Recent Advances in Biochar Polymer Composites
Tóm tắt
Từ khóa
Tài liệu tham khảo
Iyer, 2016, Direct use of natural antioxidant-rich agro-wastes as thermal stabilizer for polymer: Processing and recycling, ACS Sustain. Chem. Eng., 4, 881, 10.1021/acssuschemeng.5b00945
Yu, 2006, Polymer blends and composites from renewable resources, Prog. Polym. Sci., 31, 576, 10.1016/j.progpolymsci.2006.03.002
Jamróz, E., Kulawik, P., and Kopel, P. (2019). The effect of nanofillers on the functional properties of biopolymer-based films: A review. Polymers, 11.
Das, 2016, Sustainable eco–composites obtained from waste derived biochar: A consideration in performance properties, production costs, and environmental impact, J. Clean. Prod., 129, 159, 10.1016/j.jclepro.2016.04.088
Nanda, 2016, Biochar as an exceptional bioresource for energy, agronomy, carbon sequestration, activated carbon and specialty materials, Waste Biomass Valorization, 7, 201, 10.1007/s12649-015-9459-z
She, 2019, Development of black and biodegradable biochar/gutta percha composite films with high stretchability and barrier properties, Compos. Sci. Technol., 175, 1, 10.1016/j.compscitech.2019.03.007
Kan, 2016, Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters, Renew. Sustain. Energy Rev., 57, 1126, 10.1016/j.rser.2015.12.185
Vardon, 2013, Complete utilization of spent coffee grounds to produce biodiesel, bio-oil, and biochar, ACS Sustain. Chem. Eng., 1, 1286, 10.1021/sc400145w
Ogunsona, 2018, Thermally stable pyrolytic biocarbon as an effective and sustainable reinforcing filler for polyamide bio-composites fabrication, J. Polym. Environ., 26, 3574, 10.1007/s10924-018-1232-5
Zimmerman, 2010, Abiotic and microbial oxidation of laboratory-produced black carbon (biochar), Environ. Sci. Technol., 44, 1295, 10.1021/es903140c
Liu, 2018, Formation and physicochemical characteristics of nano biochar: Insight into chemical and colloidal stability, Environ. Sci. Technol., 52, 10369, 10.1021/acs.est.8b01481
Sun, Y., Wang, T., Han, C., Lv, X., Bai, L., Sun, X., and Zhang, P. (2022). Facile synthesis of Fe-modified lignin-based biochar for ultra-fast adsorption of methylene blue: Selective adsorption and mechanism studies. Bioresour. Technol., 344.
Sun, Y., Yu, F., Han, C., Houda, C., Hao, M., and Wang, Q. (2022). Research Progress on Adsorption of Arsenic from Water by Modified Biochar and Its Mechanism: A Review. Water, 14.
Sun, 2021, The potential of biochar and lignin-based adsorbents for wastewater treatment: Comparison, mechanism, and application—A review, Ind. Crops Prod., 166, 113473, 10.1016/j.indcrop.2021.113473
Tamborrino, 2021, Catalytic oxidative desulphurization of pyrolytic oils to fuels over different waste derived carbon-based catalysts, Fuel, 296, 120693, 10.1016/j.fuel.2021.120693
Senthil, 2021, Biomass-derived biochar materials as sustainable energy sources for electrochemical energy storage devices, Renew. Sustain. Energy Rev., 137, 110464, 10.1016/j.rser.2020.110464
Das, 2015, A sustainable and resilient approach through biochar addition in wood polymer composites, Sci. Total Environ., 512, 326, 10.1016/j.scitotenv.2015.01.063
Ogunsona, 2017, Influence of epoxidized natural rubber on the phase structure and toughening behavior of biocarbon reinforced nylon 6 biocomposites, RSC Adv., 7, 8727, 10.1039/C6RA27177D
Ferraro, G., Pecori, G., Rosi, L., Bettucci, L., Fratini, E., Casini, D., Rizzo, A.M., and Chiaramonti, D. (2021). Biochar from lab-scale pyrolysis: Influence of feedstock and operational temperature. Biomass Convers. Biorefinery, 1–11.
