Recent Advances in Non-Precious Metal–Nitrogen–Carbon Single-Site Catalysts for CO2 Electroreduction Reaction to CO
Tóm tắt
Từ khóa
Tài liệu tham khảo
Haszeldine, R.S.: Carbon capture and storage: how green can black be? Science 325, 1647–1652 (2009). https://doi.org/10.1126/science.1172246
Turner, J.A.: A realizable renewable energy future. Science 285, 687–689 (1999). https://doi.org/10.1126/science.285.5428.687
Vitousek, P.M., Mooney, H.A., Lubchenco, J., et al.: Human domination of earth’s ecosystems. Science 277, 494–499 (1997). https://doi.org/10.1126/science.277.5325.494
Chu, S., Cui, Y., Liu, N.: The path towards sustainable energy. Nat. Mater. 16, 16–22 (2017). https://doi.org/10.1038/nmat4834
Li, L.G., Huang, Y., Li, Y.G.: Carbonaceous materials for electrochemical CO2 reduction. EnergyChem 2, 100024 (2020). https://doi.org/10.1016/j.enchem.2019.100024
Wang, W.H., Himeda, Y., Muckerman, J.T., et al.: CO2 hydrogenation to formate and methanol as an alternative to photo- and electrochemical CO2 reduction. Chem. Rev. 115, 12936–12973 (2015). https://doi.org/10.1021/acs.chemrev.5b00197
Kibria, M.G., Edwards, J.P., Gabardo, C.M., et al.: Electrochemical CO2 reduction into chemical feedstocks: from mechanistic electrocatalysis models to system design. Adv. Mater. 31, 1807166 (2019). https://doi.org/10.1002/adma.201807166
Sanz-Pérez, E.S., Murdock, C.R., Didas, S.A., et al.: Direct capture of CO2 from ambient air. Chem. Rev. 116, 11840–11876 (2016). https://doi.org/10.1021/acs.chemrev.6b00173
Costentin, C., Robert, M., Savéant, J.M.: Catalysis of the electrochemical reduction of carbon dioxide. Chem. Soc. Rev. 42, 2423–2436 (2013). https://doi.org/10.1039/c2cs35360a
Bevilacqua, M., Filippi, J., Miller, H.A., et al.: Recent technological progress in CO2 electroreduction to fuels and energy carriers in aqueous environments. Energy Technol. 3, 197–210 (2015). https://doi.org/10.1002/ente.201402166
Dong, Y.C., Duchesne, P., Mohan, A., et al.: Shining light on CO2: from materials discovery to photocatalyst, photoreactor and process engineering. Chem. Soc. Rev. 49, 5648–5663 (2020). https://doi.org/10.1039/d0cs00597e
Lee, S.H., da Som, C., Kuk, S.K., et al.: Photobiocatalysis: activating redox enzymes by direct or indirect transfer of photoinduced electrons. Angew. Chem. Int. Ed. 57, 7958–7985 (2018). https://doi.org/10.1002/anie.201710070
Kondratenko, E.V., Mul, G., Baltrusaitis, J., et al.: Status and perspectives of CO2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes. Energy Environ. Sci. 6, 3112–3135 (2013). https://doi.org/10.1039/c3ee41272e
Jiang, X., Nie, X.W., Guo, X.W., et al.: Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis. Chem. Rev. 120, 7984–8034 (2020). https://doi.org/10.1021/acs.chemrev.9b00723
Sun, Z.Y., Ma, T., Tao, H.C., et al.: Fundamentals and challenges of electrochemical CO2 reduction using two-dimensional materials. Chem 3, 560–587 (2017). https://doi.org/10.1016/j.chempr.2017.09.009
Qiao, J.L., Liu, Y.Y., Hong, F., et al.: A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels. Chem. Soc. Rev. 43, 631–675 (2014). https://doi.org/10.1039/c3cs60323g
Torres Galvis, H.M., de Jong, K.P.: Catalysts for production of lower olefins from synthesis gas: a review. ACS Catal. 3, 2130–2149 (2013). https://doi.org/10.1021/cs4003436
Gür, M., Canbaz, E.D.: Analysis of syngas production and reaction zones in hydrogen oriented underground coal gasification. Fuel 269, 117331 (2020). https://doi.org/10.1016/j.fuel.2020.117331
de Luna, P., Hahn, C., Higgins, D., et al.: What would it take for renewably powered electrosynthesis to displace petrochemical processes? Science 364, 6438 (2019). https://doi.org/10.1126/science.aav3506
Yuan, Z.H., Eden, M.R., Gani, R.: Toward the development and deployment of large-scale carbon dioxide capture and conversion processes. Ind. Eng. Chem. Res. 55, 3383–3419 (2016). https://doi.org/10.1021/acs.iecr.5b03277
Duan, X.C., Xu, J.T., Wei, Z.X., et al.: Metal-free carbon materials for CO2 electrochemical reduction. Adv. Mater. 29, 1701784 (2017). https://doi.org/10.1002/adma.201701784
Cui, H.J., Guo, Y.B., Guo, L.M., et al.: Heteroatom-doped carbon materials and their composites as electrocatalysts for CO2 reduction. J. Mater. Chem. A 6, 18782–18793 (2018). https://doi.org/10.1039/c8ta07430e
Zhu, G.Z., Li, Y.W., Zhu, H.Y., et al.: Curvature-dependent selectivity of CO2 electrocatalytic reduction on cobalt porphyrin nanotubes. ACS Catal. 6, 6294–6301 (2016). https://doi.org/10.1021/acscatal.6b02020
Lu, X.L., Rong, X., Zhang, C., et al.: Carbon-based single-atom catalysts for CO2 electroreduction: progress and optimization strategies. J. Mater. Chem. A 8, 10695–10708 (2020). https://doi.org/10.1039/d0ta01955k
Nguyen, D.L.T., Kim, Y., Hwang, Y.J., et al.: Progress in development of electrocatalyst for CO2 conversion to selective CO production. Carbon Energy 2, 72–98 (2020). https://doi.org/10.1002/cey2.27
Zhu, W.L., Michalsky, R., Metin, Ö., et al.: Monodisperse Au nanoparticles for selective electrocatalytic reduction of CO2 to CO. J. Am. Chem. Soc. 135, 16833–16836 (2013). https://doi.org/10.1021/ja409445p
Zhang, L., Mao, F.X., Zheng, L.R., et al.: Tuning metal catalyst with metal-C3N4 interaction for efficient CO2 electroreduction. ACS Catal. 8, 11035–11041 (2018). https://doi.org/10.1021/acscatal.8b03789
Rosen, J., Hutchings, G.S., Lu, Q., et al.: Mechanistic insights into the electrochemical reduction of CO2 to CO on nanostructured Ag surfaces. ACS Catal. 5, 4293–4299 (2015). https://doi.org/10.1021/acscatal.5b00840
Liu, S.B., Tao, H.B., Zeng, L., et al.: Shape-dependent electrocatalytic reduction of CO2 to CO on triangular silver nanoplates. J. Am. Chem. Soc. 139, 2160–2163 (2017). https://doi.org/10.1021/jacs.6b12103
Zhou, Y., Han, N., Li, Y.G.: Recent progress on Pd-based nanomaterials for electrochemical CO2 reduction. Acta Phys Chim Sin. 36, 2001041 (2020). https://doi.org/10.3866/pku.whxb202001041
Chang, Q.W., Kim, J., Lee, J.H., et al.: Boosting activity and selectivity of CO2 electroreduction by pre-hydridizing Pd nanocubes. Small 16, 2005305 (2020). https://doi.org/10.1002/smll.202005305
Guo, J.J., Huo, J.J., Liu, Y., et al.: Nitrogen-doped porous carbon supported nonprecious metal single-atom electrocatalysts: from synthesis to application. Small Methods 3, 1900159 (2019). https://doi.org/10.1002/smtd.201900159
Vasileff, A., Xu, C.C., Jiao, Y., et al.: Surface and interface engineering in copper-based bimetallic materials for selective CO2 electroreduction. Chem 4, 1809–1831 (2018). https://doi.org/10.1016/j.chempr.2018.05.001
Xie, H., Wang, T.Y., Liang, J.S., et al.: Cu-based nanocatalysts for electrochemical reduction of CO2. Nano Today 21, 41–54 (2018). https://doi.org/10.1016/j.nantod.2018.05.001
