Recent Advances in Visual Electrochemiluminescence Analysis

Journal of Analysis and Testing - Tập 4 - Trang 92-106 - 2020
Qian Zhang1, Xin Zhang1, Qiang Ma1
1Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, China

Tóm tắt

Due to the advantages of low background interference and high sensitivity, electrochemiluminescence (ECL)-based sensor has developed rapidly in recent years. The ECL sensors have shown the potential in the ultrasensitive and real-time analysis. Especially, the visual ECL analysis, including visual detection, cell imaging and single particle analysis, has offered many unique sensing platforms for analysis research and point-of-care testing. The high throughput ECL image analysis can not only provide ECL intensity but also reveal more information about the chemical reaction activity of particle and the physiological processes of cell operation. Therefore, we review the novel ECL luminophore, sensing systems, and successful applications in the visual ECL detection and imaging in this paper. First, the different ECL luminophore is summarized. Second, we discuss the ECL sensing mechanisms, focusing on the advantages and limitations of different sensing methods. Then, we highlight the recent advances in representative examples of visual ECL analysis, including aptasensing, multiplex immunoassays, cell imaging and single-particle analysis. At last, the outlook and prospects for the future visual ECL analysis are discussed based on the current development of ECL research.

Tài liệu tham khảo

Hu L, Xu G. Applications and trends in electrochemiluminescence. Chem Soc Rev. 2010;39(8):3275–304. https://doi.org/10.1039/b923679c. Richter MM. Electrochemiluminescence (ECL). Chem Rev. 2004;104:3003–366. Guo W, Liu Y, Cao Z, Su B. Imaging analysis based on electrogenerated chemiluminescence. J Anal Test. 2017;1(2):14. https://doi.org/10.1007/s41664-017-0013-9. Wang C, Zhang N, Wei D, Feng R, Fan D, Hu L, et al. Double electrochemiluminescence quenching effects of Fe3O4@PDA-CuXO towards self-enhanced Ru(bpy)32+ functionalized MOFs with hollow structure and it application to procalcitonin immunosensing. Biosens Bioelectron. 2019;142:111521. https://doi.org/10.1016/j.bios.2019.111521. Du X, Kang T, Lu L, Cheng S. An electrochemiluminescence sensor based on CdSe@CdS functionalized MoS2 and hemin/G-quadruplex-based DNAzyme biocatalytic precipitation for sensitive detection of Pb(II). Anal Method. 2018;10(1):51–8. https://doi.org/10.1039/c7ay02334k. Li M, Zhang N, Zhao W, Luo X, Chen H, Xu J-J. Ultrasensitive detection of microRNA-21 based on plasmon-coupling-induced electrochemiluminescence enhancement. Electrochem Commun. 2018;94:36–40. https://doi.org/10.1016/j.elecom.2018.08.003. Zhao M, Chen A, Huang D, Chai Y, Zhuo Y, Yuan R. MoS2 Quantum dots as new electrochemiluminescence emitters for ultrasensitive bioanalysis of lipopolysaccharide. Anal Chem. 2017;89(16):8335–422. https://doi.org/10.1021/acs.analchem.7b01558. Zhang W, Song Y, He S, Shang L, Ma R, Jia L, et al. Perylene diimide as a cathodic electrochemiluminescence luminophore for immunoassays at low potentials. Nanoscale. 