Kambo, 2015, A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications, Renew. Sustain. Energy Rev., 45, 359, 10.1016/j.rser.2015.01.050
Huang, 2020, Fundamental advances in biomass autothermal/oxidative pyrolysis: A review, ACS Sustain. Chem. Eng., 8, 11888, 10.1021/acssuschemeng.0c04196
Chaala, 2007, Characterization of bio-oils in chemical families, Biomass Bioenergy, 31, 222, 10.1016/j.biombioe.2006.02.006
Zeng, 2017, Solar pyrolysis of carbonaceous feedstocks: A review, Sol. Energy, 156, 73, 10.1016/j.solener.2017.05.033
Huang, 2016, A review on microwave pyrolysis of lignocellulosic biomass, Sustain. Environ. Res., 26, 103, 10.1016/j.serj.2016.04.012
Bartoli, 2016, Pyrolysis of a-cellulose in a microwave multimode batch reactor, J. Anal. Appl. Pyrolysis, 120, 284, 10.1016/j.jaap.2016.05.016
Bartoli, 2020, Bio-oils from microwave assisted pyrolysis of kraft lignin operating at reduced residual pressure, Fuel, 278, 118175, 10.1016/j.fuel.2020.118175
Fonts, 2017, Historical developments of pyrolysis reactors: A review, Energy Fuels, 31, 5751, 10.1021/acs.energyfuels.7b00641
Guizani, 2015, Influence of temperature and particle size on the single and mixed atmosphere gasification of biomass char with H2O and CO2, Fuel Processing Technol., 134, 175, 10.1016/j.fuproc.2015.01.031
Barisano, 2016, Steam/oxygen biomass gasification at pilot scale in an internally circulating bubbling fluidized bed reactor, Fuel Processing Technol., 141, 74, 10.1016/j.fuproc.2015.06.008
Dou, 2019, Hard carbons for sodium-ion batteries: Structure, analysis, sustainability, and electrochemistry, Mater. Today, 23, 87, 10.1016/j.mattod.2018.12.040
Keiluweit, 2010, Dynamic molecular structure of plant biomass-derived black carbon (biochar), Environ. Sci. Technol., 44, 1247, 10.1021/es9031419
Franklin, 1951, Crystallite growth in graphitizing and non-graphitizing carbons, Proc. R. Soc. London. Ser. A Math. Phys. Sci., 209, 196
Wang, 2019, Preparation, modification and environmental application of biochar: A review, J. Clean. Prod., 227, 1002, 10.1016/j.jclepro.2019.04.282
Cha, 2016, Production and utilization of biochar: A review, J. Ind. Eng. Chem., 40, 1, 10.1016/j.jiec.2016.06.002
Buss, 2018, Consistency of biochar properties over time and production scales: A characterisation of standard materials, J. Anal. Appl. Pyrolysis, 132, 200, 10.1016/j.jaap.2018.02.020
Wijitkosum, S., and Jiwnok, P. (2019). Elemental composition of biochar obtained from agricultural waste for soil amendment and carbon sequestration. Appl. Sci., 9.
Jindo, 2014, Physical and chemical characterization of biochars derived from different agricultural residues, Biogeosciences, 11, 6613, 10.5194/bg-11-6613-2014
Lv, 2013, Comparative study of pyrolysis behaviors of corn stalk and its three components, J. Anal. Appl. Pyrolysis, 104, 185, 10.1016/j.jaap.2013.08.005
Gray, 2014, Water uptake in biochars: The roles of porosity and hydrophobicity, Biomass Bioenergy, 61, 196, 10.1016/j.biombioe.2013.12.010
Das, O., Mensah, R.A., George, G., Jiang, L., Xu, Q., Neisiany, R.E., Umeki, K., Phounglamcheik, A., Hedenqvist, M.S., and Restás, Á. (2021). Flammability and mechanical properties of biochars made in different pyrolysis reactors. Biomass Bioenergy, 152.
