. Discrete Math. 249, 71–81 (2002)
Faudree R.J., Gould R.J., Jacobson M.S.: Forbidden triples implying hamiltonicity: for all graphs. Discuss. Math. Graph Theory 24, 47–54 (2004)
Faudree R.J., Gould R.J., Jacobson M.S.: Potential forbidden triples implying Hamiltonicity: for sufficiently large graphs. Discuss. Math. Graph Theory 25, 273–289 (2005)
Faudree R.J., Gould R.J., Jacobson M.S., Lesniak L.: Minimum degree and (k,m)-pancyclic ordered graphs. Graphs Combin. 21, 197–211 (2005)
Faudree R.J., Gould R.J., Kostochka A., Lesniak L., Schiermeyer I., Saito A.: Degree conditions for k-ordered Hamiltonian graphs. J. Graph Theory 42, 199–210 (2003)
Faudree, R.J., Gould, R.J., Jacobson, M.S.: Pancyclic graphs and linear forests. Discrete Math. (2013, to appear)
Faudree R.J., Gould R.J., Jacobson M.S., Magnant C.: Distributing vertices on Hamiltonian cycles. J. Graph Theory 69, 28–45 (2012)
Faudree, R.J., Gould, R.J.: Precise location of vertices on Hamiltonian cycles. Discrete Math. 313(23), 2772–2777 (2013)
Faudree R.J., Gould R.J., Jacobson M.S., Lesniak L.: Generalizing pancyclic and k-ordered graphs. Graphs Combin. 20, 291–309 (2004)
Faudree, R.J., Lehel, J., Yoshimoto, K.: A note on locating pairs of vertices on a Hamiltonian cycle (preprint)
Favaron O., Flandrin E., Li H., Tian F.: An Ore-type condition for pancyclability. Discrete Math. 206, 139–144 (1999)
Ferrara M., Gould R.J., Jacobson M.S., Pfender F., Powell J., Whalen T.: New Ore-type conditions for H-linked graphs. J. Graph Theory 71, 69–77 (2012)
Ferrara M., Gould R.J., Tansey G., Whalen T.: Disjoint Hamiltonian cycles in bipartite graphs. Discrete Math. 309, 3811–3820 (2009)
Ferrara M., Jacobson M.S., Harlan A.: Hamiltonian cycles avoiding sets of edges in a graph. Australas. J. Combin. 48, 191–203 (2010)
Fiedler M., Nikiforov V.: Spectral radius and hamiltonicity of graphs. Linear Algebra Appl. 432, 2170–2173 (2010)
Flandrin E., Li H., Marczyk A., Wožniak M.: A note on pancyclism of highly connected graphs. Discrete Math. 286, 57–60 (2004)
Frankl P., Katona Gy.Y.: Extremal k-edge Hamiltonian hypergraphs. Discrete Math. 308, 1415–1424 (2008)
Frieze, A.: Loose Hamilton cycles in random 3-uniform hypergraphs. Electron. J. Combin. 17, #N283 (2010)
Frieze A., Krivelevich M.: On packing Hamilton cycles in ε-regular graphs. J. Combin. Theory B 94, 159–172 (2005)
Frieze A., Krivelevich M., Loh P.-S.: Packing tight Hamilton cycles in 3-uniform hypergraphs. Random Struct. Algorithms 40, 269–300 (2012)
Fujisawa J., Ota K., Sugiyama T., Tsugaki M.: Forbidden subgraphs and the existence of paths and cycles through specified vertices. Discrete Math. 308, 6111–6114 (2008)
Fujisawa J., Nakamoto A., Ozeki K.: Hamiltonian cycles in bipartite toroidal graphs with a partite set of degree four vertices. J. Combin. Theory B 103, 46–60 (2013)
Fujisawa J., Yamashita T.: Degree conditions on claws and modified claws for hamiltonicity of graphs. Discrete Math. 308, 1612–1619 (2008)
Gerlach T.: Toughness and hamiltonicity of a class of planar graphs. Discrete Math. 286, 61–65 (2004)
Glebov R., Krivelevich M.: On the number of Hamilton cycles in sparse random graphs. SIAM J. Discrete Math. 27, 27–42 (2013)
Glebov R., Person Y., Weps W.: On extremal hypergraphs for Hamiltonian cycles. Eur. J. Combin. 33, 544–555 (2012)
Goddard W.: Minimum degree conditions for cycles including specified sets of vertices. Graphs Combin. 20, 467–483 (2004)
Gould R.J.: A look at cycles containing specified elements of a graph. Discrete Math. 309, 6299–6311 (2009)