Wu, J.J., Yadav, R.M., Liu, M.J., et al.: Achieving highly efficient, selective, and stable CO2 reduction on nitrogen-doped carbon nanotubes. ACS Nano 9, 5364–5371 (2015). https://doi.org/10.1021/acsnano.5b01079
Sreekanth, N., Nazrulla, M.A., Vineesh, T.V., et al.: Metal-free boron-doped graphene for selective electroreduction of carbon dioxide to formic acid/formate. Chem. Commun. 51, 16061–16064 (2015). https://doi.org/10.1039/c5cc06051f
Han, H., Park, S., Jang, D., et al.: Electrochemical reduction of CO2 to CO by N,S dual-doped carbon nanoweb catalysts. Chemsuschem 13, 539–547 (2020). https://doi.org/10.1002/cssc.201903117
Xue, X.Y., Yang, H., Yang, T., et al.: N,P-coordinated fullerene-like carbon nanostructures with dual active centers toward highly-efficient multi-functional electrocatalysis for CO2RR, ORR and Zn-air battery. J. Mater. Chem. A 7, 15271–15277 (2019). https://doi.org/10.1039/c9ta03828k
Ni, W., Xue, Y.F., Zang, X.G., et al.: Fluorine doped cagelike carbon electrocatalyst: an insight into the structure-enhanced CO selectivity for CO2 reduction at high overpotential. ACS Nano 14, 2014–2023 (2020). https://doi.org/10.1021/acsnano.9b08528
Liu, S., Yang, H.B., Su, X., et al.: Rational design of carbon-based metal-free catalysts for electrochemical carbon dioxide reduction: a review. J. Energy Chem. 36, 95–105 (2019). https://doi.org/10.1016/j.jechem.2019.06.013
Ju, W., Bagger, A., Hao, G.P., et al.: Understanding activity and selectivity of metal-nitrogen-doped carbon catalysts for electrochemical reduction of CO2. Nat. Commun. 8, 944 (2017). https://doi.org/10.1038/s41467-017-01035-z
Li, C.H., Tong, X., Yu, P., et al.: Carbon dioxide photo/electroreduction with cobalt. J. Mater. Chem. A 7, 16622–16642 (2019). https://doi.org/10.1039/c9ta03892b
Varela, A.S., Ju, W., Bagger, A., et al.: Electrochemical reduction of CO2 on metal-nitrogen-doped carbon catalysts. ACS Catal. 9, 7270–7284 (2019). https://doi.org/10.1021/acscatal.9b01405
Cheng, Y., Yang, S.Z., Jiang, S.P., et al.: Supported single atoms as new class of catalysts for electrochemical reduction of carbon dioxide. Small Methods 3, 1800440 (2019). https://doi.org/10.1002/smtd.201800440
Yang, X.F., Wang, A.Q., Qiao, B.T., et al.: Single-atom catalysts: a new frontier in heterogeneous catalysis. Acc. Chem. Res. 46, 1740–1748 (2013). https://doi.org/10.1021/ar300361m
Fei, H.L., Dong, J.C., Chen, D.L., et al.: Single atom electrocatalysts supported on graphene or graphene-like carbons. Chem. Soc. Rev. 48, 5207–5241 (2019). https://doi.org/10.1039/c9cs00422j
Jin, J., Yin, J., Liu, H.B., et al.: Transition metal (Fe, Co and Ni)–carbide–nitride (M–C–N) nanocatalysts: structure and electrocatalytic applications. ChemCatChem 11, 2780–2792 (2019). https://doi.org/10.1002/cctc.201900570
Wang, Q.C., Lei, Y.P., Wang, D.S., et al.: Defect engineering in earth-abundant electrocatalysts for CO2 and N2 reduction. Energy Environ. Sci. 12, 1730–1750 (2019). https://doi.org/10.1039/c8ee03781g
Chen, Y.N., Zhang, X., Zhou, Z.: Carbon-based substrates for highly dispersed nanoparticle and even single-atom electrocatalysts. Small Methods 3, 1900050 (2019). https://doi.org/10.1002/smtd.201900050
Yang, H.B., Hung, S.F., Liu, S., et al.: Atomically dispersed Ni(I) as the active site for electrochemical CO2 reduction. Nat. Energy 3, 140–147 (2018). https://doi.org/10.1038/s41560-017-0078-8
Gu, J., Hsu, C.S., Bai, L.C., et al.: Atomically dispersed Fe3+ sites catalyze efficient CO2 electroreduction to CO. Science 364, 1091–1094 (2019). https://doi.org/10.1126/science.aaw7515
Lin, S., Diercks, C.S., Zhang, Y.B., et al.: Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water. Science 349, 1208–1213 (2015). https://doi.org/10.1126/science.aac8343
Varela, A.S., Ranjbar Sahraie, N., Steinberg, J., et al.: Metal-doped nitrogenated carbon as an efficient catalyst for direct CO2 electroreduction to CO and hydrocarbons. Angew. Chem. Int. Ed. 54, 10758–10762 (2015). https://doi.org/10.1002/anie.201502099
Jasinski, R.: A new fuel cell cathode catalyst. Nature 201, 1212–1213 (1964). https://doi.org/10.1038/2011212a0
Alt, H., Binder, H., Sandstede, G.: Mechanism of the electrocatalytic reduction of oxygen on metal chelates. J. Catal. 28, 8–19 (1973). https://doi.org/10.1016/0021-9517(73)90173-5
Chen, Z.W., Higgins, D., Yu, A.P., et al.: A review on non-precious metal electrocatalysts for PEM fuel cells. Energy Environ. Sci. 4, 3167 (2011). https://doi.org/10.1039/c0ee00558d
Wiesener, K.: N4-chelates as electrocatalyst for cathodic oxygen reduction. Electrochim. Acta 31, 1073–1078 (1986). https://doi.org/10.1016/0013-4686(86)80022-6
Gupta, S., Tryk, D., Bae, I., et al.: Heat-treated polyacrylonitrile-based catalysts for oxygen electroreduction. J. Appl. Electrochem. 19, 19–27 (1989). https://doi.org/10.1007/BF01039385
Ding, W., Li, L., Xiong, K., et al.: Shape fixing via salt recrystallization: a morphology-controlled approach to convert nanostructured polymer to carbon nanomaterial as a highly active catalyst for oxygen reduction reaction. J. Am. Chem. Soc. 137, 5414–5420 (2015). https://doi.org/10.1021/jacs.5b00292
Lai, Q.X., Gao, Q.W., Su, Q., et al.: Bottom-up synthesis of high-performance nitrogen-enriched transition metal/graphene oxygen reduction electrocatalysts both in alkaline and acidic solution. Nanoscale 7, 14707–14714 (2015). https://doi.org/10.1039/c5nr02984h
Lefèvre, M., Proietti, E., Jaouen, F., et al.: Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells. Science 324, 71–74 (2009). https://doi.org/10.1126/science.1170051
Lin, Q.P., Bu, X.H., Kong, A.G., et al.: New heterometallic zirconium metalloporphyrin frameworks and their heteroatom-activated high-surface-area carbon derivatives. J. Am. Chem. Soc. 137, 2235–2238 (2015). https://doi.org/10.1021/jacs.5b00076
Morozan, A., Jousselme, B., Palacin, S.: Low-platinum and platinum-free catalysts for the oxygen reduction reaction at fuel cell cathodes. Energy Environ. Sci. 4, 1238 (2011). https://doi.org/10.1039/c0ee00601g
Lin, L., Zhu, Q., Xu, A.W.: Noble-metal-free Fe–N/C catalyst for highly efficient oxygen reduction reaction under both alkaline and acidic conditions. J. Am. Chem. Soc. 136, 11027–11033 (2014). https://doi.org/10.1021/ja504696r
Wu, Z.Y., Xu, X.X., Hu, B.C., et al.: Iron carbide nanoparticles encapsulated in mesoporous Fe-N-doped carbon nanofibers for efficient electrocatalysis. Angew. Chem. Int. Ed. 54, 8179–8183 (2015). https://doi.org/10.1002/anie.201502173
Zhou, D., Yang, L.P., Yu, L.H., et al.: Fe/N/C hollow nanospheres by Fe(III)-dopamine complexation-assisted one-pot doping as nonprecious-metal electrocatalysts for oxygen reduction. Nanoscale 7, 1501–1509 (2015). https://doi.org/10.1039/c4nr06366j