Das, 2015, A novel approach in organic waste utilization through biochar addition in wood/polypropylene composites, Waste Manag., 38, 132, 10.1016/j.wasman.2015.01.015
Das, 2016, Biocomposites from waste derived biochars: Mechanical, thermal, chemical, and morphological properties, Waste Manag., 49, 560, 10.1016/j.wasman.2015.12.007
Das, 2016, Mechanical and flammability characterisations of biochar/polypropylene biocomposites, Compos. Part B Eng., 106, 120, 10.1016/j.compositesb.2016.09.020
Ikram, 2016, A parametric study of mechanical and flammability properties of biochar reinforced polypropylene composites, Compos. Part A Appl. Sci. Manuf., 91, 177, 10.1016/j.compositesa.2016.10.010
Gezahegn, 2019, Porous graphitic biocarbon and reclaimed carbon fiber derived environmentally benign lightweight composites, Sci. Total Environ., 664, 363, 10.1016/j.scitotenv.2019.01.408
Das, 2017, Biochar to the rescue: Balancing the fire performance and mechanical properties of polypropylene composites, Polym. Degrad. Stab., 144, 485, 10.1016/j.polymdegradstab.2017.09.006
Das, 2017, Development of waste based biochar/wool hybrid biocomposites: Flammability characteristics and mechanical properties, J. Clean. Prod., 144, 79, 10.1016/j.jclepro.2016.12.155
Das, 2016, Nanoindentation assisted analysis of biochar added biocomposites, Compos. Part B Eng., 91, 219, 10.1016/j.compositesb.2016.01.057
Paleri, 2021, Pyrolyzed biomass from corn ethanol industry coproduct and their polypropylene-based composites: Effect of heat treatment temperature on performance of the biocomposites, Compos. Part B Eng., 215, 108714, 10.1016/j.compositesb.2021.108714
Ayadi, R., Koubaa, A., Braghiroli, F., Migneault, S., Wang, H., and Bradai, C. (2020). Effect of the Pyro-Gasification Temperature of Wood on the Physical and Mechanical Properties of Biochar-Polymer Biocomposites. Materials, 13.
Poulose, 2018, Date palm biochar-polymer composites: An investigation of electrical, mechanical, thermal and rheological characteristics, Sci. Total Environ., 619–620, 311, 10.1016/j.scitotenv.2017.11.076
Behazin, 2017, Sustainable biocarbon from pyrolyzed perennial grasses and their effects on impact modified polypropylene biocomposites, Compos. Part B Eng., 118, 116, 10.1016/j.compositesb.2017.03.003
Poulose, 2021, Utilization of polyethylene terephthalate waste as a carbon filler in polypropylene matrix: Investigation of mechanical, rheological, and thermal properties, J. Appl. Polym. Sci., 138, 50292, 10.1002/app.50292
Abdelwahab, M.A., Rodriguez-Uribe, A., Misra, M., and Mohanty, A.K. (2019). Injection Molded Novel Biocomposites from Polypropylene and Sustainable Biocarbon. Molecules, 24.
Kwon, Y.-J., Park, J.-B., Jeon, Y.-P., Hong, J.-Y., Park, H.-S., and Lee, J.-U. (2021). A Review of Polymer Composites Based on Carbon Fillers for Thermal Management Applications: Design, Preparation, and Properties. Polymers, 13.
Alghyamah, 2021, Biochar/polypropylene composites: A study on the effect of pyrolysis temperature on crystallization kinetics, crystalline structure, and thermal stability, J. King Saud Univ. -Sci., 33, 101409, 10.1016/j.jksus.2021.101409
Das, 2016, Characterisation of waste derived biochar added biocomposites: Chemical and thermal modifications, Sci. Total Environ., 550, 133, 10.1016/j.scitotenv.2016.01.062
Elnour, A.Y., Alghyamah, A.A., Shaikh, H.M., Poulose, A.M., Al-Zahrani, S.M., Anis, A., and Al-Wabel, M.I. (2019). Effect of pyrolysis temperature on biochar microstructural evolution, physicochemical characteristics, and its influence on biochar/polypropylene composites. Appl. Sci., 9.