Gould, R.J.: Graph Theory, Dover Publications, Inc., Mineola (2012)
Gould R.J., Luczak T., Pfender F.: Pancyclicity of 3-connected graphs: pairs of forbidden subgraphs. J. Graph Theory 47, 183–202 (2004)
Gould R.J., Kostochka A., Yu G.: On minimum degree implying that a graph is H-linked. SIAM J. Discrete Math. 20, 829–840 (2006)
Greenhill C., Kim J.H., Wormald N.: Hamiltonian decompositions of random bipartite regular graphs. J. Combin. Theory Ser. B 90, 195–222 (2004)
Häggkvist, R.: On F-Hamiltonian graphs. In: Bondy, J.A., Murty, U.S.R. (eds) Graphs and Related Topics, pp. 219–231. Academic Press, New York (1979)
Hán H., Schacht M.: Dirac-type results for loose Hamilton cycles in uniform hypergraphs. J. Combin. Theory B 100, 332–346 (2010)
Harkat-Benhamdine A., Li H., Tian F.: Cyclability of 3-connected graphs. J. Graph Theory 34, 191–203 (2000)
Hartke, S., Seacrest, T.: Random partitions and edge disjoint Hamiltonian cycles (preprint)
Helden G.: Each maximal planar graph with exactly two separating triangles is Hamiltonian. Discrete Appl. Math. 155, 1833–1836 (2007)
Helden, G., Vieten, O.: Hamiltonian cycles in maximal planar graphs. In: Cologne-Twente Workshop on Graphs and Combinatorial Optimization 71, Electronic Notes in Discrete Mathematics, vol. 25, Elsevier, Amsterdam (2006)
Holton D.L., Manvel B., McKay B.D.: Hamiltonian cycles in cubic 3-connected bipartite graphs. J. Combin. Theory B 38, 279–297 (1985)
Hu Z., Tian F., Bing W.: Hamiltonian connectivity of line graphs and claw-free graphs. J. Graph Theory 50, 130–141 (2005)
Jackson B.: Edge-disjoint Hamiltonian cycles in regular graphs of large degree. J. Lond. Math. Soc. 19, 13–16 (1979)
Jiang T.: Planar Hamiltonian chordal graphs are cycle extendable. Discrete Math. 257, 441–444 (2002)
Kaiser T., Kriesell M.: On the pancyclicity of lexicographic products. Graphs Combin. 22, 51–58 (2006)
Kaneko A., Yoshimoto K.: On a Hamiltonian cycle in which specified vertices are uniformly distributed. J. Combin. Theory Ser. B 81, 100–109 (2001)
Karoński M., Scheinerman E., Singer-Cohen K.: On random intersection graphs: the subgraph problem. Combin. Prob. Comput. 8, 131–159 (1999)
Kawarabayashi K.: A survey on Hamiltonian cycles. Interdiscip. Inf. Sci. 7, 25–39 (2001)
Keevash P.: A hypergraph blow-up lemma. Random Struct. Algorithms 39, 275–376 (2013)
Keevash P., Kühn D., Mycroft R., Osthus D.: Loose Hamilton cycles in hypergraphs. Discrete Math. 311, 544–559 (2011)
Kierstead H., Sárközy G., Selkow S.: On k-ordered Hamiltonian graphs. J. Graph Theory 32, 17–25 (1999)
Knox F., Kühn D., Osthus D.: Approximate Hamilton decompositions of random graphs. Random Struct. Algorithms 40, 133–149 (2012)
Kriesell M.: All 4-connected line graphs of claw-free graphs are Hamiltonian connected. J. Combin. Theory B 82, 306–315 (2001)
Krivelevich, M.: On the number of Hamilton cycles in pseudo-random graphs. Electron. J. Combin. 19 (2012), Paper 24
Krivelevich M., Samotij W.: Optimal packings of Hamilton cycles in sparse random graphs. SIAM J. Discrete Math. 26, 964–982 (2012)
Krivelevich M., Sudakov B.: Sparse pseudo-random graphs are Hamiltonian. J. Graph Theory 42, 17–33 (2003)
Kronk H.: A generalization of a theorem of Pósa. Proc. Am. Math. Soc. 21, 77–78 (1969)
Kühn D., Lapinskas J., Osthus D.: Optimal packings of Hamilton cycles in graphs of high minimum degree. Combin. Prob. Comput. 22, 394–416 (2013)
Kühn D., Osthus D.: Loose Hamilton cycles in 3-uniform hypergraphs of high minimum degree. J. Combin. Theory Ser. B 96, 767–821 (2006)