Zhu, Y.S., Zhang, B.S., Liu, X., et al.: Unravelling the structure of electrocatalytically active Fe–N complexes in carbon for the oxygen reduction reaction. Angew. Chem. Int. Ed. 53, 10673–10677 (2014). https://doi.org/10.1002/anie.201405314
Wu, G., More, K.L., Johnston, C.M., et al.: High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science 332, 443–447 (2011). https://doi.org/10.1126/science.1200832
Li, J., Sougrati, M.T., Zitolo, A., et al.: Identification of durable and non-durable FeNx sites in Fe–N–C materials for proton exchange membrane fuel cells. Nat. Catal. 4, 10–19 (2021). https://doi.org/10.1038/s41929-020-00545-2
Hossain, M.D., Liu, Z.J., Zhuang, M.H., et al.: Rational design of graphene-supported single atom catalysts for hydrogen evolution reaction. Adv. Energy Mater. 9, 1803689 (2019). https://doi.org/10.1002/aenm.201803689
Zhao, S., Wang, Y., Dong, J., et al.: Ultrathin metal–organic framework nanosheets for electrocatalytic oxygen evolution. Nat. Energy 1, 16184 (2016). https://doi.org/10.1038/nenergy.2016.184
Shi, Z.S., Yang, W.Q., Gu, Y.T., et al.: Metal-nitrogen-doped carbon materials as highly efficient catalysts: progress and rational design. Adv. Sci. 7, 2001069 (2020). https://doi.org/10.1002/advs.202001069
Dai, X.Y., Chen, Z., Yao, T., et al.: Single Ni sites distributed on N-doped carbon for selective hydrogenation of acetylene. Chem. Commun. 53, 11568–11571 (2017). https://doi.org/10.1039/c7cc04820c
Hu, X.M., Hval, H.H., Bjerglund, E.T., et al.: Selective CO2 reduction to CO in water using earth-abundant metal and nitrogen-doped carbon electrocatalysts. ACS Catal. 8, 6255–6264 (2018). https://doi.org/10.1021/acscatal.8b01022
Pan, F.P., Deng, W., Justiniano, C., et al.: Identification of champion transition metals centers in metal and nitrogen-codoped carbon catalysts for CO2 reduction. Appl. Catal. B Environ. 226, 463–472 (2018). https://doi.org/10.1016/j.apcatb.2018.01.001
Li, J.K., Pršlja, P., Shinagawa, T., et al.: Volcano trend in electrocatalytic CO2 reduction activity over atomically dispersed metal sites on nitrogen-doped carbon. ACS Catal. 9, 10426–10439 (2019). https://doi.org/10.1021/acscatal.9b02594
Leonard, N., Ju, W., Sinev, I., et al.: The chemical identity, state and structure of catalytically active centers during the electrochemical CO2 reduction on porous Fe–nitrogen–carbon (Fe–N–C) materials. Chem. Sci. 9, 5064–5073 (2018). https://doi.org/10.1039/c8sc00491a
Wang, X., de Araújo, J.F., Ju, W., et al.: Mechanistic reaction pathways of enhanced ethylene yields during electroreduction of CO2–CO co-feeds on Cu and Cu-tandem electrocatalysts. Nat. Nanotechnol. 14, 1063–1070 (2019). https://doi.org/10.1038/s41565-019-0551-6
Ren, W.H., Tan, X., Yang, W.F., et al.: Isolated diatomic Ni-Fe metal–nitrogen sites for synergistic electroreduction of CO2. Angew. Chem. Int. Ed. 58, 6972–6976 (2019). https://doi.org/10.1002/anie.201901575
Cheng, Q.Q., Mao, K., Ma, L.S., et al.: Encapsulation of iron nitride by Fe–N–C shell enabling highly efficient electroreduction of CO2 to CO. ACS Energy Lett. 3, 1205–1211 (2018). https://doi.org/10.1021/acsenergylett.8b00474
Ross, M.B., De Luna, P., Li, Y., et al.: Designing materials for electrochemical carbon dioxide recycling. Nat. Catal. 2, 648–658 (2019). https://doi.org/10.1038/s41929-019-0306-7
Xie, C.L., Niu, Z.Q., Kim, D., et al.: Surface and interface control in nanoparticle catalysis. Chem. Rev. 120, 1184–1249 (2020). https://doi.org/10.1021/acs.chemrev.9b00220
Menges, F.S., Craig, S.M., Tötsch, N., et al.: Capture of CO2 by a cationic nickel(I) complex in the gas phase and characterization of the bound, activated CO2 molecule by cryogenic ion vibrational predissociation spectroscopy. Angew. Chem. Int. Ed. 55, 1282–1285 (2016). https://doi.org/10.1002/anie.201507965
Gong, L.L., Zhang, D.T., Lin, C.Y., et al.: Catalytic mechanisms and design principles for single-atom catalysts in highly efficient CO2 conversion. Adv. Energy Mater. 9, 1902625 (2019). https://doi.org/10.1002/aenm.201902625
Li, Y.W., Chan, S.H., Sun, Q.: Heterogeneous catalytic conversion of CO2: a comprehensive theoretical review. Nanoscale 7, 8663–8683 (2015). https://doi.org/10.1039/c5nr00092k
Vasileff, A., Zheng, Y., Qiao, S.Z.: Carbon solving carbon’s problems: recent progress of nanostructured carbon-based catalysts for the electrochemical reduction of CO2. Adv. Energy Mater. 7, 1700759 (2017). https://doi.org/10.1002/aenm.201700759
Li, F.W., MacFarlane, D.R., Zhang, J.: Recent advances in the nanoengineering of electrocatalysts for CO2 reduction. Nanoscale 10, 6235–6260 (2018). https://doi.org/10.1039/C7NR09620H
Feaster, J.T., Shi, C., Cave, E.R., et al.: Understanding selectivity for the electrochemical reduction of carbon dioxide to formic acid and carbon monoxide on metal electrodes. ACS Catal. 7, 4822–4827 (2017). https://doi.org/10.1021/acscatal.7b00687
Birdja, Y.Y., Pérez-Gallent, E., Figueiredo, M.C., et al.: Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nat. Energy 4, 732–745 (2019). https://doi.org/10.1038/s41560-019-0450-y
Varela, A.S., Kroschel, M., Leonard, N.D., et al.: pH effects on the selectivity of the electrocatalytic CO2 reduction on graphene-embedded Fe–N–C motifs: bridging concepts between molecular homogeneous and solid-state heterogeneous catalysis. ACS Energy Lett. 3, 812–817 (2018). https://doi.org/10.1021/acsenergylett.8b00273
Zhang, B.H., Zhang, J.T.: Rational design of Cu-based electrocatalysts for electrochemical reduction of carbon dioxide. J. Energy Chem. 26, 1050–1066 (2017). https://doi.org/10.1016/j.jechem.2017.10.011
Li, Y.W., Sun, Q.: Recent advances in breaking scaling relations for effective electrochemical conversion of CO2. Adv. Energy Mater. 6, 1600463 (2016). https://doi.org/10.1002/aenm.201600463
Li, M.H., Wang, H.F., Luo, W., et al.: Heterogeneous single-atom catalysts for electrochemical CO2 reduction reaction. Adv. Mater. 32, 2001848 (2020). https://doi.org/10.1002/adma.202001848
Back, S., Lim, J., Kim, N.Y., et al.: Single-atom catalysts for CO2 electroreduction with significant activity and selectivity improvements. Chem. Sci. 8, 1090–1096 (2017). https://doi.org/10.1039/c6sc03911a
Sheng, T., Sun, S.G.: Free energy landscape of electrocatalytic CO2 reduction to CO on aqueous FeN4 center embedded graphene studied by ab initio molecular dynamics simulations. Chem. Phys. Lett. 688, 37–42 (2017). https://doi.org/10.1016/j.cplett.2017.09.052
Jiang, K., Siahrostami, S., Zheng, T.T., et al.: Isolated Ni single atoms in graphene nanosheets for high-performance CO2 reduction. Energy Environ. Sci. 11, 893–903 (2018). https://doi.org/10.1039/c7ee03245e
Shi, C., Hansen, H.A., Lausche, A.C., et al.: Trends in electrochemical CO2 reduction activity for open and close-packed metal surfaces. Phys. Chem. Chem. Phys. 16, 4720 (2014). https://doi.org/10.1039/c3cp54822h