2019;11(43):20910–6. https://doi.org/10.1039/c9nr06812k. Ma C, Cao Y, Gou X, Zhu JJ. Recent progress in electrochemiluminescence sensing and tmaging. Anal Chem. 2019. https://doi.org/10.1021/acs.analchem.9b04947. Zhang J, Arbault S, Sojic N, Jiang D. Electrochemiluminescence imaging for bioanalysis. Annu Rev Anal Chem. 2019;12:275–95. https://doi.org/10.1146/annurev-anchem-061318115226. Li S, Liu Y, Ma Q. Nanoparticle-based electrochemiluminescence cytosensors for single cell level detection. TrAC Trend Anal Chem. 2019;110:277–92. https://doi.org/10.1016/j.trac.2018.11.019. Liu Y, Guo W, Su B. Recent advances in electrochemiluminescence imaging analysis based on nanomaterials and micro-/nanostructures. Chin Chem Lett. 2019;30:1593–9. https://doi.org/10.1016/j.cclet.2019.05.038. Wang W, Cui H, Deng Z, Dong Y, Guo J. A general E-E/C mechanism for the counter-peak in luminol electrochemiluminescence. J Electroanal Chem. 2008;612:277–87. https://doi.org/10.1016/j.jelechem.2007.09.036. Xiao F, Wang M, Wang F, Xia X. Graphene-ruthenium(II) complex composites for sensitive ECL immunosensors. Small. 2014;10:706–16. https://doi.org/10.1002/smll.201301566. Babamiri B, Hallaj R, Salimi A. Ultrasensitive electrochemiluminescence immunoassay for simultaneous determination of CA125 and CA15-3 tumor markers based on PAMAM-sulfanilic acid-Ru(bpy)32+ and PAMAM-CdTe@CdS nanocomposite. Biosens Bioelectron. 2018;99:353–60. https://doi.org/10.1016/j.bios.2017.07.062. Jie G, Ge J, Gao X, Li C. Amplified electrochemiluminescence detection of CEA based on magnetic Fe3O4 @Au nanoparticles-assembled Ru@SiO2 nanocomposites combined with multiple cycling amplification strategy. Biosens Bioelectron. 2018;118:115–21. https://doi.org/10.1016/j.bios.2018.07.046. Wang S, Zhao Y, Wang M, Li H, Saqib M, Ge C, et al. Enhancing luminol electrochemiluminescence by combined use of cobalt-based metal organic frameworks and silver nanoparticles and its application in ultrasensitive detection of cardiac troponin I. Anal Chem. 2019;91(4):3048–54. https://doi.org/10.1021/acs.analchem.8b05443. Wang Z, Jiang X, Yuan R, Chai Y. N-(aminobutyl)-N-(ethylisoluminol) functionalized Fe-based metal-organic frameworks with intrinsic mimic peroxidase activity for sensitive electrochemiluminescence mucin1 determination. Biosens Bioelectron. 2018;121:250–6. https://doi.org/10.1016/j.bios.2018.09.022. Hu G, Xiong C, Liang W, Zeng X, Xu H, Yang Y, et al. Highly stable mesoporous luminescence-functionalized MOF with excellent electrochemiluminescence property for ultrasensitive immunosensor construction. ACS Appl Mater Interfaces. 2018;10(18):15913–9. https://doi.org/10.1021/acsami.8b05038. Wang Y, Zhang Y, Sha H, Xiong X, Jia N. Design and biosensing of a ratiometric electrochemiluminescence resonance energy transfer aptasensor between a g-C3N4 nanosheet and Ru@MOF for amyloid-beta protein. ACS Appl Mater Interfaces. 2019;11(40):36299–306. https://doi.org/10.1021/acsami.9b09492. Zhou Y, He J, Zhang C, Li J, Fu X, Mao W, et al. Novel Ce(III)-metal organic framework with a luminescent property to fabricate an electrochemiluminescence immunosensor. ACS Appl Mater Interfaces. 