Hay, 1979, Extensions of the Avrami equation to various polymer crystallization models, J. Polym. Sci. Polym. Phys. Ed., 17, 951, 10.1002/pol.1979.180170605
Li, 2018, Mechanical, electrical, and thermal properties of highly filled bamboo charcoal/ultra-high molecular weight polyethylene composites, Polym. Compos., 39, E1858, 10.1002/pc.24839
Gao, 2008, CNTs/UHMWPE composites with a two-dimensional conductive network, Mater. Lett., 62, 3530, 10.1016/j.matlet.2008.03.053
Wang, 2013, Electrostatic adsorption method for preparing electrically conducting ultrahigh molecular weight polyethylene/graphene nanosheets composites with a segregated network, Compos. Sci. Technol., 89, 180, 10.1016/j.compscitech.2013.10.002
Hu, 2012, Preparation and electrical conductivity of graphene/ultrahigh molecular weight polyethylene composites with a segregated structure, Carbon, 50, 4596, 10.1016/j.carbon.2012.05.045
Pang, 2012, Electrically conductive carbon nanotube/ultrahigh molecular weight polyethylene composites with segregated and double percolated structure, Mater. Lett., 79, 96, 10.1016/j.matlet.2012.03.111
Lisunova, 2007, Percolation behaviour of ultrahigh molecular weight polyethylene/multi-walled carbon nanotubes composites, Eur. Polym. J., 43, 949, 10.1016/j.eurpolymj.2006.12.015
Wang, 2019, Evaluation of corrugated cardboard biochar as reinforcing fiber on properties, biodegradability and weatherability of wood-plastic composites, Polym. Degrad. Stab., 168, 108955, 10.1016/j.polymdegradstab.2019.108955
Li, 2018, Highly filled biochar/ultra-high molecular weight polyethylene/linear low density polyethylene composites for high-performance electromagnetic interference shielding, Compos. Part B Eng., 153, 277, 10.1016/j.compositesb.2018.07.049
Li, 2015, Three kinds of charcoal powder reinforced ultra-high molecular weight polyethylene composites with excellent mechanical and electrical properties, Mater. Des., 85, 54, 10.1016/j.matdes.2015.06.163
Li, 2016, Development of electrically conductive nano bamboo charcoal/ultra-high molecular weight polyethylene composites with a segregated network, Compos. Sci. Technol., 132, 31, 10.1016/j.compscitech.2016.06.010
Li, 2020, Effect of carbonization temperature on mechanical properties and biocompatibility of biochar/ultra-high molecular weight polyethylene composites, Compos. Part B Eng., 196, 108120, 10.1016/j.compositesb.2020.108120
Zhang, 2020, Properties evaluation of biochar/high-density polyethylene composites: Emphasizing the porous structure of biochar by activation, Sci. Total Environ., 737, 139770, 10.1016/j.scitotenv.2020.139770
Zhang, Q., Cai, H., Ren, X., Kong, L., Liu, J., and Jiang, X. (2017). The Dynamic Mechanical Analysis of Highly Filled Rice Husk Biochar/High-Density Polyethylene Composites. Polymers, 9.
Zhang, 2020, Biochar filled high-density polyethylene composites with excellent properties: Towards maximizing the utilization of agricultural wastes, Ind. Crops Prod., 146, 112185, 10.1016/j.indcrop.2020.112185
Zhang, 2019, Temperature varied biochar as a reinforcing filler for high-density polyethylene composites, Compos. Part B Eng., 175, 107151, 10.1016/j.compositesb.2019.107151
Arrigo, R., Jagdale, P., Bartoli, M., Tagliaferro, A., and Malucelli, G. (2019). Structure–Property Relationships in Polyethylene-Based Composites Filled with Biochar Derived from Waste Coffee Grounds. Polymers, 11.
Ogunsona, 2017, Sustainable biocomposites from biobased polyamide 6,10 and biocarbon from pyrolyzed miscanthus fibers, J. Appl. Polym. Sci., 134, 44221, 10.1002/app.44221
Watt, 2021, Biocomposites from biobased polyamide 4,10 and waste corn cob based biocarbon, Compos. Part A Appl. Sci. Manuf., 145, 106340, 10.1016/j.compositesa.2021.106340
Ogunsona, 2017, Impact of interfacial adhesion on the microstructure and property variations of biocarbons reinforced nylon 6 biocomposites, Compos. Part A Appl. Sci. Manuf., 98, 32, 10.1016/j.compositesa.2017.03.011
Zhu, S., Guo, Y., Chen, Y., and Liu, S. (2020). Low Water Absorption, High-Strength Polyamide 6 Composites Blended with Sustainable Bamboo-Based Biochar. Nanomaterials, 10.