Kim, D., Xie, C.L., Becknell, N., et al.: Electrochemical activation of CO2 through atomic ordering transformations of AuCu nanoparticles. J. Am. Chem. Soc. 139, 8329–8336 (2017). https://doi.org/10.1021/jacs.7b03516
Zhang, E.H., Wang, T., Yu, K., et al.: Bismuth single atoms resulting from transformation of metal–organic frameworks and their use as electrocatalysts for CO2 reduction. J. Am. Chem. Soc. 141, 16569–16573 (2019). https://doi.org/10.1021/jacs.9b08259
Wang, Y.H., Liu, J.L., Wang, Y.F., et al.: Tuning of CO2 reduction selectivity on metal electrocatalysts. Small 13, 1701809 (2017). https://doi.org/10.1002/smll.201701809
Lu, B.Z., Liu, Q.M., Chen, S.W.: Electrocatalysis of single-atom sites: impacts of atomic coordination. ACS Catal. 10, 7584–7618 (2020). https://doi.org/10.1021/acscatal.0c01950
Pan, F.P., Zhang, H.G., Liu, K.X., et al.: Unveiling active sites of CO2 reduction on nitrogen-coordinated and atomically dispersed iron and cobalt catalysts. ACS Catal. 8, 3116–3122 (2018). https://doi.org/10.1021/acscatal.8b00398
Ni, W.P., Liu, Z.X., Zhang, Y., et al.: Electroreduction of carbon dioxide driven by the intrinsic defects in the carbon plane of a single Fe–N4 site. Adv. Mater. 33, 2003238 (2021). https://doi.org/10.1002/adma.202003238
Wang, Y.C., Liu, Y., Liu, W., et al.: Regulating the coordination structure of metal single atoms for efficient electrocatalytic CO2 reduction. Energy Environ. Sci. 13, 4609–4624 (2020). https://doi.org/10.1039/d0ee02833a
Pan, Y., Lin, R., Chen, Y.J., et al.: Design of single-atom Co–N5 catalytic site: a robust electrocatalyst for CO2 reduction with nearly 100% CO selectivity and remarkable stability. J. Am. Chem. Soc. 140, 4218–4221 (2018). https://doi.org/10.1021/jacs.8b00814
Wu, Z.Z., Gao, F.Y., Gao, M.R.: Regulating the oxidation state of nanomaterials for electrocatalytic CO2 reduction. Energy Environ. Sci. 14, 1121–1139 (2021). https://doi.org/10.1039/d0ee02747b
Liu, S., Yang, H.B., Hung, S.F., et al.: Elucidating the electrocatalytic CO2 reduction reaction over a model single-atom nickel catalyst. Angew. Chem. Int. Ed. 59, 798–803 (2020). https://doi.org/10.1002/anie.201915193
Gao, F.Y., Bao, R.C., Gao, M.R., et al.: Electrochemical CO2–to–CO conversion: electrocatalysts, electrolytes, and electrolyzers. J. Mater. Chem. A 8, 15458–15478 (2020). https://doi.org/10.1039/d0ta03525d
Chen, Y.Q., Yao, Y.J., Xia, Y.J., et al.: Advanced Ni–Nx–C single-site catalysts for CO2 electroreduction to CO based on hierarchical carbon nanocages and S-doping. Nano Res. 13, 2777–2783 (2020). https://doi.org/10.1007/s12274-020-2928-0
Zhao, X.H., Liu, Y.Y.: Unveiling the active structure of single nickel atom catalysis: critical roles of charge capacity and hydrogen bonding. J. Am. Chem. Soc. 142, 5773–5777 (2020). https://doi.org/10.1021/jacs.9b13872
Zhu, Y.P., Guo, C.X., Zheng, Y., et al.: Surface and interface engineering of noble-metal-free electrocatalysts for efficient energy conversion processes. Acc. Chem. Res. 50, 915–923 (2017). https://doi.org/10.1021/acs.accounts.6b00635
Zhu, M.H., Chen, J.C., Guo, R., et al.: Cobalt phthalocyanine coordinated to pyridine-functionalized carbon nanotubes with enhanced CO2 electroreduction. Appl. Catal. B Environ. 251, 112–118 (2019). https://doi.org/10.1016/j.apcatb.2019.03.047
Zhang, M.D., Si, D.H., Yi, J.D., et al.: Conductive phthalocyanine-based covalent organic framework for highly efficient electroreduction of carbon dioxide. Small 16, 2005254 (2020). https://doi.org/10.1002/smll.202005254
Puthiaraj, P., Lee, Y.R., Zhang, S.Q., et al.: Triazine-based covalent organic polymers: design, synthesis and applications in heterogeneous catalysis. J. Mater. Chem. A 4, 16288–16311 (2016). https://doi.org/10.1039/c6ta06089g
Chan-Thaw, C.E., Villa, A., Katekomol, P., et al.: Covalent triazine framework as catalytic support for liquid phase reaction. Nano Lett. 10, 537–541 (2010). https://doi.org/10.1021/nl904082k
Kuhn, P., Antonietti, M., Thomas, A.: Porous, covalent triazine-based frameworks prepared by ionothermal synthesis. Angew. Chem. Int. Ed. 47, 3450–3453 (2008). https://doi.org/10.1002/anie.200705710
Zhao, Y., Hao, L., Ning, J., et al.: A versatile transition metal ion-binding motif derived from covalent organic framework for efficient CO2 electroreduction. Appl. Catal. B Environ. 291, 119915 (2021). https://doi.org/10.1016/j.apcatb.2021.119915
Liang, Z.Z., Wang, H.Y., Zheng, H.Q., et al.: Porphyrin-based frameworks for oxygen electrocatalysis and catalytic reduction of carbon dioxide. Chem. Soc. Rev. 50, 2540–2581 (2021). https://doi.org/10.1039/d0cs01482f
Su, P.P., Iwase, K., Harada, T., et al.: Covalent triazine framework modified with coordinatively-unsaturated Co or Ni atoms for CO2 electrochemical reduction. Chem. Sci. 9, 3941–3947 (2018). https://doi.org/10.1039/c8sc00604k
Lu, C.B., Yang, J., Wei, S.C., et al.: Atomic Ni anchored covalent triazine framework as high efficient electrocatalyst for carbon dioxide conversion. Adv. Funct. Mater. 29, 1806884 (2019). https://doi.org/10.1002/adfm.201806884
Wang, T.T., Zhao, Q.D., Fu, Y.Y., et al.: Single atom electrocatalysts: carbon-rich nonprecious metal single atom electrocatalysts for CO2 reduction and hydrogen evolution (small methods 10/2019). Small Methods 3, 1970033 (2019). https://doi.org/10.1002/smtd.201970033
Nguyen, T.N., Salehi, M., Le, Q.V., et al.: Fundamentals of electrochemical CO2 reduction on single-metal-atom catalysts. ACS Catal. 10, 10068–10095 (2020). https://doi.org/10.1021/acscatal.0c02643
Wang, Y., Wang, M.Y., Zhang, Z.S., et al.: Phthalocyanine precursors to construct atomically dispersed iron electrocatalysts. ACS Catal. 9, 6252–6261 (2019). https://doi.org/10.1021/acscatal.9b01617
Wu, G., Zelenay, P.: Nanostructured nonprecious metal catalysts for oxygen reduction reaction. Acc. Chem. Res. 46, 1878–1889 (2013). https://doi.org/10.1021/ar400011z
Liu, L.H., Liu, S., Li, L., et al.: A general method to construct single-atom catalysts supported on N-doped graphene for energy applications. J. Mater. Chem. A 8, 6190–6195 (2020). https://doi.org/10.1039/c9ta11715f
Yang, H., Shang, L., Zhang, Q., et al.: A universal ligand mediated method for large scale synthesis of transition metal single atom catalysts. Nat. Commun. 10, 4585 (2019). https://doi.org/10.1038/s41467-019-12510-0
Takele Menisa, L., Cheng, P., Long, C., et al.: Insight into atomically dispersed porous M–N–C single-site catalysts for electrochemical CO2 reduction. Nanoscale 12, 16617–16626 (2020). https://doi.org/10.1039/d0nr03044a
Cheng, Y., Zhao, S.Y., Li, H.B., et al.: Unsaturated edge-anchored Ni single atoms on porous microwave exfoliated graphene oxide for electrochemical CO2. Appl. Catal. B Environ. 243, 294–303 (2019). https://doi.org/10.1016/j.apcatb.2018.10.046