2020;12(1):338–46. https://doi.org/10.1021/acsami.9b19246. Yan M, Ye J, Zhu Q, Zhu L, Huang J, Yang X. Ultrasensitive immunosensor for cardiac troponin I detection based on the electrochemiluminescence of 2D Ru-MOF nanosheets. Anal Chem. 2019;91(15):10156–63. https://doi.org/10.1021/acs.analchem.9b02169. He S, Wang X, Xiang G, Lac K, Wang S, Ding ZE. Electrogenerated chemiluminescence from the monomer of a tetradentate chelate Pt(II) compound. Electrochim Acta. 2018;271:448–53. https://doi.org/10.1016/j.electacta.2018.03.056. Dong Y, Wang J, Peng Y, Zhu J. Electrogenerated chemiluminescence of Si quantum dots in neutral aqueous solution and its biosensing application. Biosens Bioelectron. 2017;89:1053–8. https://doi.org/10.1016/j.bios.2016.10.011. Li X, Xu Y, Chen Y, Wang C, Jiang J, Dong J, et al. Dual enhanced electrochemiluminescence of aminated Au@SiO2/CdS quantum dot superstructures: electromagnetic field enhancement and chemical enhancement. ACS Appl Mater Interfaces. 2019;11(4):4488–99. https://doi.org/10.1021/acsami.8b14886. Gao H, Wen L, Wu Y, Yan X, Li J, Li X, et al. Sensitive and facile electrochemiluminescent immunoassay for detecting genetically modified rapeseed based on novel carbon nanoparticles. J Agric Food Chem. 2018;66(20):5247–53. https://doi.org/10.1021/acs.jafc.8b01080. Zhang Q, Liu Y, Nie Y, Liu Y, Ma Q. Wavelength-dependent surface plasmon coupling electrochemiluminescence biosensor based on sulfur-doped carbon nitride quantum dots for K-RAS Gene Detection. Anal Chem. 2019;91(21):13780–6. https://doi.org/10.1021/acs.analchem.9b03212. Wang C, Chen M, Wu J, Mo F, Fu Y. Multi-functional electrochemiluminescence aptasensor based on resonance energy transfer between Au nanoparticles and lanthanum ion-doped cadmium sulfide quantum dots. Anal Chim Acta. 2019;1086:66–74. https://doi.org/10.1016/j.aca.2019.08.012. Liu Y, Wang M, Nie Y, Zhang Q, Ma Q. Sulfur regulated boron nitride quantum dots electrochemiluminescence with amplified surface plasmon coupling strategy for BRAF gene detection. Anal Chem. 2019;91(9):6250–8. https://doi.org/10.1021/acs.analchem.9b00965. Yang F, Zhong X, Jiang X, Zhuo Y, Yuan R, Wei S. An ultrasensitive aptasensor based on self-enhanced Au nanoclusters as highly efficient electrochemiluminescence indicator and multi-site landing DNA walker as signal amplification. Biosens Bioelectron. 2019;130:262–8. https://doi.org/10.1016/j.bios.2019.01.057. Zhang X, Chen F, Song X, He P, Zhang S. Proximity ligation detection of lectin concanavalin A and fluorescence imaging cancer cells using carbohydrate functionalized DNA-silver nanocluster probes. Biosens Bioelectron. 2018;104:27–31. https://doi.org/10.1016/j.bios.2017.12.048. Zhou Y, Wang H, Zhang H, Chai Y, Yuan R. Programmable modulation of copper nanoclusters electrochemiluminescence via DNA nanocranes for ultrasensitive detection of microRNA. Anal Chem. 2018;90(5):3543–9. https://doi.org/10.1021/acs.analchem.7b05402. Liao H, Zhou Y, Chai Y, Yuan R. An ultrasensitive electrochemiluminescence biosensor for detection of MicroRNA by in-situ electrochemically generated copper nanoclusters as luminophore and TiO2 as coreaction accelerator. Biosens Bioelectron. 