Ogunsona, 2017, Accelerated hydrothermal aging of biocarbon reinforced nylon biocomposites, Polym. Degrad. Stab., 139, 76, 10.1016/j.polymdegradstab.2017.03.013
Jubinville, 2020, Comparison in composite performance after thermooxidative aging of injection molded polyamide 6 with glass fiber, talc, and a sustainable biocarbon filler, J. Appl. Polym. Sci., 137, 48618, 10.1002/app.48618
Murariu, 2016, PLA composites: From production to properties, Adv. Drug Deliv. Rev., 107, 17, 10.1016/j.addr.2016.04.003
Tolvanen, 2019, Biodegradable multiphase poly (lactic acid)/biochar/graphite composites for electromagnetic interference shielding, Compos. Sci. Technol., 181, 107704, 10.1016/j.compscitech.2019.107704
Nizamuddin, 2019, Synthesis and characterization of polylactide/rice husk hydrochar composite, Sci. Rep., 9, 5445, 10.1038/s41598-019-41960-1
Postawa, 2021, Waste derived biochar as an alternative filler in biocomposites-Mechanical, thermal and morphological properties of biochar added biocomposites, J. Clean. Prod., 278, 123850, 10.1016/j.jclepro.2020.123850
Salak, 2015, Thermal pretreatment of kudzu biomass (pueraria lobata) as filler in cost-effective pla biocomposite fabrication process, Polym. Eng. Sci., 55, 340, 10.1002/pen.23909
Bajwa, 2019, Characterization of bio-carbon and ligno-cellulosic fiber reinforced bio-composites with compatibilizer, Constr. Build. Mater., 204, 193, 10.1016/j.conbuildmat.2019.01.068
Li, 2020, Characterization of chicken feather biocarbon for use in sustainable biocomposites, Front. Mater., 7, 3, 10.3389/fmats.2020.00003
Arrigo, R., Bartoli, M., and Malucelli, G. (2020). Poly (lactic Acid)–Biochar Biocomposites: Effect of Processing and Filler Content on Rheological, Thermal, and Mechanical Properties. Polymers, 12.
Noipitak, 2020, Effect of carbon-rich biochar on mechanical properties of PLA-biochar composites, Sustain. Chem. Pharm., 15, 100204, 10.1016/j.scp.2019.100204
Ho, 2015, Improvement on the properties of polylactic acid (PLA) using bamboo charcoal particles, Compos. Part B Eng., 81, 14, 10.1016/j.compositesb.2015.05.048
Qian, 2016, Poly (lactic acid) biocomposites reinforced with ultrafine bamboo-char: Morphology, mechanical, thermal, and water absorption properties, J. Appl. Polym. Sci., 133, 43425, 10.1002/app.43425
Sheng, 2019, High-toughness PLA/Bamboo cellulose nanowhiskers bionanocomposite strengthened with silylated ultrafine bamboo-char, Compos. Part B Eng., 165, 174, 10.1016/j.compositesb.2018.11.139
Qian, 2018, Surface modification of bamboo-char and its reinforcement in PLA biocomposites, Polym. Compos., 39, E633, 10.1002/pc.24800
Oliveira, 2016, The role of shear and stabilizer on PLA degradation, Polym. Test., 51, 109, 10.1016/j.polymertesting.2016.03.005
Ertane, 2018, Processing and wear behaviour of 3D printed PLA reinforced with biogenic carbon, Adv. Tribol., 2018, 1763182, 10.1155/2018/1763182
Snowdon, 2019, Comparative study of the extrinsic properties of poly (lactic acid)-based biocomposites filled with talc versus sustainable biocarbon, RSC Adv., 9, 6752, 10.1039/C9RA00034H
Qian, 2018, Ultrafine bamboo-char as a new reinforcement in poly (lactic acid)/bamboo particle biocomposites: The effects on mechanical, thermal, and morphological properties, J. Mater. Res., 33, 3870, 10.1557/jmr.2018.290
Haham, 2021, Effect of bubble nucleating agents derived from biochar on the foaming mechanism of poly lactic acid foams, Appl. Surf. Sci. Adv., 3, 100059, 10.1016/j.apsadv.2021.100059
Chang, 2019, Sustainable biocarbon as an alternative of traditional fillers for poly(butylene terephthalate)-based composites: Thermo-oxidative aging and durability, J. Appl. Polym. Sci., 136, 47722, 10.1002/app.47722
Myllytie, 2016, Carbonized Lignin as Sustainable Filler in Biobased Poly(trimethylene terephthalate) Polymer for Injection Molding Applications, ACS Sustain. Chem. Eng., 4, 102, 10.1021/acssuschemeng.5b00796
Nagarajan, 2016, Biocomposites with Size-Fractionated Biocarbon: Influence of the Microstructure on Macroscopic Properties, ACS Omega, 1, 636, 10.1021/acsomega.6b00175
Snowdon, 2020, Mechanical optimization of virgin and recycled poly(ethylene terephthalate) biocomposites with sustainable biocarbon through a factorial design, Results Mater., 5, 100060, 10.1016/j.rinma.2020.100060
Andrzejewski, 2018, Polycarbonate biocomposites reinforced with a hybrid filler system of recycled carbon fiber and biocarbon: Preparation and thermomechanical characterization, J. Appl. Polym. Sci., 135, 46449, 10.1002/app.46449
Andrzejewski, 2020, Development of hybrid composites reinforced with biocarbon/carbon fiber system. The comparative study for PC, ABS and PC/ABS based materials, Compos. Part B Eng., 200, 108319, 10.1016/j.compositesb.2020.108319
Nan, 2016, The effect of bio-carbon addition on the electrical, mechanical, and thermal properties of polyvinyl alcohol/biochar composites, J. Compos. Mater., 50, 1161, 10.1177/0021998315589770
Nan, 2017, Development of poly(vinyl alcohol)/wood-derived biochar composites for use in pressure sensor applications, J. Mater. Sci., 52, 8247, 10.1007/s10853-017-1040-7
Bartoli, M., Torsello, D., Piatti, E., Giorcelli, M., Sparavigna, A.C., Rovere, M., Ghigo, G., and Tagliaferro, A. (2022). Pressure-Responsive Conductive Poly(vinyl alcohol) Composites Containing Waste Cotton Fibers Biochar. Micromachines, 13.