Zheng, Y., Jiao, Y., Zhu, Y.H., et al.: Molecule-level g–C3N4 coordinated transition metals as a new class of electrocatalysts for oxygen electrode reactions. J. Am. Chem. Soc. 139, 3336–3339 (2017). https://doi.org/10.1021/jacs.6b13100
Zhang, G.X., Jia, Y., Zhang, C., et al.: A general route via formamide condensation to prepare atomically dispersed metal–nitrogen–carbon electrocatalysts for energy technologies. Energy Environ. Sci. 12, 1317–1325 (2019). https://doi.org/10.1039/c9ee00162j
Ma, Z.J., Zhang, X.L., Wu, D.P., et al.: Ni and nitrogen-codoped ultrathin carbon nanosheets with strong bonding sites for efficient CO2 electrochemical reduction. J. Colloid Interface Sci. 570, 31–40 (2020). https://doi.org/10.1016/j.jcis.2020.02.050
Yuan, C.Z., Liang, K., Xia, X.M., et al.: Powerful CO2 electroreduction performance with N-carbon doped with single Ni atoms. Catal. Sci. Technol. 9, 3669–3674 (2019). https://doi.org/10.1039/c9cy00363k
Sun, T., Wu, Q., Zhuo, O., et al.: Manganese oxide-induced strategy to high-performance iron/nitrogen/carbon electrocatalysts with highly exposed active sites. Nanoscale 8, 8480–8485 (2016). https://doi.org/10.1039/c6nr00760k
de la Fuente, J.L., Ruiz-Bermejo, M., Menor-Salván, C., et al.: Thermal characterization of HCN polymers by TG-MS, TG, DTA and DSC methods. Polym. Degrad. Stab. 96, 943–948 (2011). https://doi.org/10.1016/j.polymdegradstab.2011.01.033
Gong, Z.M., Yang, B., Lin, H.P., et al.: Structural variation in surface-supported synthesis by adjusting the stoichiometric ratio of the reactants. ACS Nano 10, 4228–4235 (2016). https://doi.org/10.1021/acsnano.5b07601
Nguyen, V.S., Abbott, H.L., Dawley, M.M., et al.: Theoretical study of formamide decomposition pathways. J. Phys. Chem. A 115, 841–851 (2011). https://doi.org/10.1021/jp109143j
Qin, R.X., Liu, P.X., Fu, G., et al.: Strategies for stabilizing atomically dispersed metal catalysts. Small Methods 2, 1700286 (2018). https://doi.org/10.1002/smtd.201700286
Huang, K., Zhang, L., Xu, T., et al.: −60 °C solution synthesis of atomically dispersed cobalt electrocatalyst with superior performance. Nat. Commun. 10, 606 (2019). https://doi.org/10.1038/s41467-019-08484-8
Fei, H.L., Dong, J.C., Wan, C.Z., et al.: Microwave-assisted rapid synthesis of graphene-supported single atomic metals. Adv. Mater. 30, 1802146 (2018). https://doi.org/10.1002/adma.201802146
Koshy, D.M., Chen, S.C., Lee, D.U., et al.: Understanding the origin of highly selective CO2 electroreduction to CO on Ni, N-doped carbon catalysts. Angew. Chem. Int. Ed. 59, 4043–4050 (2020). https://doi.org/10.1002/anie.201912857
Zhao, S.Y., Chen, G.X., Zhou, G.M., et al.: A universal seeding strategy to synthesize single atom catalysts on 2D materials for electrocatalytic applications. Adv. Funct. Mater. 30, 1906157 (2020). https://doi.org/10.1002/adfm.201906157
Sun, T., Jiang, Y.F., Wu, Q., et al.: Is iron nitride or carbide highly active for oxygen reduction reaction in acidic medium? Catal. Sci. Technol. 7, 51–55 (2017). https://doi.org/10.1039/c6cy01921h
Jeong, H., Shin, S., Lee, H.: Heterogeneous atomic catalysts overcoming the limitations of single-atom catalysts. ACS Nano 14, 14355–14374 (2020). https://doi.org/10.1021/acsnano.0c06610
Wu, J.B., Xiong, L.K., Zhao, B.T., et al.: Densely populated single atom catalysts. Small Methods 4, 1900540 (2020). https://doi.org/10.1002/smtd.201900540
Zhao, L., Zhang, Y., Huang, L.B., et al.: Cascade anchoring strategy for general mass production of high-loading single-atomic metal-nitrogen catalysts. Nat. Commun. 10, 1278 (2019). https://doi.org/10.1038/s41467-019-09290-y
Cheng, Y., Zhao, S.Y., Johannessen, B., et al.: Atomically dispersed transition metals on carbon nanotubes with ultrahigh loading for selective electrochemical carbon dioxide reduction. Adv. Mater. 30, e1706287 (2018). https://doi.org/10.1002/adma.201706287
Yan, C.C., Li, H.B., Ye, Y.F., et al.: Coordinatively unsaturated nickel–nitrogen sites towards selective and high-rate CO2 electroreduction. Energy Environ. Sci. 11, 1204–1210 (2018). https://doi.org/10.1039/c8ee00133b
Zhang, J., Zhao, Z., Xia, Z., et al.: A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. Nat. Nanotechnol. 10, 444–452 (2015). https://doi.org/10.1038/nnano.2015.48
Sun, T., Wu, Q., Jiang, Y.F., et al.: Sulfur and nitrogen codoped carbon tubes as bifunctional metal-free electrocatalysts for oxygen reduction and hydrogen evolution in acidic media. Chem. Eur. J. 22, 10326–10329 (2016). https://doi.org/10.1002/chem.201601535
Zhao, C.M., Dai, X.Y., Yao, T., et al.: Ionic exchange of metal-organic frameworks to access single nickel sites for efficient electroreduction of CO2. J. Am. Chem. Soc. 139, 8078–8081 (2017). https://doi.org/10.1021/jacs.7b02736
Rong, X., Wang, H.J., Lu, X.L., et al.: Controlled synthesis of a vacancy-defect single-atom catalyst for boosting CO2 electroreduction. Angew. Chem. Int. Ed. 59, 1961–1965 (2020). https://doi.org/10.1002/anie.201912458
Zhang, C.H., Yang, S.Z., Wu, J.J., et al.: Electrochemical CO2 reduction with atomic iron-dispersed on nitrogen-doped graphene. Adv. Energy Mater. 8, 1703487 (2018). https://doi.org/10.1002/aenm.201703487
Li, X.G., Xi, S.B., Sun, L.B., et al.: Isolated FeN4 sites for efficient electrocatalytic CO2 reduction. Adv. Sci. 7, 2001545 (2020). https://doi.org/10.1002/advs.202001545
Pan, F.P., Li, B.Y., Sarnello, E., et al.: Boosting CO2 reduction on Fe–N–C with sulfur incorporation: synergistic electronic and structural engineering. Nano Energy 68, 104384 (2020). https://doi.org/10.1016/j.nanoen.2019.104384
Zhang, H.N., Li, J., Xi, S.B., et al.: A graphene-supported single-atom FeN5 catalytic site for efficient electrochemical CO2 reduction. Angew. Chem. Int. Ed. 58, 14871–14876 (2019). https://doi.org/10.1002/anie.201906079
Sun, L.B., Huang, Z.F., Reddu, V., et al.: A planar, conjugated N4-macrocyclic cobalt complex for heterogeneous electrocatalytic CO2 reduction with high activity. Angew. Chem. Int. Ed. 59, 17104–17109 (2020). https://doi.org/10.1002/anie.202007445
Hou, P.F., Song, W.L., Wang, X.P., et al.: Well-defined single-atom cobalt catalyst for electrocatalytic flue gas CO2 reduction. Small 16, 2001896 (2020). https://doi.org/10.1002/smll.202001896
Zhang, X., Wu, Z., Zhang, X., et al.: Highly selective and active CO2 reduction electrocatalysts based on cobalt phthalocyanine/carbon nanotube hybrid structures. Nat. Commun. 8, 14675 (2017). https://doi.org/10.1038/ncomms14675
Wang, J., Huang, X., Xi, S.B., et al.: Linkage effect in the heterogenization of cobalt complexes by doped graphene for electrocatalytic CO2 reduction. Angew. Chem. Int. Ed. 58, 13532–13539 (2019). https://doi.org/10.1002/anie.201906475