Kühn D., Osthus D.: Hamilton decompositions of regular expanders: a proof of Kelly’s conjecture for large tournaments. Adv. Math. 237, 62–146 (2013)
Kühn D., Osthus D.: A survey on Hamilton cycles in directed graphs. Eur. J. Combin. 33, 750–766 (2012)
Kuipers, E.J., Veldman, H.: Recognizing claw-free Hamiltonian graphs with large minimum degree. Memo, 1437, Department of Applied Mathematics, University of Twente, Enschede (1998)
Lai H.-J., Shao Y., Yu G., Zhan M.: Hamiltonian connectedness in 3-connected line graphs. Discrete Appl. Math. 157, 982–990 (2009)
Lai H.-J., Shao Y., Zhan M.: Hamiltonicity in 3-connected claw-free graphs. J. Combin. Theory B 96, 493–504 (2006)
Lai H.-J., Shao Y., Zhan M.: Every 4-connected line graph of a quasi-claw-free graph is Hamiltonian connected. Discrete Math. 308, 5312–5316 (2008)
Lai H.-J., Xiong L., Yan H., Yan J.: Every 3-connected claw-free Z 8-free graph is Hamiltonian. J. Graph Theory 64, 1–11 (2010)
Lafond, M., Seamone, B.: Some Hamiltonian chordal graphs are not cycle extendable (preprint)
Las Vergnas, M.: Thesis, University of Paris, Paris (1972)
Leach C.D., Rodger C.: Hamilton decompositions of complete graphs with 3-factor leaves. Discrete Math. 279, 337–344 (2004)
Leach C.D., Rodger C.: Hamilton decompositions of complete multipartite graphs with any 2-factor leave. J. Graph Theory 44, 208–214 (2003)
Li G., Lu M., Liu Z.: Hamiltonian cycles in 3-connected claw-free graphs. Discrete Math. 250, 137–151 (2002)
Li R., Schelp R.: Every 3-connected distance claw-free graph is Hamiltonian connected. Discrete Math. 268, 185–197 (2003)
Li M., Chen X., Broersma H.: Hamiltonian connectedness in 4-connected hourglass-free claw-free graphs. J. Graph Theory 68, 285–298 (2011)
Li J., Shen R., Tian F.: Cycles containing given subsets in 1-tough graphs. Ars Combin. 58, 193–204 (2001)
Li M.: Hamiltonian connected claw-free graphs. Graphs Combin. 20, 341–362 (2004)
Lu, L., Székely, L.: Using Lovász local lemma in the space of random injections. Electron. J. Combin. 14, 13 (2007) Paper 63
Luczak T., Pfender F.: Claw-free 3-connected P 11-free graphs are Hamiltonian. J. Graph Theory 47, 111–121 (2004)
Malkevitch, J.: Polytopal graphs. In: Beineke, Wilson (eds.) Selected Topics in Graph Theory, vol. 3. Academic Press, New York, pp. 169–188 (1988)
Manikandan R.S., Paulraja P.: Hamiltonian decompositions of the tensor product of a complete graph and a complete bipartite graph. Ars Combin. 80, 33–44 (2006)
Manikandan R.S., Paulraja P.: Hamilton cycle decompositions of the tensor product of complete multipartite graphs. Discrete Math. 308, 3586–3606 (2008)
Mohar B.: A domain monotonicity theorem for graphs and hamiltonicity. Discrete Appl. Math. 36, 169–177 (1992)
Müller T., Pérez-Giménez X., Wormald N.: Disjoint Hamilton cycles in the random geometric graph. J. Graph Theory 68, 299–322 (2011)
Nakamoto A., Ozeki K.: Hamiltonian cycles in bipartite quadrangulations on the torus. J. Graph Theory 69, 143–151 (2012)
Nash-Williams, C.St.J.A.: Edge-Disjoint Hamiltonian Circuits in Graphs Having Sufficiently Large Valencies. Studies in Pure Mathematics. Academic Press, London, pp. 157–183 (1971)
Nash-Williams, C.St.J.A.: Unexplored and Semi-Explored Territories in Graph Theory. New Directions in Graph Theory. Academic Press, New York, pp. 169–176 (1973)
Nikoletseas S., Raptopoulos C., Spitakis P.G.: On the independence number and Hamiltonicity of uniform random intersection graphs. Theor. Comput. Sci. 412, 6750–6760 (2011)