2018;114:10–4. https://doi.org/10.1016/j.bios.2018.05.011. Wang F, Lin J, Zhao T, Hu D, Wu T, Liu Y. Intrinsic, "vacancy point defect" induced electrochemiluminescence from coreless supertetrahedral chalcogenide nanocluster. J Am Chem Soc. 2016;138(24):7718–24. https://doi.org/10.1021/jacs.6b03662. Cui H, Hu D, Zhang J, Gao G, Chen Z, Li W, et al. Gold nanoclusters-indocyanine green nanoprobes for synchronous cancer imaging, treatment, and real-time monitoring based on fluorescence resonance energy transfer. ACS Appl Mater Interfaces. 2017;9(30):25114–27. https://doi.org/10.1021/acsami.7b06192. Jia Y, Yang L, Xue J, Zhang N, Fan D, Ma H, et al. Bioactivity-protected electrochemiluminescence biosensor using gold nanoclusters as the low-potential luminophor and Cu2S snowflake as co-reaction accelerator for procalcitonin analysis. ACS Sens. 2019;4(7):1909–16. https://doi.org/10.1021/acssensors.9b00870. Chen S, Ma H, Padelford JW, Qinchen W, Yu W, Wang S, et al. Near infrared electrochemiluminescence of rod-shape 25-atom AuAg nanoclusters that is hundreds-fold stronger than that of Ru(bpy)3 standard. J Am Chem Soc. 2019;141(24):9603–9. https://doi.org/10.1021/jacs.9b02547. Zhou Y, Chen S, Luo X, Chai Y, Yuan R. Ternary electrochemiluminescence nanostructure of au nanoclusters as a highly efficient signal label for ultrasensitive detection of cancer biomarkers. Anal Chem. 2018;90(16):10024–30. https://doi.org/10.1021/acs.analchem.8b02642. Fang D, Zhang S, Dai H, Lin Y. An ultrasensitive ratiometric electrochemiluminescence immunosensor combining photothermal amplification for ovarian cancer marker detection. Biosens Bioelectron. 2019;146:111768. https://doi.org/10.1016/j.bios.2019.111768. Luo JH, Li Q, Chen SH, Yuan R. Coreactant-free dual amplified electrochemiluminescent biosensor based on conjugated polymer dots for the ultrasensitive detection of microRNA. ACS Appl Mater Interfaces. 2019;11(30):27363–70. https://doi.org/10.1021/acsami.9b09339. Sun F, Wang Z, Feng Y, Cheng Y, Ju H, Quan Y. Electrochemiluminescent resonance energy transfer of polymer dots for aptasensing. Biosens Bioelectron. 2018;100:28–34. https://doi.org/10.1016/j.bios.2017.08.047. Luo J, Cheng D, Li PX, Yao Y, Chen S, Yuan R, et al. An electrochemiluminescent sensor based on functionalized conjugated polymer dots for the ultrasensitive detection of Cu2+. Chem Commun (Camb). 2018;54(22):2777–800. https://doi.org/10.1039/c7cc09878b. Feng Y, Wang N, Ju H. Highly efficient electrochemiluminescence of cyanovinylene-contained polymer dots in aqueous medium and its application in imaging analysis. Anal Chem. 2018;90(2):1202–8. https://doi.org/10.1021/acs.analchem.7b03821. Wang N, Feng Y, Wang Y, Ju H, Yan F. Electrochemiluminescent imaging for multi-immunoassay sensitized by dual DNA amplification of polymer dot signal. Anal Chem. 2018;90(12):7708–14. https://doi.org/10.1021/acs.analchem.8b01610. Dai R, Wu F, Xu H, Chi Y. Anodic, cathodic, and annihilation electrochemiluminescence emissions from hydrophilic conjugated polymer dots in aqueous medium. ACS Appl Mater Interfaces. 