Lin, L., Li, H.B., Yan, C.C., et al.: Synergistic catalysis over iron-nitrogen sites anchored with cobalt phthalocyanine for efficient CO2 electroreduction. Adv. Mater. 31, 1903470 (2019). https://doi.org/10.1002/adma.201903470
Karapinar, D., Huan, N.T., Ranjbar Sahraie, N., et al.: Electroreduction of CO2 on single-site copper-nitrogen-doped carbon material: selective formation of ethanol and reversible restructuration of the metal sites. Angew. Chem. Int. Ed. 58, 15098–15103 (2019). https://doi.org/10.1002/anie.201907994
Han, L.L., Song, S.J., Liu, M.J., et al.: Stable and efficient single-atom Zn catalyst for CO2 reduction to CH4. J. Am. Chem. Soc. 142, 12563–12567 (2020). https://doi.org/10.1021/jacs.9b12111
Han, A.J., Wang, B.Q., Kumar, A., et al.: Recent advances for MOF-derived carbon-supported single-atom catalysts. Small Methods 3, 1800471 (2019). https://doi.org/10.1002/smtd.201800471
Jiao, L., Yang, W.J., Wan, G., et al.: Single-atom electrocatalysts from multivariate metal–organic frameworks for highly selective reduction of CO2 at low pressures. Angew. Chem. Int. Ed. 59, 20589–20595 (2020). https://doi.org/10.1002/anie.202008787
Howarth, A.J., Peters, A.W., Vermeulen, N.A., et al.: Best practices for the synthesis, activation, and characterization of metal–organic frameworks. Chem. Mater. 29, 26–39 (2017). https://doi.org/10.1021/acs.chemmater.6b02626
Kaneti, Y.V., Tang, J., Salunkhe, R.R., et al.: Nanoarchitectured design of porous materials and nanocomposites from metal-organic frameworks. Adv. Mater. 29, 1604898 (2017). https://doi.org/10.1002/adma.201604898
Liu, L.C., Corma, A.: Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem. Rev. 118, 4981–5079 (2018). https://doi.org/10.1021/acs.chemrev.7b00776
Zhu, Y.Z., Peng, W.C., Li, Y., et al.: Modulating the electronic structure of single-atom catalysts on 2D nanomaterials for enhanced electrocatalytic performance. Small Methods 3, 1800438 (2019). https://doi.org/10.1002/smtd.201800438
Zhang, B.W., Wang, Y.X., Chou, S.L., et al.: Fabrication of superior single-atom catalysts toward diverse electrochemical reactions. Small Methods 3, 1800497 (2019). https://doi.org/10.1002/smtd.201800497
Chen, Y.J., Ji, S.F., Wang, Y.G., et al.: Isolated single iron atoms anchored on N-doped porous carbon as an efficient electrocatalyst for the oxygen reduction reaction. Angew. Chem. Int. Ed. 56, 6937–6941 (2017). https://doi.org/10.1002/anie.201702473
Wang, X.X., Cullen, D.A., Pan, Y.T., et al.: Nitrogen-coordinated single cobalt atom catalysts for oxygen reduction in proton exchange membrane fuel cells. Adv. Mater. 30, 1706758 (2018). https://doi.org/10.1002/adma.201706758
Yin, P.Q., Yao, T., Wu, Y.E., et al.: Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts. Angew. Chem. Int. Ed. 55, 10800–10805 (2016). https://doi.org/10.1002/anie.201604802
Shang, L., Yu, H.J., Huang, X., et al.: Well-dispersed ZIF-derived Co,N co-doped carbon nanoframes through mesoporous-silica-protected calcination as efficient oxygen reduction electrocatalysts. Adv. Mater. 28, 1668–1674 (2016). https://doi.org/10.1002/adma.201505045
Hou, Y., Liang, Y.L., Shi, P.C., et al.: Atomically dispersed Ni species on N-doped carbon nanotubes for electroreduction of CO2 with nearly 100% CO selectivity. Appl. Catal. B Environ. 271, 118929 (2020). https://doi.org/10.1016/j.apcatb.2020.118929
Pan, F.P., Zhang, H.G., Liu, Z.Y., et al.: Atomic-level active sites of efficient imidazolate framework-derived nickel catalysts for CO2 reduction. J. Mater. Chem. A 7, 26231–26237 (2019). https://doi.org/10.1039/c9ta08862h
Wang, Y., Jiang, Z., Zhang, X., et al.: Metal phthalocyanine-derived single-atom catalysts for selective CO2 electroreduction under high current densities. ACS Appl. Mater. Interfaces 12, 33795–33802 (2020). https://doi.org/10.1021/acsami.0c08940
Qu, Y., Li, Z., Chen, W., et al.: Direct transformation of bulk copper into copper single sites via emitting and trapping of atoms. Nat. Catal. 1, 781–786 (2018). https://doi.org/10.1038/s41929-018-0146-x
Yang, Z., Chen, B., Chen, W., et al.: Directly transforming copper (I) oxide bulk into isolated single-atom copper sites catalyst through gas-transport approach. Nat. Commun. 10, 3734 (2019). https://doi.org/10.1038/s41467-019-11796-4
Yang, J., Qiu, Z.Y., Zhao, C.M., et al.: In situ thermal atomization to convert supported nickel nanoparticles into surface-bound nickel single-atom catalysts. Angew. Chem. Int. Ed. 57, 14095–14100 (2018). https://doi.org/10.1002/anie.201808049
He, Y., Li, Y.X., Zhang, J.F., et al.: Low-temperature strategy toward Ni–NC@Ni core–shell nanostructure with single-Ni sites for efficient CO2 electroreduction. Nano Energy 77, 105010 (2020). https://doi.org/10.1016/j.nanoen.2020.105010
Gao, D.F., Liu, T.F., Wang, G.X., et al.: Structure sensitivity in single-atom catalysis toward CO2 electroreduction. ACS Energy Lett. 6, 713–727 (2021). https://doi.org/10.1021/acsenergylett.0c02665
Li, Z.H., He, H.Y., Cao, H.B., et al.: Atomic Co/Ni dual sites and Co/Ni alloy nanoparticles in N-doped porous Janus-like carbon frameworks for bifunctional oxygen electrocatalysis. Appl. Catal. B Environ. 240, 112–121 (2019). https://doi.org/10.1016/j.apcatb.2018.08.074
Zhu, Z.J., Yin, H.J., Wang, Y., et al.: Coexisting single-atomic Fe and Ni sites on hierarchically ordered porous carbon as a highly efficient ORR electrocatalyst. Adv. Mater. 32, 2004670 (2020). https://doi.org/10.1002/adma.202004670
Wang, Z.L., Choi, J., Xu, M.Q., et al.: Optimizing electron densities of Ni–N–C complexes by hybrid coordination for efficient electrocatalytic CO2 reduction. Chemsuschem 13, 929–937 (2020). https://doi.org/10.1002/cssc.201903427
Zhang, J.Q., Zhao, Y.F., Chen, C., et al.: Tuning the coordination environment in single-atom catalysts to achieve highly efficient oxygen reduction reactions. J. Am. Chem. Soc. 141, 20118–20126 (2019). https://doi.org/10.1021/jacs.9b09352
Pan, Y., Chen, Y., Wu, K., et al.: Regulating the coordination structure of single-atom Fe–NxCy catalytic sites for benzene oxidation. Nat. Commun. 10, 4290 (2019). https://doi.org/10.1038/s41467-019-12362-8
Li, Y.C., Liu, X.F., Zheng, L.R., et al.: Preparation of Fe–N–C catalysts with FeNx (x = 1, 3, 4) active sites and comparison of their activities for the oxygen reduction reaction and performances in proton exchange membrane fuel cells. J. Mater. Chem. A 7, 26147–26153 (2019). https://doi.org/10.1039/c9ta08532g
Li, J.Z., Zhang, H.G., Samarakoon, W., et al.: Thermally driven structure and performance evolution of atomically dispersed FeN4 sites for oxygen reduction. Angew. Chem. Int. Ed. 58, 18971–18980 (2019). https://doi.org/10.1002/anie.201909312