Hu, 2015, Effects of binders on the properties of bio-char pellets, Appl. Energy, 157, 508, 10.1016/j.apenergy.2015.05.019
Diaz, C.A., Shah, R.K., Evans, T., Trabold, T.A., and Draper, K. (2020). Thermoformed Containers Based on Starch and Starch/Coffee Waste Biochar Composites. Energies, 13.
Li, Z., Reimer, C., Wang, T., Mohanty, A.K., and Misra, M. (2020). Thermal and Mechanical Properties of the Biocomposites of Miscanthus Biocarbon and Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate) (PHBV). Polymers, 12.
Montazeri, 2010, Mechanical properties of multi-walled carbon nanotube/epoxy composites, Mater. Des., 31, 4202, 10.1016/j.matdes.2010.04.018
Gantayat, 2018, Carbon nanomaterial–reinforced epoxy composites: A review, Polym. -Plast. Technol. Eng., 57, 1, 10.1080/03602559.2017.1298802
Khan, A., Savi, P., Quaranta, S., Rovere, M., Giorcelli, M., Tagliaferro, A., Rosso, C., and Jia, C.Q. (2017). Low-Cost Carbon Fillers to Improve Mechanical Properties and Conductivity of Epoxy Composites. Polymers, 9.
Giorcelli, M., and Bartoli, M. (2019). Development of Coffee Biochar Filler for the Production of Electrical Conductive Reinforced Plastic. Polymers, 11.
Giorcelli, 2019, Biochar as a cheap and environmental friendly filler able to improve polymer mechanical properties, Biomass Bioenergy, 120, 219, 10.1016/j.biombioe.2018.11.036
Bartoli, M., Giorcelli, M., Rosso, C., Rovere, M., Jagdale, P., and Tagliaferro, A. (2019). Influence of Commercial Biochar Fillers on Brittleness/Ductility of Epoxy Resin Composites. Appl. Sci., 9.
Bartoli, 2020, Effect of incorporation of microstructured carbonized cellulose on surface and mechanical properties of epoxy composites, J. Appl. Polym. Sci., 137, 48896, 10.1002/app.48896
Bartoli, 2019, Shape tunability of carbonized cellulose nanocrystals, SN Appl. Sci., 1, 1661, 10.1007/s42452-019-1727-2
Bartoli, 2020, Influence of pyrolytic thermal history on olive pruning biochar and related epoxy composites mechanical properties, J. Compos. Mater., 54, 1863, 10.1177/0021998319888734
Oral, 2016, Determination of elastic constants of epoxy resin/biochar composites by ultrasonic pulse echo overlap method, Polym. Compos., 37, 2907, 10.1002/pc.23488
Dahal, 2019, Biochar as a filler in glassfiber reinforced composites: Experimental study of thermal and mechanical properties, Compos. Part B Eng., 175, 107169, 10.1016/j.compositesb.2019.107169
Matykiewicz, D. (2020). Biochar as an Effective Filler of Carbon Fiber Reinforced Bio-Epoxy Composites. Processes, 8.
Zuccarello, B., Bartoli, M., Bongiorno, F., Militello, C., Tagliaferro, A., and Pantano, A. (2021). New Concept in Bioderived Composites: Biochar as Toughening Agent for Improving Performance and Durability of Agave-Based Epoxy Biocomposites. Polymers, 13.