Okol’nishnikova E.A.: On the number of Hamiltonian cycles in dense Hamiltonian graphs. (Russ.) Mat. Tr. 8, 199–206 (2005)
Perez Reilly, E., Scheinerman, E.: Random threshold graphs. Electron. J. Combin. 16, Paper 130 (2009)
Pfender F.: Hamiltonicity and forbidden subgraphs in 4-connected graphs. J. Graph Theory 49, 262–272 (2005)
Pike D.A.: Hamilton decompositions of line graphs of some bipartite graph. Discuss. Math. Graph Theory 25, 303–310 (2005)
Pósa L.: On the circuits of finite graphs. Magyar Tud. Akad. Mat. Kutató Int. Közl. 8, 355–361 (1963)
Qiao S., Zhang S.: Spanning cyclic subdivisions of vertex-disjoint cycles and chorded cycles in graphs. Graphs Combin. 28, 277–285 (2012)
Robinson R.W., Wormald N.: Almost all regular graphs are Hamiltonian. Random Struct. Algorithms 5, 363–374 (1994)
Rödl V., Rucinski A., Szemerédi E.: A Dirac-type theorem for 3-uniform hypergraphs. Combin. Probab. Comput. 15, 229–251 (2006)
Rödl V., Rucinski A., Szemerédi E.: An approximate Dirac-type theorem for k-uniform hypergraphs. Combinatorica 28(2), 229–260 (2008)
Rödl V., Ruciński A., Szemerédi E.: Dirac-type conditions for Hamiltonian paths and cycles in 3-uniform hypergraphs. Adv. Math. 227, 1225–1229 (2011)
Ryjáček Z., Vrána P.: Line graphs of multigraphs and Hamilton-connectedness of claw-free graphs. J. Graph Theory 66, 152–173 (2011)
Rybarczyk, K.: Sharp threshold functions for random intersection graphs via a coupling method. Electron. J. Combin. 18, Paper 36 (2011)
Sakai T.: Long paths and cycles through specified vertices in k-connected graphs. Ars Combin. 58, 33–65 (2001)
Sárkozy G., Selkow S., Szemerédi E.: On the number of Hamiltonian cycles in Dirac graphs. Discrete Math. 265, 237–250 (2003)
Sárkozy G., Selkow S.: Distributing vertices along a Hamiltonian cycle in Dirac graphs. Discrete Math. 308, 5757–5770 (2008)
Sciriha I., Cardoso D.M.: Necessary and sufficient conditions for a Hamiltonian graph. J. Combin. Math. Combin. Comput. 80, 127–150 (2012)
Skupien Z.: Sparse Hamiltonian 2-decompositions together with exact count of numerous Hamilton cycles. Discrete Math. 309, 6382–6390 (2009)
Thomas R., Yu X.: 4-connected projective planar graphs are Hamiltonian. J. Combin. Theory B 62, 114–132 (1994)
Thomas R., Yu X.: Five-connected toroidal graphs are Hamiltonian. J. Combin. Theory B 69, 79–96 (1997)
Thomas R., Yu X., Zang W.: Hamilton paths in toroidal graphs. J. Combin. Theory B 94, 214–236 (2005)
Thomason A.G.: Hamiltonian cycles and uniquely edge colorable graphs. Ann. Discrete Math. 3, 259–268 (1978)
Tian F., Wei B.: Pancyclicity mod k of K 1,4-free graphs. Adv. Math. (China) 34, 221–232 (2005)
Tuza Z.: Steiner system and large non-Hamiltonian hypergraphs. Matematiche 61, 179–183 (2006)
van den Heuvel, J.: Hamilton cycles and eigenvalues of graphs. Linear Algebra Appl. 226–228, 723–730 (1995)
Verrall H.: Hamiltonian decompositions of complete 3-uniform hypergraphs. Discrete Math. 132, 333–348 (1994)
Westland E., Liu J., Kreher D.: 6-regular Cayley graphs on abelian groups of odd order are Hamiltonian decomposable. Discrete Math. 309, 5106–5110 (2009)
Witte D., Gallian J.: A survey: Hamiltonian cycles in Cayley graphs. Discrete Math. 51, 293–304 (1984)
Yu X.: Disjoint paths, planarizing cycles, and spanning walks. Trans. Am. Math. Soc. 349, 1333–1358 (1997)
Zhou J., Lin C., Hu G.: Spectral radius of Hamiltonian planar graphs and outerplanar graphs. Tsinghua Sci. Technol. 6, 350–354 (2001)