2015;7:15160–7. https://doi.org/10.1021/acsami.5b04305. Wang N, Wang Z, Chen L, Chen W, Quan Y, Cheng Y, et al. Dual resonance energy transfer in triple-component polymer dots to enhance electrochemiluminescence for highly sensitive bioanalysis. Chem Sci. 2019;10(28):6815–20. https://doi.org/10.1039/c9sc01570a. Zhou J, Nie L, Zhang B, Zou G. Spectrum-resolved triplex-color electrochemiluminescence multiplexing immunoassay with highly-passivated nanocrystals as tags. Anal Chem. 2018;90:12361–5. https://doi.org/10.1021/acs.analchem.8b04424. Cui C, Jin R, Jiang D, Zhang J, Zhu J. Electrogenerated chemiluminescence in submicrometer wells for very high-density biosensing. Anal Chem. 2019. https://doi.org/10.1021/acs.analchem.9b04488. Wu F, Zhou Y, Zhang H, Yuan R, Chai YQ. Electrochemiluminescence peptide-based biosensor with hetero-nanostructures as coreaction accelerator for the ultrasensitive determination of tryptase. Anal Chem. 2018;90(3):2263–70. https://doi.org/10.1021/acs.analchem.7b04631. Song X, Li X, Wei D, Feng R, Yan T, Wang Y, et al. CuS as co-reaction accelerator in PTCA- K2S2O8 system for enhancing electrochemiluminescence behavior of PTCA and its application in detection of amyloid-beta protein. Biosens Bioelectron. 2019;126:222–9. https://doi.org/10.1016/j.bios.2018.10.068. Nie Y, Liu Y, Zhang Q, Su X, Ma Q. Novel coreactant modifier-based amplified electrochemiluminescence sensing method for point-of-care diagnostics of galactose. Biosens Bioelectron. 2019;138:111318. https://doi.org/10.1016/j.bios.2019.111318. Yang L, Jia Y, Wu D, Zhang Y, Ju H, Du Y, et al. Synthesis and application of CeO2/SnS2 heterostructures as a highly efficient coreaction accelerator in the luminol-dissolved O2 system for ultrasensitive biomarkers immunoassay. Anal Chem. 2019;91(21):14066–73. https://doi.org/10.1021/acs.analchem.9b03796. Li M, Feng Q, Zhou Z, Zhao W, Xu J, Chen H. Plasmon-enhanced electrochemiluminescence for nucleic acid detection based on gold nanodendrites. Anal Chem. 2018;90(2):1340–7. https://doi.org/10.1021/acs.analchem.7b04307. Das R, Parveen S, Bora A, Giri P. Origin of high photoluminescence yield and high SERS sensitivity of nitrogen-doped graphene quantum dot. Carbon. 2020;160:273–86. https://doi.org/10.1016/j.carbon.2020.01.030. Zhang C, Zhang T, Zhang Z, Zheng H. Plasmon enhanced fluorescence and Raman scattering by [Au–Ag alloy NP cluster]@SiO2 core–shell nanostructure. Front Chem. 2019;7:647. https://doi.org/10.3389/fchem.2019.00647. He Z, Kang T, Lu L, Cheng S. An electrochemiluminescence sensor based on CdSe@CdS-functionalized MoS2 and a GOD-labeled DNA probe for the sensitive detection of Hg(ii). Anal Methods-UK. 2020;12:491–8. https://doi.org/10.1039/c9ay02524c. Feng Q, Shen Y, Li M, Zhang Z, Zhao W, Xu J, et al. Dual-wavelength electrochemiluminescence ratiometry based on resonance energy transfer between au nanoparticles functionalized g-C3N4 nanosheet and Ru(bpy)32+ for microRNA detection. Anal Chem. 2016;88(1):937–44. https://doi.org/10.1021/acs.analchem.5b03670. Liu Y, Nie Y, Wang M, Zhang Q, Ma Q. Distance-dependent plasmon-enhanced electrochemiluminescence biosensor based on MoS2 nanosheets. Biosens Bioelectron. 2020;148:111823. https://doi.org/10.1016/j.bios.2019.111823. Zhang J, Jin R, Jiang D, Chen HY. Electrochemiluminescence-based capacitance microscopy for label-free imaging of antigens on the cellular plasma membrane. J Am Chem Soc. 2019;141(26):10294–9. https://doi.org/10.1021/jacs.9b03007. Voci S, Goudeau B, Valenti G, Lesch A, Jovic M, Rapino S, et al. Surface-confined electrochemiluminescence microscopy of cell membranes. J Am Chem Soc. 2018;140(44):14753–60. https://doi.org/10.1021/jacs.8b08080. Lu H, Zhao W, Xu J, Chen H. Visual electrochemiluminescence ratiometry on bipolar electrode for bioanalysis. Biosens Bioelectron. 