Chen, P.Z., Zhou, T.P., Xing, L.L., et al.: Atomically dispersed iron-nitrogen species as electrocatalysts for bifunctional oxygen evolution and reduction reactions. Angew. Chem. Int. Ed. 56, 610–614 (2017). https://doi.org/10.1002/anie.201610119
Shen, H.J., Gracia-Espino, E., Ma, J.Y., et al.: Synergistic effects between atomically dispersed Fe–N–C and C−S–C for the oxygen reduction reaction in acidic media. Angew. Chem. Int. Ed. 56, 13800–13804 (2017). https://doi.org/10.1002/anie.201706602
Hou, Y., Qiu, M., Kim, M.G., et al.: Atomically dispersed nickel–nitrogen–sulfur species anchored on porous carbon nanosheets for efficient water oxidation. Nat. Commun. 10, 1392 (2019). https://doi.org/10.1038/s41467-019-09394-5
Li, Z.D., He, D., Yan, X.X., et al.: Size-dependent nickel-based electrocatalysts for selective CO2 reduction. Angew. Chem. Int. Ed. 59, 18572–18577 (2020). https://doi.org/10.1002/anie.202000318
Li, X.G., Bi, W.T., Chen, M.L., et al.: Exclusive Ni–N4 sites realize near-unity CO selectivity for electrochemical CO2 reduction. J. Am. Chem. Soc. 139, 14889–14892 (2017). https://doi.org/10.1021/jacs.7b09074
Zhang, M.L., Wu, T.S., Hong, S., et al.: Efficient electrochemical reduction of CO2 by Ni–N catalysts with tunable performance. ACS Sustain. Chem. Eng. 7, 15030–15035 (2019). https://doi.org/10.1021/acssuschemeng.9b03502
Yuan, C.Z., Zhan, L.Y., Liu, S.J., et al.: Semi-sacrificial template synthesis of single-atom Ni sites supported on hollow carbon nanospheres for efficient and stable electrochemical CO2 reduction. Inorg. Chem. Front. 7, 1719–1725 (2020). https://doi.org/10.1039/c9qi01688k
Gang, Y., Pan, F.P., Fei, Y.H., et al.: Highly efficient nickel, iron, and nitrogen codoped carbon catalysts derived from industrial waste petroleum coke for electrochemical CO2 reduction. ACS Sustain. Chem. Eng. 8, 8840–8847 (2020). https://doi.org/10.1021/acssuschemeng.0c03054
Fan, Q., Hou, P.F., Choi, C., et al.: Activation of Ni particles into single Ni–N atoms for efficient electrochemical reduction of CO2. Adv. Energy Mater. 10, 1903068 (2020). https://doi.org/10.1002/aenm.201903068
Wu, J.X., Yuan, W.W., Xu, M., et al.: Ultrathin 2D nickel zeolitic imidazolate framework nanosheets for electrocatalytic reduction of CO2. Chem. Commun. 55, 11634–11637 (2019). https://doi.org/10.1039/c9cc05487a
Wang, X.Y., Wang, Y., Sang, X.H., et al.: Dynamic activation of adsorbed intermediates via axial traction for the promoted electrochemical CO2 reduction. Angew. Chem. Int. Ed. 60, 4192–4198 (2021). https://doi.org/10.1002/anie.202013427
Sun, M.J., Gong, Z.W., Yi, J.D., et al.: A highly efficient diatomic nickel electrocatalyst for CO2 reduction. Chem. Commun. 56, 8798–8801 (2020). https://doi.org/10.1039/d0cc03410j
Luo, G., Jing, Y., Li, Y.F.: Rational design of dual-metal-site catalysts for electroreduction of carbon dioxide. J. Mater. Chem. A 8, 15809–15815 (2020). https://doi.org/10.1039/d0ta00033g
He, Q., Liu, D.B., Lee, J.H., et al.: Electrochemical conversion of CO2 to syngas with controllable CO/H2 ratios over co and Ni single-atom catalysts. Angew. Chem. Int. Ed. 59, 3033–3037 (2020). https://doi.org/10.1002/anie.201912719
Wang, X.W., Wu, D., Dai, C.Z., et al.: Novel folic acid complex derived nitrogen and nickel co-doped carbon nanotubes with embedded Ni nanoparticles as efficient electrocatalysts for CO2 reduction. J. Mater. Chem. A 8, 5105–5114 (2020). https://doi.org/10.1039/c9ta12238a
Zhu, W.L., Fu, J.J., Liu, J., et al.: Tuning single atom-nanoparticle ratios of Ni-based catalysts for synthesis gas production from CO2. Appl. Catal. B Environ. 264, 118502 (2020). https://doi.org/10.1016/j.apcatb.2019.118502
Pei, J.J., Wang, T., Sui, R., et al.: N-bridged Co–N–Ni: new bimetallic sites for promoting electrochemical CO2 reduction. Energy Environ. Sci. 14, 3019–3028 (2021). https://doi.org/10.1039/d0ee03947k
Hossain, M.D., Huang, Y., Yu, T.H., et al.: Reaction mechanism and kinetics for CO2 reduction on nickel single atom catalysts from quantum mechanics. Nat. Commun. 11, 2256 (2020). https://doi.org/10.1038/s41467-020-16119-6
Gong, Y.N., Jiao, L., Qian, Y.Y., et al.: Regulating the coordination environment of MOF-templated single-atom nickel electrocatalysts for boosting CO2 reduction. Angew. Chem. Int. Ed. 59, 2705–2709 (2020). https://doi.org/10.1002/anie.201914977
Zhang, Y., Jiao, L., Yang, W.J., et al.: Rational fabrication of low-coordinate single-atom Ni electrocatalysts by MOFs for highly selective CO2 reduction. Angew. Chem. Int. Ed. 60, 7607–7611 (2021). https://doi.org/10.1002/anie.202016219
Chen, J.G.: Electrochemical CO2 reduction via low-valent nickel single-atom catalyst. Joule 2, 587–589 (2018). https://doi.org/10.1016/j.joule.2018.03.018
Möller, T., Ju, W., Bagger, A., et al.: Efficient CO2 to CO electrolysis on solid Ni–N–C catalysts at industrial current densities. Energy Environ. Sci. 12, 640–647 (2019). https://doi.org/10.1039/c8ee02662a
Asset, T., Garcia, S.T., Herrera, S., et al.: Investigating the nature of the active sites for the CO2 reduction reaction on carbon-based electrocatalysts. ACS Catal. 9, 7668–7678 (2019). https://doi.org/10.1021/acscatal.9b01513
Yang, H.J., Zhang, X., Hong, Y.H., et al.: Superior selectivity and tolerance towards metal-ion impurities of a Fe/N/C catalyst for CO2 reduction. Chemsuschem 12, 3988–3995 (2019). https://doi.org/10.1002/cssc.201901330
Huan, T.N., Ranjbar, N., Rousse, G., et al.: Electrochemical reduction of CO2 catalyzed by Fe–N–C materials: a structure-selectivity study. ACS Catal. 7, 1520–1525 (2017). https://doi.org/10.1021/acscatal.6b03353
Ju, W., Bagger, A., Wang, X.L., et al.: Unraveling mechanistic reaction pathways of the electrochemical CO2 reduction on Fe–N–C single-site catalysts. ACS Energy Lett. 4, 1663–1671 (2019). https://doi.org/10.1021/acsenergylett.9b01049
Vijay, S., Gauthier, J.A., Heenen, H.H., et al.: Dipole-field interactions determine the CO2 reduction activity of 2D Fe–N–C single-atom catalysts. ACS Catal. 10, 7826–7835 (2020). https://doi.org/10.1021/acscatal.0c01375
Li, X.X., Chai, G.L., Xu, X., et al.: Electrocatalytic reduction of CO2 to CO over iron phthalocyanine-modified graphene nanocomposites. Carbon 167, 658–667 (2020). https://doi.org/10.1016/j.carbon.2020.06.036
Jiang, Z., Wang, Y., Zhang, X., et al.: Revealing the hidden performance of metal phthalocyanines for CO2 reduction electrocatalysis by hybridization with carbon nanotubes. Nano Res. 12, 2330–2334 (2019). https://doi.org/10.1007/s12274-019-2455-z
Tuo, J.Q., Lin, Y.X., Zhu, Y.H., et al.: Local structure tuning in Fe–N–C catalysts through support effect for boosting CO2 electroreduction. Appl. Catal. B Environ. 272, 118960 (2020). https://doi.org/10.1016/j.apcatb.2020.118960