Bartoli, M., Rosi, L., and Frediani, M. (2019). Synthesis and Applications of Unsaturated Polyester Composites. Unsaturated Polyester Resins, Elsevier.
Huang, 2018, An easy and scalable approach to synthesize three-dimensional sandwich-like Si/Polyaniline/Graphene nanoarchitecture anode for lithium ion batteries, Ceram. Int., 44, 4282, 10.1016/j.ceramint.2017.12.011
Hu, 2019, Co3Sn2/SnO2 heterostructures building double shell micro-cubes wrapped in three-dimensional graphene matrix as promising anode materials for lithium-ion and sodium-ion batteries, Chem. Eng. J., 355, 986, 10.1016/j.cej.2018.07.173
Akaluzia, 2021, Evaluation of the effect of reinforcement particle sizes on the impact and hardness properties of hardwood charcoal particulate-polyester resin composites, Mater. Today Proc., 38, 570, 10.1016/j.matpr.2020.02.980
Sundarakannan, 2020, Mechanical property analysis of biochar derived from cashew nut shell waste reinforced polymer matrix, Mater. Res. Express, 6, 125349, 10.1088/2053-1591/ab6197
Richard, 2017, Effects of particle loading and particle size on tribological properties of biochar particulate reinforced polymer composites, J. Tribol., 139, 012202, 10.1115/1.4033131
Panda, 2020, Variation in size of graphite particles and its cascading effect on the performance properties of PAEK composites, Compos. Part B Eng., 182, 107641.3, 10.1016/j.compositesb.2019.107641
Kandanur, 2012, Suppression of wear in graphene polymer composites, Carbon, 50, 3178, 10.1016/j.carbon.2011.10.038
Richard, 2019, Study of Tribological Properties of Nano-Sized Red Mud Particle-Reinforced Polyester Composites, Trans. Indian Inst. Met., 72, 2417, 10.1007/s12666-019-01694-0
Peterson, 2020, Reducing Biochar Particle Size with Nanosilica and Its Effect on Rubber Composite Reinforcement, J. Polym. Environ., 28, 317, 10.1007/s10924-019-01604-x
Stevenson, 2008, Tire rubber recycling and bioremediation: A review, Bioremediation J., 12, 1, 10.1080/10889860701866263
Lee, 2018, Review of the use of activated biochar for energy and environmental applications, Carbon Lett., 26, 1
Thostenson, 2001, Advances in the science and technology of carbon nanotubes and their composites: A review, Compos. Sci. Technol., 61, 1899, 10.1016/S0266-3538(01)00094-X
Young, 2012, The mechanics of graphene nanocomposites: A review, Compos. Sci. Technol., 72, 1459, 10.1016/j.compscitech.2012.05.005
Mohan, 2018, Graphene-based materials and their composites: A review on production, applications and product limitations, Compos. Part B Eng., 142, 200, 10.1016/j.compositesb.2018.01.013
Ma, 2010, Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review, Compos. Part A Appl. Sci. Manuf., 41, 1345, 10.1016/j.compositesa.2010.07.003
Layek, 2013, A review on synthesis and properties of polymer functionalized graphene, Polymer, 54, 5087, 10.1016/j.polymer.2013.06.027
2014, Significant breakthrough in biochar cost reduction, Clean Technol. Environ. Policy, 16, 1821, 10.1007/s10098-014-0730-y
(2021, December 14). Welcome To Cheap Tubes. Available online: https://www.cheaptubes.com/.
Bhattacharya, M. (2016). Polymer Nanocomposites—A Comparison between Carbon Nanotubes, Graphene, and Clay as Nanofillers. Materials, 9.
Cinti, 2015, Screen-printed electrodes modified with carbon nanomaterials: A comparison among carbon black, carbon nanotubes and graphene, Electroanalysis, 27, 2230, 10.1002/elan.201500168
Wang, M.-J., Gray, C.A., Reznek, S.A., Mahmud, K., and Kutsovsky, Y. (2000). Carbon Black. Kirk-Othmer Encyclopedia of Chemical Technology, Wiley.
(2016). Life Cycle Analysis of Biochar, Cambridge University Press.
Mergenthaler, 2017, Application of exergoeconomic, exergoenvironmental, and advanced exergy analyses to Carbon Black production, Energy, 137, 898, 10.1016/j.energy.2017.03.107