2018;102:624–30. https://doi.org/10.1016/j.bios.2017.12.008. Chen Y, Fu J, Cui C, Jiang D, Chen Z, Chen H, et al. In situ visualization of electrocatalytic reaction activity at quantum dots for water oxidation. Anal Chem. 2018;90(14):8635–41. https://doi.org/10.1021/acs.analchem.8b01935. Qi L, Xia Y, Qi W, Gao W, Wu F, Xu G. Increasing electrochemiluminescence intensity of a wireless electrode array chip by thousands of times using a diode for sensitive visual detection by a digital camera. Anal Chem. 2016;88(2):1123–7. https://doi.org/10.1021/acs.analchem.5b04304. Khoshfetrat SM, Khoshsafar H, Afkhami A, Mehrgardi MA, Bagheri H. Enhanced visual wireless electrochemiluminescence immunosensing of prostate-specific antigen based on the luminol loaded into MIL-53(Fe)-NH2 accelerator and hydrogen evolution reaction mediation. Anal Chem. 2019;91(9):6383–90. https://doi.org/10.1021/acs.analchem.9b01506. Khoshfetrat SM, Bagheri H, Mehrgardi MA. Visual electrochemiluminescence biosensing of aflatoxin M1 based on luminol-functionalized, silver nanoparticle-decorated graphene oxide. Biosens Bioelectron. 2018;100:382–8. https://doi.org/10.1016/j.bios.2017.09.035. Wu M, Yuan D, Xu J, Chen H. Electrochemiluminescence on bipolar electrodes for visual bioanalysis. Chem Sci. 2013;4(3):1182. https://doi.org/10.1039/c2sc22055e. Zhang J, Lu L, Zhu X, Zhang L, Yun S, Duanmu C, et al. Direct observation of oxidation reaction via closed bipolar electrode-anodic electrochemiluminescence protocol: structural property and sensing applications. ACS Sens. 2018;3(11):2351–8. https://doi.org/10.1021/acssensors.8b00736. Ma X, Qi L, Gao W, Yuan F, Xia Y, Lou B, et al. A portable wireless single-electrode system for electrochemiluminescent analysis. Electrochim Acta. 2019;308:20–4. https://doi.org/10.1016/j.electacta.2019.04.015. Liu Y, Chen X, Wang M, Ma Q. A visual electrochemiluminescence resonance energy transfer/surface plasmon coupled electrochemiluminescence nanosensor for Shiga toxin-producing Escherichia coli detection. Green Chem. 2018;20(24):5520–7. https://doi.org/10.1039/c8gc03010c. Li S, Lu Y, Liu L, Low SS, Su B, Wu J, et al. Fingerprints mapping and biochemical sensing on smartphone by electrochemiluminescence. Sensors Actuators B Chem. 2019;285:34–41. https://doi.org/10.1016/j.snb.2019.01.035. Xu L, Li Y, Wu S, Liu X, Su B. Imaging latent fingerprints by electrochemiluminescence. Angew Chem Int Ed Engl. 2012;51(32):8068–72. https://doi.org/10.1002/anie.201203815. Tan J, Xu L, Li T, Su B, Wu J. Image-contrast technology based on the electrochemiluminescence of porous silicon and its application in fingerprint visualization. Angew Chem Int Ed Engl. 2014;53(37):9822–6. https://doi.org/10.1002/anie.201404948. Dauphin AL, Akchach A, Voci S, Kuhn A, Xu G, Bouffier L, Sojic N. Tracking magnetic rotating objects by bipolar electrochemiluminescence. J Phys Chem Lett. 2019;10:5318–24. https://doi.org/10.1021/acs.jpclett.9b02188. Gao W, Muzyka K, Ma X, Lou B, Xu G. A single-electrode electrochemical system for multiplex electrochemiluminescence analysis based on a resistance induced potential difference. Chem Sci. 2018;9:3911–6. https://doi.org/10.1039/C8SC00410B. Liang X, Bao N, Luo X, Ding S. CdZnTeS quantum dots based electrochemiluminescent image immunoanalysis. Biosens Bioelectron. 