Pan, F.P., Li, B.Y., Sarnello, E., et al.: Atomically dispersed iron-nitrogen sites on hierarchically mesoporous carbon nanotube and graphene nanoribbon networks for CO2 reduction. ACS Nano 14, 5506–5516 (2020)
Li, E.L., Yang, F., Wu, Z.M., et al.: A bifunctional highly efficient FeNx/C electrocatalyst. Small 14, 1702827 (2018). https://doi.org/10.1002/smll.201702827
Pan, F.P., Zhao, H.L., Deng, W., et al.: A novel N,Fe-decorated carbon nanotube/carbon nanosheet architecture for efficient CO2 reduction. Electrochim. Acta 273, 154–161 (2018). https://doi.org/10.1016/j.electacta.2018.04.047
Wu, S.D., Lv, X.N., Ping, D., et al.: Highly exposed atomic Fe–N active sites within carbon nanorods towards electrocatalytic reduction of CO2 to CO. Electrochim. Acta 340, 135930 (2020). https://doi.org/10.1016/j.electacta.2020.135930
Ye, Y.F., Cai, F., Li, H.B., et al.: Surface functionalization of ZIF-8 with ammonium ferric citrate toward high exposure of Fe–N active sites for efficient oxygen and carbon dioxide electroreduction. Nano Energy 38, 281–289 (2017). https://doi.org/10.1016/j.nanoen.2017.05.042
Hu, C., Bai, S.L., Gao, L.J., et al.: Porosity-induced high selectivity for CO2 electroreduction to CO on Fe-doped ZIF-derived carbon catalysts. ACS Catal. 9, 11579–11588 (2019)
Hu, X.M., Mendoza, D., Madsen, M.R., et al.: Achieving near-unity CO selectivity for CO2 electroreduction on an iron-decorated carbon material. ChemSusChem (2020). https://doi.org/10.1002/cssc.202001311
Hu, C., Mu, Y., Bai, S.L., et al.: Polyvinyl pyrrolidone mediated fabrication of Fe,N-codoped porous carbon sheets for efficient electrocatalytic CO2 reduction. Carbon 153, 609–616 (2019). https://doi.org/10.1016/j.carbon.2019.07.071
Wang, F.H., Xie, H.P., Liu, T., et al.: Highly dispersed CuFe-nitrogen active sites electrode for synergistic electrochemical CO2 reduction at low overpotential. Appl. Energy 269, 115029 (2020). https://doi.org/10.1016/j.apenergy.2020.115029
Qin, X.P., Zhu, S.Q., Xiao, F., et al.: Active sites on heterogeneous single-iron-atom electrocatalysts in CO2 reduction reaction. ACS Energy Lett. 4, 1778–1783 (2019). https://doi.org/10.1021/acsenergylett.9b01015
Xu, C.C., Vasileff, A., Wang, D., et al.: Synergistic catalysis between atomically dispersed Fe and a pyrrolic-N–C framework for CO2 electroreduction. Nanoscale Horiz. 4, 1411–1415 (2019). https://doi.org/10.1039/c9nh00361d
Liu, C.H., Wu, Y., Sun, K.A., et al.: Constructing FeN4/graphitic nitrogen atomic interface for high-efficiency electrochemical CO2 reduction over a broad potential window. Chem 7, 1297–1307 (2021). https://doi.org/10.1016/j.chempr.2021.02.001
Chen, Z.Q., Huang, A.J., Yu, K., et al.: Fe1N4–O1 site with axial Fe–O coordination for highly selective CO2 reduction over a wide potential range. Energy Environ. Sci. 14, 3430–3437 (2021). https://doi.org/10.1039/d1ee00569c
Han, N., Wang, Y., Ma, L., et al.: Supported cobalt polyphthalocyanine for high-performance electrocatalytic CO2 reduction. Chem 3, 652–664 (2017). https://doi.org/10.1016/j.chempr.2017.08.002
Hu, X.M., Rønne, M.H., Pedersen, S.U., et al.: Enhanced catalytic activity of cobalt porphyrin in CO2 electroreduction upon immobilization on carbon materials. Angew. Chem. Int. Ed. 56, 6468–6472 (2017). https://doi.org/10.1002/anie.201701104
Song, X.K., Zhang, H., Yang, Y.Q., et al.: Bifunctional nitrogen and cobalt codoped hollow carbon for electrochemical syngas production. Adv. Sci. 5, 1800177 (2018). https://doi.org/10.1002/advs.201800177
Yang, H.P., Lin, Q., Wu, Y., et al.: Highly efficient utilization of single atoms via constructing 3D and free-standing electrodes for CO2 reduction with ultrahigh current density. Nano Energy 70, 104454 (2020). https://doi.org/10.1016/j.nanoen.2020.104454
Zhang, Z., Xiao, J.P., Chen, X.J., et al.: Reaction mechanisms of well-defined metal-N4 sites in electrocatalytic CO2 reduction. Angew. Chem. Int. Ed. 57, 16339–16342 (2018). https://doi.org/10.1002/anie.201808593
Xia, Y.J., Kashtanov, S., Yu, P.F., et al.: Identification of dual-active sites in cobalt phthalocyanine for electrochemical carbon dioxide reduction. Nano Energy 67, 104163 (2020). https://doi.org/10.1016/j.nanoen.2019.104163
Zhu, W.J., Zhang, L., Liu, S.H., et al.: Enhanced CO2 electroreduction on neighboring Zn/Co monomers by electronic effect. Angew. Chem. Int. Ed. 59, 12664–12668 (2020). https://doi.org/10.1002/anie.201916218
Zhang, B., Zhang, J., Shi, J., et al.: Manganese acting as a high-performance heterogeneous electrocatalyst in carbon dioxide reduction. Nat. Commun. 10, 2980 (2019). https://doi.org/10.1038/s41467-019-10854-1
Ni, W.P., Gao, Y., Lin, Y., et al.: Nonnitrogen coordination environment steering electrochemical CO2-to-CO conversion over single-atom tin catalysts in a wide potential window. ACS Catal. 11, 5212–5221 (2021). https://doi.org/10.1021/acscatal.0c05514
Cai, Y.M., Fu, J.J., Zhou, Y., et al.: Insights on forming N,O-coordinated Cu single-atom catalysts for electrochemical reduction CO2 to methane. Nat. Commun. 12, 586 (2021). https://doi.org/10.1038/s41467-020-20769-x
Mao, K., Yang, L.J., Wang, X.Z., et al.: Identifying iron-nitrogen/carbon active structures for oxygen reduction reaction under the effect of electrode potential. J. Phys. Chem. Lett. 11, 2896–2901 (2020). https://doi.org/10.1021/acs.jpclett.0c00428
Vijay, S., Ju, W., Brückner, S., et al.: Unified mechanistic understanding of CO2 reduction to CO on transition metal and single atom catalysts. Nat. Catal. 4, 1024–1031 (2021). https://doi.org/10.1038/s41929-021-00705-y
Jin, S., Hao, Z.M., Zhang, K., et al.: Advances and challenges for the electrochemical reduction of CO2 to CO: from fundamentals to industrialization. Angew. Chem. Int. Ed. 60, 20627–20648 (2021). https://doi.org/10.1002/anie.202101818
Zhao, Z.N., Ma, C.D., Chen, F.Y., et al.: Water caltrop shell-derived nitrogen-doped porous carbons with high CO2 adsorption capacity. Biomass Bioenergy 145, 105969 (2021). https://doi.org/10.1016/j.biombioe.2021.105969
Zhao, C.M., Wang, Y., Li, Z.J., et al.: Solid-diffusion synthesis of single-atom catalysts directly from bulk metal for efficient CO2 reduction. Joule 3, 584–594 (2019). https://doi.org/10.1016/j.joule.2018.11.008
Wu, Q., Yang, L.J., Wang, X.Z., et al.: Carbon-based nanocages: a new platform for advanced energy storage and conversion. Adv. Mater. 32, 2070206 (2020). https://doi.org/10.1002/adma.202070206
Wu, Q., Yang, L.J., Wang, X.Z., et al.: Mesostructured carbon-based nanocages: an advanced platform for energy chemistry. Sci. China Chem. 63, 665–681 (2020). https://doi.org/10.1007/s11426-020-9748-0
Wu, Q., Yang, L.J., Wang, X.Z., et al.: From carbon-based nanotubes to nanocages for advanced energy conversion and storage. Acc. Chem. Res. 50, 435–444 (2017). https://doi.org/10.1021/acs.accounts.6b00541