2018;117:145–52. https://doi.org/10.1016/j.bios.2018.06.006. Barbante GJ, Kebede N, Hindson CM, Doeven EH, Zammit EM, Hanson GR, Hogan CF, Francis PS. Control of excitation and quenching in multi-colour electrogenerated chemiluminescence systems through choice of co-reactant. Chem Eur J. 2014;20:14026–31. Zhou J, Ma G, Chen Y, Fang D, Jiang D, Chen HY. Electrochemiluminescence imaging for parallel single-cell analysis of active membrane cholesterol. Anal Chem. 2015;87(16):8138–43. https://doi.org/10.1021/acs.analchem.5b00542. Valenti G, Scarabino S, Goudeau B, Lesch A, Jovic M, Villani E, et al. Single cell electrochemiluminescence imaging: From the proof-of-concept to disposable device-based analysis. J Am Chem Soc. 2017;139(46):16830–7. https://doi.org/10.1021/jacs.7b09260. Zanut A, Fiorani A, Rebeccani S, Kesarkar S, Valenti G. Electrochemiluminescence as emerging microscopy techniques. Anal Bioanal Chem. 2019;411(19):4375–82. https://doi.org/10.1007/s00216-019-01761-x. Liu G, Ma C, Jin BK, Chen Z, Zhu JJ. Direct electrochemiluminescence imaging of a single cell on a chitosan film modified electrode. Anal Chem. 2018;90(7):4801–6. https://doi.org/10.1021/acs.analchem.8b00194. Hong J, Ming L, Tu Y. Intensification of the electrochemiluminescence of luminol on hollow TiO2 nanoshell-modified indium tin oxide electrodes. Talanta. 2014;128:242–7. https://doi.org/10.1016/j.talanta.2014.05.003. Cao J, Wang Y, Zhang J, Dong Y, Liu F, Ren S, et al. Immuno-electrochemiluminescent imaging of a single cell based on functional nanoprobes of heterogeneous Ru(bpy)32+@SiO2/Au nanoparticles. Anal Chem. 2018;90(17):10334–9. https://doi.org/10.1021/acs.analchem.8b02141. Ding H, Guo W, Su B. Imaging cell-matrix adhesions and collective migration of living cells by electrochemiluminescence microscopy. Angew Chem Int Ed Engl. 2020;59(1):449–56. https://doi.org/10.1002/anie.201911190. Zhang H, Gao W, Liu Y, Sun Y, Jiang Y, Zhang S. Electrochemiluminescence-microscopy for microrna imaging in single cancer cell combined with chemotherapy-photothermal therapy. Anal Chem. 2019;91(19):12581–6. https://doi.org/10.1021/acs.analchem.9b03694. Zhu M, Pan J, Wu Z, Gao X, Zhao W, Xia X, Xu J, Chen H. Electrogenerated chemiluminescence imaging of electrocatalysis at a single Au–Pt janus nanoparticle. Angew Chem Int Ed. 2018;57:4010–4. https://doi.org/10.1002/anie.201800706. Chen Y, Zhao D, Fu J, Gou X, Jiang D, Dong H, et al. In situ imaging facet-induced spatial heterogeneity of electrocatalytic reaction activity at the subparticle level via electrochemiluminescence microscopy. Anal Chem. 2019;91(10):6829–35. https://doi.org/10.1021/acs.analchem.9b01044. Zhu H, Jin R, Jiang D, Zhu J. Perturbation electrochemiluminescence imaging to observe the fluctuation of charge-transfer resistance in individual graphene microsheets with redox-induced defects. ACS Appl Mater Interfaces. 2019;11(50):46666–700. https://doi.org/10.1021/acsami.9b14017.